摘要
为明确青稞种质资源对大麦黄矮病毒( BYDV,barley yellow dwarf virus) 的抗性水平,本研究采用田间人工接种法,对245份青稞材料进行了连续3年抗病性鉴定。供试材料中仅有08-1280表现为高抗黄矮病,6份材料(ZYM1289、北青6号、ZDM4409、甘青2号、藏青3000、ZYM1853)表现为抗病,中抗、感病、高感材料分别有47份、173份、18份。分子标记检测结果显示08-1280携带Yd2抗性基因。为了解大麦黄矮病毒侵染对青稞抗性生理指标的影响,分析了接种病毒后高抗材料08-1280、高感材料康青3号中总酚、脯氨酸、可溶性糖和可溶性蛋白含量的变化差异。接种后10 d,高抗材料总酚、脯氨酸含量增加幅度显著高于高感材料。接种后30 d时,高抗材料总酚含量增加幅度高于高感材料,可溶性糖含量增加幅度显著低于高感材料;与对照组相比,高抗材料可溶性蛋白显著下降,高感材料显著上升。本研究为青稞抗病品种培育和抗性机制研究提供了优异资源和理论参考。
青稞(Hordeum vulgare L. var. nudum)又称裸大麦,主要分布在西藏、青海、云南迪庆州、四川甘孜州、四川阿坝州和甘肃甘南州等地区。青稞具有高蛋白、高维生素、高可溶性纤维、低脂肪、低糖等组分特性,且富含β-葡聚糖、γ-氨基丁酸、母育酚等多种活性物质,因而日益受到人们的关注,在食品、保健等行业中具有广阔的应用前
实践证明,筛选抗黄矮病种质资源,挖掘抗病基因,培育抗病品种是防治黄矮病最经济、有效的方法。目前,在大麦中发现了4个与大麦黄矮病毒抗性相关的基因(Ryd1、Ryd2、Ryd3、Ryd4Hb)和少量QTL。Ryd1是从大麦品种Rojo中鉴定出的1个隐性基
寄主植物受病原物侵染后,体内会产生一系列生理代谢响应,导致叶绿素、激素、防御酶、碳水化合物、氨基酸、蛋白质等含量发生改变,以促进或抑制病原物的侵
供试春青稞种质资源共245份(
来源 Origin | 数量 Number | 种质名称 Germplasm name |
---|---|---|
中国西藏 Tibet,China | 161 | 藏青1,藏青2,藏青13,藏青16,藏青17,藏青80,藏青85,藏青148,藏青320,藏青336,藏青690,藏青2000,藏青3000,藏青3179,藏青7239,喜拉1,喜拉2,喜拉3,喜拉5,喜拉6,喜拉10,喜拉13,喜拉15,喜拉19,喜拉22,阿青5号,山青6号,昌都青稞,山南白青稞,阿里白青稞,拉萨紫青稞,拉萨芶芒,林芝黑六棱,高原旱1号,长芒红四棱,针芒紫青稞,ZYM0254,ZYM0303,ZYM0439,ZYM0762,ZYM0850,ZYM0861,ZYM1047,ZYM1099,ZYM1202,ZYM1262,ZYM1288,ZYM1289,ZYM1408,ZYM1478,ZYM1490,ZYM1654,ZYM1850,ZYM1853,ZYM1900,ZYM1953,ZYM2162,ZYM2183,ZYM2195,ZYM2501,ZYM2507,ZYM2638,ZDM05021,ZDM06853,ZDM07635,ZDM09814,ZDM09748,ZDM09767,ZDM09772,ZDM09777,ZDM09802,ZDM09824,ZDM4289,ZDM4407,ZDM4409,ZDM4412,ZDM4426,ZDM4438,ZDM4465,ZDM4477,ZDM4472,ZDM4491,ZDM4503,ZDM4505,ZDM4520,ZDM4526,ZDM4530,ZDM4538,ZDM4541,ZDM4545,ZDM4553,ZDM4556,ZDM4576,ZDM4581,ZDM4587,ZDM4591,ZDM4650,ZDM4674,ZDM4678,ZDM4682,ZDM4686,ZDM4689,ZDM4690,ZDM4697,ZDM4699,ZDM4706,ZDM4714,ZDM4735,ZDM4746,ZDM4749,ZDM4757,ZDM4760,ZDM4763,ZDM4765,ZDM4771,ZDM4773,ZDM4775,ZDM4778,ZDM4780,ZDM4787,ZDM4789,ZDM4790,ZDM4792,ZDM4797,ZDM4799,ZDM4802,ZDM4804,ZDM4807,ZDM4824,ZDM5445,ZDM5451,ZDM5458,ZDM5462,ZDM5466,ZDM5471,ZDM5476,ZDM5479,ZDM5481,ZDM5491,ZDM5495,ZDM5535,ZDM5547,ZDM5554,ZDM5557,ZDM5562,ZDM5565,ZDM5572,ZDM5577,ZDM5579,ZDM5582,ZDM5585,ZDM5604,ZDM5609,ZDM5618,ZDM5673,ZDM5686,ZDM5716,ZDM5740,ZDM5780,ZDM5785,ZDM5787 |
国内其他地区 Qther regions of China | 44 | 甘青1号,甘青2号,甘青3号,昆仑1号,昆仑2号,昆仑3号,昆仑8号,昆仑10号,昆仑13号,昆仑164,北青1号,北青3号,北青4号,北青5号,北青6号,北青7号,北青8号,北青9号,康青3号,康青5号,康青7号,乐都红胶泥,青海肚里黄,乾宁本地青稞,湟源白浪散,化隆紫四棱,海南紫青稞,理唐勾芒,ZDM02592,ZDM08086,ZDM08108,ZDM08141,ZDM08177,ZDM08193,ZDM08205,ZDM08217,ZDM08227,ZDM08706,ZDM08790,ZDM08811,ZDM08841,ZDM08874,ZDM09463,ZDM09653 |
国外 Foreign | 40 | WDM00120,WDM00171,WDM00173,WDM00179,WDM00182,WDM00190,WDM00193,WDM00201,WDM00205,WDM00420,WDM01965,WDM02131,WDM02342,WDM02482,WDM03141,WDM03148,WDM03161,WDM03176,WDM03181,WDM03188,WDM03196,WDM03201,WDM03204,WDM03209,WDM03225,WDM03230,WDM03251,WDM03272,WDM03280,WDM03294,WDM03297,WDM03334,WDM03359,WDM03409,WDM04080,WDM04087,WDM05410,WDM06284,08-1127,08-1280 |
严重度及抗性评价标准参照中华人民共和国农业行业标准《NY/T 3060.6-2016大麦品种抗病性鉴定技术规程第6部分:抗黄矮病
人工气候室内盆栽种植田间抗性鉴定为高抗、抗病的青稞材料,生长至3叶期时,采集叶片,使用植物基因组DNA提取试剂盒(北京索莱宝科技有限公司,D1500-50T,中国),按照说明书提取基因组DNA。参照Ford
在人工气候室内盆栽种植高抗材料08-1280及高感材料康青3号,待青稞生长至3叶期时,用毛笔将饲毒后的成虫接种至植株的第二片叶(由上至下)上,每株接种15头,对照组每株接种15头无毒蚜虫,接种7 d后喷施杀虫剂。前期的研究发现,在此接种条件下,接种后10 d高抗、高感材料叶片的BYDV病毒含量无显著差异;接种后30 d,两个材料叶片中病毒含量差异最大。因此,本研究于接种后10、30 d分别采集青稞第一片完全展开的叶子,接种、对照组各设置3个生物学重复,每个重复为取自8个独立单株的混合样。采用福林酚比色法测定总酚含
采用田间人工接种法对245份青稞种质资源进行了3年黄矮病抗性鉴定,材料间抗性水平表现出明显差异(

图 1 青稞接种大麦黄矮病毒后的田间表现
Fig.1 The symptom of hulless barley inoculated with BYDV in the field
A: 高抗; B: 抗病; C: 中抗; D: 感病; E: 高感A: HR; B: R; C: MR; D: S; E: HS
序号 No. | 种质名称 Germplasm name | 严重度 Final disease sevetity | 抗性评价 Resistance | |||
---|---|---|---|---|---|---|
2019 | 2020 | 2022 | 平均值 Average | |||
1 | 08-1280 | 0.97±0.05 | 0.83±0.12 | 0.87±0.09 | 0.89±0.06 | HR |
2 | ZYM1289 | 1.37±0.12 | 1.17±0.05 | 1.23±0.12 | 1.26±0.08 | R |
3 | 北青6号 | 1.23±0.09 | 1.50±0.08 | 1.33±0.05 | 1.35±0.11 | R |
4 | ZDM4409 | 1.43±0.05 | 1.57±0.09 | 1.40±0.00 | 1.47±0.07 | R |
5 | 甘青2号 | 1.63±0.12 | 1.43±0.12 | 1.50±0.16 | 1.52±0.08 | R |
6 | 藏青3000 | 1.73±0.05 | 1.53±0.05 | 1.70±0.08 | 1.65±0.09 | R |
7 | ZYM1853 | 1.80±0.08 | 1.73±0.09 | 1.83±0.09 | 1.79±0.04 | R |
8 | ZYM2501 | 1.93±0.05 | 2.00±0.08 | 2.13±0.12 | 2.02±0.08 | MR |
9 | 阿里白青稞 | 2.17±0.19 | 2.10±0.08 | 1.90±0.14 | 2.06±0.11 | MR |
10 | ZDM02592 | 2.13±0.12 | 1.97±0.12 | 2.10±0.08 | 2.07±0.07 | MR |
11 | ZDM05021 | 2.20±0.14 | 2.10±0.14 | 2.03±0.09 | 2.11±0.07 | MR |
12 | ZYM1850 | 2.17±0.09 | 2.13±0.17 | 2.13±0.17 | 2.14±0.02 | MR |
13 | ZDM4472 | 2.17±0.12 | 2.20±0.16 | 2.10±0.08 | 2.16±0.04 | MR |
14 | ZDM5495 | 2.27±0.05 | 2.13±0.05 | 2.10±0.14 | 2.17±0.07 | MR |
15 | ZDM4714 | 2.23±0.12 | 2.10±0.16 | 2.20±0.08 | 2.18±0.06 | MR |
16 | WDM03196 | 2.23±0.05 | 2.30±0.08 | 2.07±0.05 | 2.20±0.10 | MR |
17 | ZDM09814 | 2.17±0.19 | 2.23±0.09 | 2.30±0.14 | 2.23±0.05 | MR |
18 | 藏青2 | 2.23±0.05 | 2.10±0.08 | 2.37±0.12 | 2.23±0.11 | MR |
19 | WDM00193 | 2.23±0.12 | 2.30±0.14 | 2.23±0.05 | 2.25±0.03 | MR |
20 | ZDM4674 | 2.33±0.05 | 2.23±0.12 | 2.27±0.17 | 2.28±0.04 | MR |
21 | ZDM5445 | 2.40±0.08 | 2.23±0.05 | 2.27±0.12 | 2.30±0.07 | MR |
22 | WDM03230 | 2.27±0.09 | 2.40±0.16 | 2.30±0.08 | 2.32±0.06 | MR |
23 | ZYM1654 | 2.40±0.08 | 2.23±0.12 | 2.40±0.08 | 2.34±0.08 | MR |
24 | WDM03176 | 2.47±0.09 | 2.27±0.05 | 2.37±0.09 | 2.37±0.08 | MR |
25 | ZDM4576 | 2.47±0.12 | 2.33±0.12 | 2.33±0.12 | 2.38±0.07 | MR |
26 | 阿青5号 | 2.43±0.05 | 2.37±0.09 | 2.40±0.16 | 2.40±0.02 | MR |
27 | ZDM4765 | 2.53±0.09 | 2.30±0.08 | 2.37±0.12 | 2.40±0.10 | MR |
28 | 甘青3号 | 2.47±0.12 | 2.30±0.00 | 2.50±0.08 | 2.42±0.09 | MR |
29 | ZDM4746 | 2.53±0.05 | 2.37±0.05 | 2.43±0.12 | 2.44±0.07 | MR |
30 | ZDM09748 | 2.60±0.08 | 2.33±0.09 | 2.40±0.08 | 2.44±0.11 | MR |
31 | WDM03141 | 2.53±0.12 | 2.37±0.05 | 2.53±0.12 | 2.48±0.08 | MR |
32 | 乐都红胶泥 | 2.50±0.08 | 2.37±0.09 | 2.63±0.05 | 2.50±0.11 | MR |
33 | ZYM2507 | 2.70±0.16 | 2.50±0.08 | 2.43±0.05 | 2.54±0.11 | MR |
34 | ZDM4581 | 2.43±0.05 | 2.60±0.08 | 2.63±0.09 | 2.55±0.09 | MR |
35 | ZDM5673 | 2.67±0.09 | 2.37±0.05 | 2.60±0.08 | 2.55±0.13 | MR |
36 | WDM00420 | 2.50±0.14 | 2.70±0.08 | 2.50±0.16 | 2.57±0.09 | MR |
37 | ZYM1408 | 2.73±0.05 | 2.53±0.05 | 2.50±0.08 | 2.59±0.10 | MR |
38 | 08-1127 | 2.77±0.05 | 2.43±0.12 | 2.60±0.14 | 2.60±0.14 | MR |
39 | ZDM4771 | 2.60±0.14 | 2.50±0.08 | 2.70±0.08 | 2.60±0.08 | MR |
40 | ZDM4763 | 2.70±0.14 | 2.53±0.09 | 2.70±0.08 | 2.64±0.08 | MR |
41 | 北青8 | 2.57±0.05 | 2.73±0.12 | 2.73±0.05 | 2.68±0.08 | MR |
42 | ZYM1288 | 2.77±0.09 | 2.60±0.08 | 2.73±0.09 | 2.70±0.07 | MR |
43 | ZDM09767 | 2.70±0.08 | 2.57±0.09 | 2.83±0.12 | 2.70±0.11 | MR |
44 | ZYM1900 | 2.77±0.09 | 2.63±0.05 | 2.73±0.05 | 2.71±0.06 | MR |
45 | 喜拉13 | 2.73±0.12 | 2.80±0.08 | 2.70±0.08 | 2.74±0.04 | MR |
46 | ZDM4545 | 2.77±0.05 | 2.77±0.12 | 2.70±0.14 | 2.75±0.03 | MR |
47 | 藏青148 | 2.87±0.09 | 2.77±0.05 | 2.60±0.08 | 2.75±0.11 | MR |
48 | ZDM08193 | 2.70±0.08 | 2.83±0.05 | 2.77±0.05 | 2.77±0.05 | MR |
49 | ZDM5582 | 2.90±0.16 | 2.73±0.05 | 2.80±0.08 | 2.81±0.07 | MR |
50 | 喜拉2 | 2.80±0.08 | 2.93±0.12 | 2.77±0.09 | 2.83±0.07 | MR |
51 | ZDM4591 | 2.93±0.12 | 2.70±0.08 | 2.87±0.05 | 2.83±0.10 | MR |
52 | ZDM08841 | 2.97±0.17 | 2.73±0.09 | 2.90±0.08 | 2.87±0.10 | MR |
53 | 昆仑13号 | 3.00±0.14 | 2.83±0.12 | 2.90±0.14 | 2.91±0.07 | MR |
54 | ZDM4690 | 2.93±0.21 | 2.80±0.08 | 3.10±0.16 | 2.94±0.12 | MR |
HR:高抗;R:抗病;MR:中抗。表中数据为平均数±标准差
HR: Highly resistance; R: Resistance; MR: Moderately resistance. The data in the table are average values ± standard error
利用ASPCR-Ylp标记对1份高抗材料和6份抗病材料进行Yd2抗性基因检测,结果(

图2 高抗、抗病材料Yd2基因的检测结果
Fig.2 Yd2 detection of high resistant and resistant materials
M: DNA Marker; 1: 藏青3000; 2: ZYM1289; 3: ZYM1853; 4: ZDM4409; 5: 08-1280; 6: 甘青2号; 7: 北青6号
M: DNA Marker; 1: Zangqing 3000; 2: ZYM1289; 3: ZYM1853; 4: ZDM4409; 5: 08-1280; 6: Ganqing 2; 7: Beiqing 6
由

图3 接种大麦黄矮病毒后不同抗性青稞叶片总酚、脯氨酸、可溶性糖、可溶性蛋白质含量的变化
Fig.3 Content changes of total phenol, proline, soluble sugar and soluble protein in leaves of different resistant hulless barley materials inoculated with BYDV
1280:08-1280;KQ3:康青3号。*和**分别表示接种和对照处理之间在0.05和0.01水平上显著
1280: 08-1280; KQ3: Kangqing 3. * and ** represent significant difference between inoculation and control at 0.05 and 0.01 probabilitylevel, respectively
由
由
由
种质资源的鉴定是作物育种的核心基础,精准鉴定和评价青稞黄矮病的抗性水平有利于提高抗病育种效率,从而减少杀虫剂的使用,提高青稞生产的经济效益和生态效益。黄矮病症状显现程度受气候条件(温度、湿度、光照等)、蚜虫接种量、接种时期等因素的影响较
国内关于黄矮病的研究主要集中在小麦上,大麦中研究较少。杜志强
植物的抗病性是建立在一系列物质代谢基础上的。酚类物质是植物特有的一种次生代谢产物,可作为木质素前体诱导细胞壁木质化,从而增加寄主细胞壁的机械强度,阻碍或减缓病原体的扩
可溶性糖和可溶性蛋白质不仅是植物体内重要的渗透调节物质,同时也可以为寄主和病原物提供能量。闫慧娟
参考文献
Zeng X Q , Xu T, Ling Z H, Wang Y L, Li X F, Xu S Q, Xu Q J, Zha S, Qimei W M, Basang Y Z, Dunzhu J B, Yu M Z, Yuan H J, Tashi N. An improved high-quality genome assembly and annotation of tibetan hulless barley. Scientific Data, 2020, 7(1): 139 [百度学术]
翟会生, 李俏, 张玉红, 曾兴权, 唐亚伟, 尼玛扎西, 邓光兵, 龙 海, 潘志芬, 余懋群. 72 份青稞氨基酸组成与营养价值评价, 植物遗传资源学报, 2021, 22(1): 121-129 [百度学术]
Zhai H S, Li Q, Zhang Y H, Zeng X Q, Tang Y W, Tashi N, Deng G B, Long H, Pan Z F, Yu M Q. Evaluation of the amino acids composition and nutrition value of 72 hulless barley. Journal of Plant Genetic Resources, 2021,22(1): 121-129 [百度学术]
Xu Q J, Zeng X Q, Lin B, Li Z Q, Yuan H J, Wang Y L, Zha S, Tashi N. A microsatellite diversity analysis and the development of core-set germplasm in a large hulless barley (Hordeum vulgare L.) collection. BMC Genetics, 2017, 18:102 [百度学术]
Zeng X Q, Long H, Wang Z, Zhao S C, Tang Y W, Huang Z Y, Wang Y L, Xu Q J, Mao L K, Deng G B,Yao X M, Li X F, Bai L J, Yuan H J, Pan Z F, Liu R J, Chen X, WangMu Q M, Chen M, Yu L L, Liang J J, DunZhu J B, Zheng Y, Yu S Y, LuoBu Z X, Guang X M, Li J, Deng C, Hu W S, Chen C H, TaBa X N, Gao L Y, Lv X D, Abu Y B, Fang X D, Nevo E, Yu M Q, Wang J, Tashi N. The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(4):1095-1100 [百度学术]
刘何春, 姚小波, 李杨, 雷雪萍, 王文峰. 6种病毒抑制剂对西藏青稞大麦黄矮病的防治效果. 植物保护, 2021, 47(1): 297-302 [百度学术]
Liu H C, Yao X B, Li Y, Lei X P, Wang W F. Control efficacy of six plant virus inhibitors on barley yellow dwarf disease in Tibet. Plant Protection, 2021, 47(1): 297-302 [百度学术]
Gray S, Gildow F E. Luteovirus-aphid interactions. Annual Review of Phytopathology, 2003, 41:539-566 [百度学术]
Kaddachi I, Souiden Y, Achouri D, Chéour F. Barley yellow dwarf virus (BYDV): Characteristics, hosts, vectors, disease symptoms and diagnosis. Journal of Phytopathology, 2014, 3(3):155-160 [百度学术]
Perry K L, Kolb F L, Sammons B, Lawson C, Cisar G, Ohm H. Yield effects of barley yellow dwarf virus in soft red winter wheat. Phytopathology, 2000, 90(9):1043-1048 [百度学术]
Suneson C A. Breeding for resistance to yellow dwarf virus in barley. Agronomy Journal, 1955, 47: 283 [百度学术]
Schaller C W, Qualset C O, Rutger J N. Inheritance and linkage of the Yd2 gene conditioning resistance to the barley yellow dwarf virus disease in barley. Crop Science, 1964, 4: 544-548 [百度学术]
Collins N C, Paltridge N G, Ford C M , Symons R H. The Yd2 gene for barley yellow dwarf virus resistance maps close to the centromere on the long arm of barley chromosome 3. Theoretical and Applied Genetics, 1996, 92: 858-864 [百度学术]
Ordon F, Habekuss A, Kastirr U, Rabenstein F, Kuhne T. Virus resistance in cereals: Sources of resistance, genetics and breeding. Journal of Phytopathology, 2009, 157: 535-545 [百度学术]
Paltridge N G, Collins N C, Bendahmane A, Symons R H. Development of YLM, a codominant PCR marker closely linked to the Yd2 gene for resistance to barley yellow dwarf disease. Theoretical and Applied Genetics, 1998, 96: 1170-1177 [百度学术]
Ford C M, Paltridge N G, Rathjen J P, Moritz R L, Simpson R J, Symons R H. Rapid and informative assays for Yd2, the barley yellow dwarf virus resistance gene, based on the nucleotide sequence of a closely linked gene. Molecular Breeding, 1998, 4: 23-31 [百度学术]
赵彦宏, 王艳芳, 李润植, 牛洪斌, 薛敬爱, 刘林德. 利用分子标记鉴定大麦Yd2基因型及其在育种辅助选择中的应用. 作物学报, 2011, 37(9): 1683-1688 [百度学术]
Zhao Y H, Wang Y F, Li R Z, Niu H B, Xue J A, Liu L D. Identification of Yd2 genotype in barley with molecular markers and their application in molecular marker-assisted Selection. Acta Agronomica Sinica, 2011, 37(9): 1683-1688 [百度学术]
Niks R E, Habekub A, Bekele B, Ordon F. A novel major gene on chromosome 6H for resistance of barley against the barley yellow dwarf virus. Theoretical and Applied Genetics, 2004, 109:1536-1543 [百度学术]
Riedel C, Habekub A, Schliephake E, Niks R, Broer I, Ordon F. Pyramiding of Ryd2 and Ryd3 conferring tolerance to a German isolate of barley yellow dwarf virus-PAV (BYDV-PAV-ASL-1) leads to quantitative resistance against this isolate. Theoretical and Applied Genetics, 2011, 123: 69-76 [百度学术]
Scholz M, Ruge-Wehling B, Habeku A, Schrader O, Pendinen G, Fischer K, Wehling P. Ryd4 Hb: A novel resistance gene introgressed from Hordeum bulbosum into barley and conferring complete and dominant resistance to the barley yellow dwarf virus. Theoretical and Applied Genetics, 2009, 119: 837-849 [百度学术]
Del Blanco I A, Hegarty J, Gallagher L W, Falk B W, Brown-Guedira G, Pellerin E, Dubcovsky J. Mapping of QTL for tolerance to cereal yellow dwarf virus in two-rowed spring barley. Crop Science, 2014, 54:1468-1475 [百度学术]
Jarosova J, Beoni E, Kundu J K. Barley yellow dwarf virus resistance in cereals: Approaches, strategies and prospects. Field Crops Research, 2016, 198: 200-214 [百度学术]
Berger S, Sinha A K, Roitsch T. Plant physiology meets phytopathology:Plant primary metabolism and plant-pathogen interactions. Journal of Experimental Botany, 2007, 58(15-16):4019-4026 [百度学术]
Hammond-Kosack K E, Jones J D G. Resistance gene dependent plant defense response. Plant Cell, 1996, 8(10): 1773-1791 [百度学术]
Sahhafi S R, Bagheri F, Assad M T, Masumi M, Talebi M. Evaluation of some biochemical responses in resistance of fifteen bread wheat (Triticum aestivum L.) genotypes to wheat streak mosaic virus. Journal of Agricultural Science, 2012, 4(5): 75-82 [百度学术]
Radwan M D E, Fayez K A, Mahmoud S Y, Hamad A, Lu G Q. Physiological and metabolic changes of Cucurbita pepo leaves in response to zucchini yellow mosaic virus (ZYMV) infection and salicylic acid treatments. Plant Physiol Biochem, 2007, 45:480-489 [百度学术]
Arias M C, Lenardon S, Taleisnik E. Carbon metabolism alterations in sunflower plants infected with the sunflower chlorotic mottle virus. Journal of Phytopathology, 2003, 151:267-273 [百度学术]
Lattanzio V, Lattanzio V M T, Cardinali A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry: Advances in Research, 2006, 661:23-67 [百度学术]
Siddique Z, Akhtar K P, Hameed A, Sarwar N, Imran-Ul-Haq, Khan S A. Biochemical alterations in leaves of resistant and susceptible cotton genotypes infected systemically by Cotton leaf curl Burewala virus. Journal of Plant Interactions, 2014, 9:702-711 [百度学术]
中华人民共和国农业部. NY/T 3060.6-2016大麦品种抗病性鉴定技术规程第6部分:抗黄矮病.北京:中国标准出版社, 2016 [百度学术]
Ministry of Agriculture of the People's Republic of China. NY/T 30606-2016 Code of practice for evaluation of barley varieties for resistance to disease - Part 6: Yellow dwarf. Beijing: Standards Press of China, 2016 [百度学术]
丁璇子, 王岸娜, 吴立根. 响应面法优化小麦麸皮中总酚含量的测定. 粮食与油脂, 2016, 29(9): 37-41 [百度学术]
Ding X Z, Wang A N, Wu L G. Determination of total phenol content in wheat bran optimized by response surface method. Cereals & Oils, 2016, 29(9): 37-41 [百度学术]
高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006: 214-216 [百度学术]
Gao J F. Experimental guidance on plant physiology. Beijing: Higher Education Press, 2006: 214-216 [百度学术]
李合生. 植物生理生化实验原理和技术.北京:高等教育出版社, 2000: 164-169 [百度学术]
Li H S. Principles and techniques of plant physiological biochemical experiment. Beijing: Higher Education Press, 2000:164-169 [百度学术]
Lowles A J, Tatchell G M, Harrington R, Clark S J. The effect of temperature and inoculation access period on the transmission of barley yellow dwarf virus by Rhopalosiphum padi (L.) and Sitobion avenae (F.). Annals of Applied Biology, 1996, 128: 45-53 [百度学术]
Choudhury S, Hu H L, Meinke H, Shabala S, Westmore G, Larkin P, Zhou M X. Barley yellow dwarf viruses_ infection mechanisms and breeding strategies. Euphytica, 2017, 213:168 [百度学术]
杜志强, 刘艳, 周希明, 钱幼亭, 周广和. 大麦种质资源抗,耐大麦黄矮病毒田间鉴定. 中国种业, 1997, 2: 32-33 [百度学术]
Du Z Q, Liu Y, Zhou X M, Qian Y T, Zhou G H. Identification of the resistance of barley germplasm resources to BYDV. China Seed Industry, 1997, 2: 32-33 [百度学术]
梅红, 木德伟, 李学毅, 陶宗仁, 施晓群, 林莉. 云南青稞种质抗大麦黄矮病抗性鉴定研究. 云南大学学报:自然科学版, 2008, 30(S1): 25-30 [百度学术]
Mei H, Mu D W, Li X Y, Tao Z R, Shi X Q, Lin L. The preliminary identification of Yunnan naked barley germplasm resisting BYDV. Journal of Yunnan University: Natural Science Edition, 2008, 30(S1): 25-30 [百度学术]
Lyon G, Heilbronn J, Forrest R, Johnston D. The biochemical basis of resistance of potato to soft rot bacteria. Netherlands Journal of Plant Pathology, 1992, 2:127-133 [百度学术]
Boudet A, Lapierre C, Grima‐Pettenati J. Biochemistry and molecular biology of lignification. New Phytologist, 1995,129:203-236 [百度学术]
Kovalvi S A, Nassuth A. Influence of Wheat Streak Mosaic Virus infection on phenylpropanoid metabolism and the accumulation of phenolics and lignin in wheat. Physiological and Molecular Plant Pathology, 1995, 47:365-377 [百度学术]
焦蓉, 刘好宝, 刘贯山, 王树林,侯娜, 王全贞, 刘朝科, 冯祥国, 胡晓明, 靳义荣. 论脯氨酸累积与植物抗渗透胁迫. 中国农学通报, 2011, 27(7): 216-221 [百度学术]
Jiao R, Liu H B, Liu G S, Wang S L, Hou N, Wang Q Z, Liu C K, Feng X G, Hu X M, Jin Y R. Discussion of accumulation of proline and Its relationship with osmotic stress tolerance of plants. Chinese Agricultural Science Bulletin, 2011, 27(7): 216-221 [百度学术]
Singh Y J, Grewal S K, Gill R K. Proline metabolism and phenylpropanoid pathway act independently in conferring resistance against yellow mosaic virus infection in black gram. Physiological and Molecular Plant Pathology, 2021, 116:101713 [百度学术]
闫慧娟, 韩玉杰, 周小梅, 张彦芹, 张明义. 不同抗性玉米接种矮花叶病毒后的生理生化变化研究. 山西大学学报:自然科学版, 2010, 33(3): 458-462 [百度学术]
Yan H J, Han Y J, Zhou X M, Zhang Y Q, Zhang M Y. Physiological and biochemical changes of different resistant corn infected with maize dwarf mosaic virus. Journal of Shanxi University: Natural Science Edition, 2010, 33(3): 458-462 [百度学术]
李佐同, 靳学慧, 张亚玲, 吴成龙. 水稻幼苗可溶性糖及可溶性蛋白含量与抗瘟性的关系. 北方水稻, 2009, 39(4): 6-9 [百度学术]
Li Z T, Jin X H, Zhang Y L, Wu C L. The relationship between soluble Protein, soluble sugar content and rice blast resistance of rice seedlings. North Rice, 2009, 39(4): 6-9 [百度学术]
Gonçalves M C, Vega J, Oliveira J G, Gomes M. Sugarcane yellow leaf virus infection leads to alterations in photosynthetic efficiency and carbohydrate accumulation in sugarcane leaves. Fitopatologia Brasileira, 2005, 30:10-16 [百度学术]
Addy H S, Nurmalasari, Wahyudi A H S, Sholeh A, Anugrah C, Iriyanto F E S, Darmanto W, Sugiharto B. Detection and response of sugarcane against the infection of Sugarcane Mosaic Virus (SCMV) in Indonesia. Agronomy, 2017, 7(50):1-11 [百度学术]