摘要
高抗性淀粉的稻米有益于改善人类健康并降低与饮食相关的慢性疾病风险。挖掘新的水稻籽粒抗性淀粉相关基因,对揭示水稻籽粒抗性淀粉合成的遗传机理有重要意义,同时可为选育高抗性淀粉水稻新品种提供新的基因资源。本研究以宁夏本地高产粳稻品种宁粳28号和外引粳稻品种JTD,以及构建的126个F7重组自交系(RILs, recombination inbred lines)群体为研究材料,通过全基因组重测序技术构建了一张含有1,856个Bin标记的遗传连锁图谱。该图谱全长1973.86 cM,标记间平均遗传距离为1.06 cM。采用CIM区间作图法对水稻群体的抗性淀粉性状进行QTL定位,检测到1个控制抗性淀粉的QTL,位于第7号染色体上,LOD值为4.2,贡献率为9.7%。深入分析获得候选基因Os07g0444000(预测为水稻葡萄糖神经酰胺酶)和Os07g0443500(含有MYB结构域的DNA结合蛋白)。研究发现Os07g0444400上SNP15740179和SNP15740207位点的基因型频率在RIL群体高抗性淀粉组和低抗性淀粉组之间存在显著差异。在灌浆过程中,Os07g0443500和Os07g0444000在父本JTD(高抗性淀粉亲本)中的表达量均不同程度的高于母本宁粳28号。由此推测这两个候选基因可能参与水稻籽粒灌浆过程中抗性淀粉的形成。本研究通过挖掘水稻籽粒抗性淀粉QTL位点和相关基因为选育高抗性淀粉水稻新品种提供新的基因资源。
当前,肥胖、超重和营养不均衡导致的慢性病和糖尿病人数逐年增长。根据国际糖尿病联盟(http://www.diabetesatlas.org/)最新报告,2021年全球约5.37亿成年人(20~79岁)患糖尿病且人数在不断增加。中国患有糖尿病的人数已经达到约1.4亿,排名世界第
稻米是世界一半以上人口的主食,我们要响应习总书记提出的“中国人的饭碗要牢牢端在自己手中”的号召,以提升水稻的产量和品质为生产目标。稻米的升糖指数高,抗性淀粉含量低。大多数稻米品种抗性淀粉含量低于干重的1
近些年来,国内外育种家通过理化诱变、传统育种、RNAi干扰和CRISPR基因编辑技术创制了多个高抗性淀粉育种材料及品种,包括浙辐111、降糖稻、优糖稻、宜糖稻、适糖稻、功米3号等,选育出来的水稻品种精米中抗性淀粉含量在3%~13.69%之
尽管国内外研究人员获得了一些高抗性淀粉的水稻材料,定位到一些候选基因,但是深入研究基因功能和调控机制的研究仍然较少。虽然前人已经发现了一些参与水稻抗性淀粉形成的QTL区域,但是QTL定位结果会受到作图群体、分子标记数量和统计方法等因素的制约。基于这些因素,已有研究中所绘制的遗传连锁图谱精确度较低,很可能遗漏了一些重要的QTL区域。另外研究发现,抗性淀粉与直链淀粉的相关系数为0.75,与支链淀粉酶活性的相关系数为0.98;直链淀粉和长支链淀粉之间存在竞争关
以宁粳28号为母本和JTD为父本,于2011年在宁夏大学农学院作物种植温室配置宁粳28号/JTD杂交组合,产生F1,通过连续自交7代衍生出126个性状和基因型稳定的株系作为重组自交系群体。群体及亲本于2019年种植在宁夏银川永宁县宁夏大学教学实验农场,行距为10 cm,株距为2 cm,每个株系穴栽一行,管理标准采用一般大田管理的方式。
水稻籽粒完全成熟后,每个家系随机挖取3个重复的考种样,自然条件下晾干,用于农艺性状考察。用长直尺测量家系穗长、株高、茎基粗,剪下单穗称取单穗粒重,用玻璃培养皿盖子将籽粒小心全部刮下,称取千粒重。经JLGJ4.5型检验砻谷机碾出糙米,用LTJM-2009精米机碾磨成精米,选择完整的精米1000粒,用大米外观品质检测仪检测家系的垩白粒率、粒长、粒宽、粒长宽比。
在水稻黄熟期收获水稻种子,将种子在80 ℃烘箱干燥并剔除杂质和空瘪粒,经JLGJ4.5型检验砻谷机碾出糙米,用LTJM-2009精米机碾磨成精米,然后用JFSD-70型实验用粉碎机将精米碾磨成粉,放入4 ℃冰箱备用。准确称取100 mg(±5 mg)样品,利用爱尔兰Megazyme公司的抗性淀粉试剂盒测定水稻籽粒抗性淀粉含量。用葡糖氧化酶/过氧化物酶试剂(GOPOD)测定D-葡萄糖的含量,然后根据公式计算得到抗性淀粉含量。试验过程重复3次,取平均值。所得数据用Excel处理其平均数、标准差和变异系数并绘图。
抗性淀粉含量=△E×F×10.3/0.1×1/1000×100/W×162/180=△E×F/W×9.27
其中,△E为相对于空白试剂的吸光度值;F为从吸光度值到微克的转换;10.3/0.1为体积校正;1/1000为体积校正;W为分析样本的干重;100/W为抗性淀粉在样品重量中的百分比分子;162/180为从测定获得的游离D-葡萄糖转换到淀粉中存在的脱水D-葡萄糖的因子。
利用CATB方法分别提取亲本和126个RILs的DNA,通过凝胶电泳方法检测DNA是否有降解或蛋白质、RNA污染等问题。合格的DNA样品标准为:浓度≥20 ng/µL,总量≥2 µg,OD260/280=1.8~2.2,主带清晰,无或轻度降解,无严重RNA污染。按照Illumina公司提供的标准方法进行样品检测、文库构建、文库质检和上机测序过程。
基于重测序结果对双亲和126个RILs进行SNP标记分型及筛选。以15个SNP为1个窗口,1个SNP为步长在染色体上滑动扫描,当滑窗内的SNP分型为aa的数目大于等于11个时分型为aa,当滑窗内的SNP分型为bb的数目大于等于11个时分型为bb,其他情况的以ab进行基因型填补和校正。将筛选得到的Bin分为12个连锁群,以连锁群为单位,采用HighMa
将双亲在灌浆期第10 d和第16 d的籽粒(3个重复,每个重复6个植株)样品用液氮保存,长期保存至-80 ℃冰箱中。利用TriQuick Reagent提取籽粒的RNA,用Aidlab公司反转录试剂盒(TUREscript 1st Stand cDNA SYNTHESIS Kit)进行反转录。以OsActin基因为内参,引物序列如
引物名称 Prime name | 正向引物序列(5'-3') Forward primer sequence (5'-3') | 反向引物序列(5'-3') Reverse primer sequence (5'-3') |
---|---|---|
OsActin | GACCTTCAACACCCCTGCTA | ACAGTGTGGCTGACACCATC |
Os07g0443500 | GAGTGGAGCAAAGAGGAG | CTTGTGCCAGAGATCAGG |
Os07g0444000 | CCACTACAGGTCGCTGATAT | CGAGTATGGTTCTTGGAGGA |
经检测,双亲(宁粳28号和JTD)在抗性淀粉含量上存在显著差异。母本宁粳28号抗性淀粉含量较低,仅为0.5%,父本JTD抗性淀粉含量较高,为1.75%。两亲本杂交后代获得的RIL群体有126个株系,抗性淀粉含量在0.25%~2.38%之间,平均值为1.05%(
性状Character | 亲本 Parents | RIL群体 RILpopulation | ||||
---|---|---|---|---|---|---|
宁粳28号Ningjing 28 | JTD | 范围 Range | 平均值Average | 标准差SD | 变异系数CV | |
抗性淀粉含量(%) RS content | 0.5 | 1.75 | 0.25~2.38 | 1.05 | 0.44 | 41.91 |
RS:Resistance starch, the same as below

图1 RIL群体抗性淀粉含量分布图
Fig.1 Distribution of resistant starch content in RIL population
本研究通过分析重组自交系群体126个家系的水稻籽粒抗性淀粉含量和其他9个农艺性状的相关性,结果表明抗性淀粉与垩白粒率、粒长、千粒重呈显著正相关,相关系数分别为0.22、0.18和0.27(
性状 Character | 垩白粒率 Cretaceous grain rate | 穗长 Spike length | 株高 Plant height | 茎基粗 Stem base thick | 粒长 Grain long | 粒宽 Grain width | 粒长宽比 Grain length and width ratio | 千粒重 Thousand-grain weight | 单穗粒重 Single ear grain weight |
---|---|---|---|---|---|---|---|---|---|
抗性淀粉含量 RS content | 0.22* | 0.01 | 0.09 | -0.13 | 0.18* | 0.16 | 0.01 | 0.27** | 0.01 |
*表示不同性状间呈显著相关,**表示不同性状间呈极显著正相关
* indicates a significant correlation between different traits, and ** indicates a very significant positive correlation between different traits
编号 Number | 抗性淀粉含量(%) RS content | 垩白粒率(%) Cretaceous grain rate | 穗长(cm) Spike length | 株高(cm) Plant height | 茎基粗(mm) Stem base thick | 粒宽(mm) Grain long | 粒长(mm) Grain width | 粒长宽比 Grain length and width ratio | 千粒重(g) Thousand-grain weight | 单穗粒重(g) Single ear grain weight |
---|---|---|---|---|---|---|---|---|---|---|
201941 | 1.75 | 7.00 | 23.46 | 128.74 | 7.15 | 3.12 | 8.36 | 2.20 | 25.45 | 2.90 |
201950 | 1.69 | 4.00 | 24.56 | 121.68 | 7.28 | 3.17 | 8.51 | 2.40 | 25.10 | 3.11 |
201956 | 1.54 | 3.00 | 22.96 | 114.38 | 6.92 | 3.37 | 7.94 | 2.10 | 24.48 | 4.78 |
基于双亲和126个RIL群体的双端测序(PE,pari end)结果,序列读长为150 bp,利用短序列比对软件BWA将测序数据比对到日本晴参考基因组(ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/425/GCF_000005425.2_Build_4.0/)上。过滤掉非染色体标记,亲本纯合一致且亲本标记深度低于4×的标记,以保证子代分型正确性。利用HighMap软件对筛选得到的199,616个SNP进行基因型填补和校正,根据子代重组情况进行Bin划分,将各样本按染色体物理位置排列整齐,当任何样本中出现分型转变就认为出现了重组断点,将重组断点间的SNP划为Bin中,Bin内认为没有重组事件发生。筛除长度小于10 kb以下的Bin,过滤掉严重偏分离(卡方检验P<0.0001)的多态性标记,最终以1,856个Bin标记构建遗传图谱。该遗传图谱包含12个连锁群,分别对应水稻的12条染色体,总图距为1973.86 cM,其中第3条染色体Bin标记数目最多,为254条,第5条染色体Bin标记数目最少,为82条;第7条染色体标记间Max Gap最大,为13.34 cM,第10条染色体标记间Max Gap最小,为4.7 cM;第12条染色体Bin标记间平均遗传距离最大,为2.26 cM,第10条染色体Bin标记间距离最小,仅为0.55 cM,整个染色体组的标记平均间距为1.06 cM(
染色体 Chromosome | 每条连锁群总的Bin标记 Total Bin marker | 总遗传距离(cM) Total distance | 平均图距(cM) Average distance | 最大Gap(cM) Max gap | Gap<5 cM的百分比(%) Gaps<5 cM |
---|---|---|---|---|---|
1 | 171 | 189.71 | 1.12 | 7.20 | 97.65 |
2 | 194 | 192.49 | 1.00 | 6.26 | 99.48 |
3 | 254 | 193.92 | 0.77 | 7.61 | 99.21 |
4 | 95 | 169.88 | 1.81 | 7.66 | 97.87 |
5 | 82 | 134.69 | 1.66 | 7.66 | 86.42 |
6 | 174 | 155.58 | 0.90 | 10.89 | 97.11 |
7 | 106 | 165.96 | 1.58 | 13.34 | 87.62 |
8 | 210 | 187.22 | 0.90 | 9.96 | 83.73 |
9 | 100 | 154.38 | 1.56 | 9.38 | 94.95 |
10 | 237 | 130.84 | 0.55 | 4.70 | 99.15 |
11 | 144 | 100.25 | 0.70 | 9.63 | 97.20 |
12 | 89 | 198.93 | 2.26 | 7.52 | 77.27 |
总计Total | 1856 | 1973.86 | 1.06 | 13.34 | 77.27 |

图2 标记构建的遗传图谱
Fig.2 Bin genetic linkage map
以构建的水稻高密度遗传连锁图谱为基础,利用R/qtl软件通过CIM区间作图法对水稻F7群体的抗性淀粉性状进行QTL定位。用置换检验PT(Permutation test)检验1000次进行阈值设定。结果显示,当LOD阈值为4.2时,在水稻第7号染色体上检测到一个间距0.397 cM的水稻抗性淀粉性状相关QTL位点,命名为qRS-7,遗传位置为52.99~53.38 cM,贡献率9.7%,呈现加性效应(

图3 抗性淀粉QTL定位分析
Fig.3 Resistant starch QTL mapping analysis
基因名称 Gene name | 功能描述 Gene description | 定位 Location |
---|---|---|
Os07g0444000 | 类似于非溶酶体葡萄糖神经酰胺酶 | 细胞膜 |
Os07g0443500 | 包含MYB结构域的蛋白 | 细胞核 |
根据基因组重测序的结果,分析了候选基因Os07g0444000和Os07g0443500在双亲中SNP标记的序列信息。双亲序列比对发现,候选基因Os07g0443500上有1个SNP位点在父本JTD中是A,在母本宁粳28号中是G。候选基因Os07g0444400上有6个SNP位点在双亲中存在序列差异(
候选基因 Candidate gene | SNP位点 SNP site | JTD | 宁粳28号 Ningjing 28 |
---|---|---|---|
Os07g0443500 | SNP15697906 | A | G |
Os07g0444000 | SNP15728783 | T | C |
SNP15729393 | T | A | |
SNP15740179 | A | G | |
SNP15740207 | T | C | |
SNP15740426 | T | C | |
SNP15740539 | G | A |

图4 RIL群体中携带候选基因不同亲本基因型的家系和抗性淀粉含量之间的关系
Fig.4 Relationship between families carrying candidate genes with different parental genotypes and RS content in RIL population
*表示在0.05水平有显著差异;不同颜色代表不同的SNP位点,相同颜色代表同一个SNP位点
* represents a significant difference at the 0.05 level; Different colors represent different SNP sites and the same color represents the same SNP site
利用实时荧光定量qPCR检测了候选基因在双亲灌浆中

图5 候选基因在亲本灌浆中后期的表达分析
Fig.5 Expression analysis of candidate genes in parents at different grain filling stages
A:候选基因Os07g0443500在双亲灌浆10 d和16 d的mRNA表达分析;B:候选基因Os07g0444000在双亲灌浆10 d和16 d的mRNA表达分析;**表示在0.01水平有显著差异
A: mRNA expression analysis of candidate gene Os07g0443500 in parental grouting 10 d and 16 d; B: mRNA expression analysis of the candidate gene Os07g0444000 in parental grouting 10 d and 16 d; ** indicates a significant difference at the 0.01 level
水稻籽粒抗性淀粉性状为多基因控制的数量性状,同时也受外界环境影响,因此研究过程中品种差异、构建的群体类型和大小、水稻生长环境以及籽粒抗性淀粉的测定方法等差异都将不同程度地影响QTL定位结
本研究通过高通量测序技术对亲本及重组自交系群体进行基因组重测序,筛选出大量SNP位点,基于这些位点构建了高密度的Bin图谱,结合抗性淀粉表型数据进行QTL分析,在水稻第7号染色体上获得了两个候选基因Os07g0443500和Os07g0444000。李鸣
一般认为抗性淀粉有5种类型,其中RS5是直链淀粉和脂质的复合物,通过形成螺旋结构,防止被淀粉酶消
目前对于水稻抗性淀粉形成的遗传和分子机制阐释仍然不够充分,一些与抗性淀粉形成具有间接作用的基因还需要进一步验证生物学功能。在育种工作中,通常会发现增加水稻中抗性淀粉的含量导致了其他水稻农艺性状,如产量、食味品质和外观品质的降
参考文献
郭立新.2021年糖尿病领域年度重大进展回顾.中华糖尿病杂志,2022,14(1):1-8 [百度学术]
Guo L X. 2021 annual review of major progress in diabetes. Chinese Journal of Diabetes, 2022, 14 (1): 1-8 [百度学术]
Raben A, Tagliabue A, Christensen N J,Madsen J,Holst J J,Astrup A.Resistant starch: The effect on postprandial glycemia, hormonal response, and satiety. The AmericanJournal of Clinical Nutrition, 1994,60(4): 544-551 [百度学术]
Raigond P, Ezekiel R, Raigond B. Resistant starch in food: A review. Journal of the Science of Food and Agriculture, 2015,95(10): 1968-1978 [百度学术]
Emilien C H, Hsu W H, Hollis J H. Effect of resistant wheat starch on subjective appetite and food intake in healthy adults. Nutrition, 2017, 43: 69-74 [百度学术]
Hu P S, Zhao H J, Duan Z Y, Zhang L L,Wu D X. Starch digestibility and the estimated glycemic score of different types of rice differing in amylose contents. Journal of Cereal Science, 2004, 40(3): 231-237 [百度学术]
赵雪. 杂草稻抗性淀粉相关性状的QTL定位分析及不良农艺性状的分子改良.沈阳:沈阳农业大学,2022 [百度学术]
Zhao X. QTL Mapping analysis of resistant starch related traits and molecular improvement of undesirable agronomic traits in weedy rice. Shenyang:Shenyang Agricultural University, 2022 [百度学术]
Birt D F, Boylston T, Hendrich S, Jane J,Hollis J,Li L,McClelland J,Moore S,Phillips G J,Rowling M,Schalinske k,Scott M P,Whitley E M. Resistant starch: Promise for improving human health. Advances in Nutrition, 2013, 4(6): 587-601 [百度学术]
Higgins J A, Brown I L. Resistant starch: A promising dietary agent for the prevention/treatment of inflammatory bowel disease and bowel cancer. Current Opinion in Gastroenterology, 2013, 29(2): 190-194 [百度学术]
Mathers J C ,廖联明.抗性淀粉可以预防肿瘤.中国临床药理学杂志,2022,38(22):2683 [百度学术]
Mathers J C, Liao L M. The resistant starch can prevent the tumors . The Chinese Journal of Clinical Pharmacology, 2022, 38(22):2683 [百度学术]
Mathers J C, Elliott F, Macrae F, Mecklin J P,Möslrin G,McRonald F E,Bertario L,Evans D G,Gerdes A M,Ho J W C,Lindblom A,Morrison P J,Rashbass J,Ramesar R S,Seppälä T T,Thmas H J W,Sheth H J,Pylvänäinen K,Reed L,Borthwick G W,Bishop D T,Burn J. Cancer prevention with resistant starch in Lynch syndrome patients in the CAPP2-randomized placebo controlled trial:Planned 10-year follow-up. Cancer Prevention Research, 2022, 15:623-634 [百度学术]
沈伟桥,舒小丽,张琳琳,夏英武,吴殿星.加工型功能早籼稻新品种“浙辐201”的选育与特性.核农学报,2006(4):312-314 [百度学术]
Shen W Q, Shu X L, Zhang L L, Xia Y W, Wu D X. Development and characteristics of processing-functional indica early rice cultivar“Zhe fu201”.Journal of Nuclear Agricultural Sciences, 2006(4):312-314 [百度学术]
Yang C Z, Shu X L, Zhang L L, Wang X Y,Zhao H J,Ma C X,Wu D X. Starch properties of mutant rice high in resistant starch. Journal of Agricultural and Food Chemistry, 2006, 54(2): 523-528 [百度学术]
朱辉明,白建江,王慧,李茂柏,郝再彬,朴钟泽.高抗性淀粉粳稻新品系稻米淀粉特性.中国农学通报,2010,26(14):108-112 [百度学术]
Zhu H M, Bai J J, Wang H, Li M B, Hao Z B, Piao Z Z. Starch properties of japonicarice enriched with resistant starch. Chinese Agricultural Science Bulletin, 2010, 26(14):108-112 [百度学术]
Butardo V M, Fitzgerald M A, Bird A R, Gidley M J,Flanagan B M,Larroque O,Resurreccion A P,Laidlaw H K C,Jobling S A,Morell M K,Rahman S. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA-and hairpin RNA-mediated RNA silencing. Journal of Experimental Botany, 2011, 62(14): 4927-4941 [百度学术]
Butardo J V M, Daygon V D, Colgrave M L, Campbell P M,Resurreccion A,Cuevas R P,Jobling S A,Tetlow I,Rahman S,Morell M,Fitzgerald M. Biomolecular analyses of starch and starch granule proteins in the high-amylose rice mutant Goami 2. Journal of Agricultural and Food Chemistry, 2012, 60(46): 11576-11585 [百度学术]
Itoh Y, Crofts N, Abe M, Hosaka Y,Fujita N. Characterization of the endosperm starch and the pleiotropic effects of biosynthetic enzymes on their properties in novel mutant rice lines with high resistant starch and amylose content. Plant Science, 2017, 258: 52-60 [百度学术]
Sun Y W, Jiao G A, Liu Z P, Zhang X,Li J Y,Guo X P,Du W M,Du J L,Francis F,Zhao Y D,Xia L Q. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes . Frontiers in Plant Science, 2017, 8: 298 [百度学术]
Chao S F, Cai Y C, Feng B B,Jiao G A,Sheng Z H,Luo J,Tang S Q,Wang J L,Hu P S,Wei X G.Editing of rice isoamylase gene ISA1 provides insights into its function in starch formation . Rice Science, 2019, 26(2): 77-87 [百度学术]
Yang R F, Piao Z Z, Wang C Z. Breeding and characteristics of new rice variety Youtangdao 2 with high resistant starch . China Rice, 2020, 1: 1-3 [百度学术]
杨瑞芳,白建江,万常照,汤剑豪,龚长春,朴钟泽.高抗性淀粉含量粳稻新品种'优糖稻3号'的选育.上海农业学报,2022,38(2):6-9 [百度学术]
Yang R F, Bai J J, Wan C Z, Tang J H, Gong C C, Piao Z Z. Breeding of new rice variety 'Youtangdao 3' with high resistant starch. Acta Agriculturae Shanghai, 2022, 38(2):6-9 [百度学术]
Shen L, Li J, Li Y. Resistant starch formation in rice: Genetic regulation and beyond . Plant Communications, 2022,3(3): 100329 [百度学术]
李鸣晓.环境和遗传因素对水稻RILs群体淀粉特性的影响.沈阳:沈阳农业大学,2019 [百度学术]
Li M X. Effects of environmental and genetic factors on starch properties of RILs on rice. Shenyang: Shenyang Agricultural University, 2019 [百度学术]
罗曦,黄锦峰,朱永生,谢鸿光,吴方喜,张木清,张建福,谢华安.水稻功米3号高抗性淀粉性状的遗传分析.农业生物技术学报,2014,22(1):10-16 [百度学术]
Luo X, Huang J F, Zhu Y S, Xie H G, Wu F X, Zhang M Q, Zhang J F, Xie H A. Genetic analysis of high resistant starch characteristics for rice variety gongmi 3(Oryza sativa ssp. indica). Journal of Agricultural Biotechnology, 2014, 22(1):10-16 [百度学术]
Bao J S, Zhou X, Xu F F, He Q,Park Y J. Genome-wide association study of the resistant starch content in rice grains . Starch, 2017, 69(7-8): 1600343 [百度学术]
Biselli C, Volante A, Desiderio F, Tondelli A,Gianinetti A,Finocchiaro F,Taddei F,Gazza L,Sgrulletta D,Cattivelli L,Valè G. GWAS for starch-related parameters in japonica rice (Oryza sativa L.) . Plants, 2019, 8(8): 292 [百度学术]
Ma T L,Yu X R,Luo C K,Li P F,Tian L,Zhang Y X,Yang S Q,Yang R. A review of rice starch-related genes .Wuhan University Journal of Natural Sciences,2021,26(1):24-38 [百度学术]
安永平,张文银,马静,王彩芬,韩国敏.水稻新品种宁粳28号简介.宁夏农林科技,2005(4):14 [百度学术]
An Y P, Zhang W Y, Ma J, Wang C F, Han G M. Introduction of rice cultivar “Ning Jing 28” . Journal of Ningxia Agriculture and Forestry Science and Technology, 2005(4):14 [百度学术]
Liu D, Ma C, Hong W, Liu M,Liu H,Zeng H P,Deng D J,Xin H G,Song J,Xu C H,Sun X W,Hou X L,Wang X W,Zheng H K. Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS ONE, 2014, 9(6): e98855 [百度学术]
张春龙,Channarong Phongsai,张江丽,于洋,苏耀华,杨米,高亮,普世皇,李娟,金寿林,谭学林,文建成.稻米抗性淀粉含量及其环境稳定性分析.中国农业科学,2019,52(17):2921-2928 [百度学术]
Zhang C L, Channarong P, Zhang J L, Yu Y, Su Y H, Yang M, Gao L, Pu S H, Li J, Jin S L, Tan X L, Wen J C. Evaluation of rice germplasms for grain resistant.Scientia Agricultura Sinica, 2019, 52(17): 2921-2928 [百度学术]
Zhu Y, Cai X L, Wang Z Y, Hong M M. An interaction between a MYC protein and an EREBP protein is involved in transcriptional regulation of the rice Wx gene. Journal of Biological Chemistry, 2003, 278(48): 47803-47811 [百度学术]
Isshiki M, Nakajima M, Satoh H, Shimamoto K. dull: Rice mutants with tissue‐specific effects on the splicing of the waxy pre‐mRNA. The Plant Journal, 2000, 23(4): 451-460 [百度学术]
Zeng D L, Yan M X, Wang Y H, Liu X F,Qian Q ,Li J Y. Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of W
Isshiki M, Matsuda Y, Takasaki A,Wong H L,Satoh H,Shimamoto K. Du3, a mRNA cap-binding protein gene, regulates amylose content in Japonica rice seeds. Plant Biotechnology, 2008, 25(5): 483-487 [百度学术]
Ishibashi Y, Kohyama-Koganeya A, Hirabayashi Y. New insights on glucosylated lipids: Metabolism and functions. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2013, 1831(9): 1475-1485 [百度学术]
Markham J E, Li J, Cahoon E B, Jaworski J G. Separation and identification of major plant sphingolipid classes from leaves. Journal of Biological Chemistry, 2006, 281(32): 22684-22694 [百度学术]
Melser S, Batailler B, Peypelut M, Poujol C,Bellec Y,Wattelet-Boyer V,Maneta-Peyret L,Faure J D,Moreau P. Glucosylceramide biosynthesis is involved in Golgi morphology and protein secretion in plant cells. Traffic, 2010, 11(4): 479-490 [百度学术]
Msanne J, Chen M, Luttgeharm K D, Bradley A M, Mays E S, Paper J M, Boyle D L, Cahoon R E, Schrick K, Cahoon E B . Glucosylceramides are critical for cell‐type differentiation and organogenesis, but not for cell viability in Arabidopsis. The Plant Journal, 2015, 84(1): 188-201 [百度学术]
Dai G Y, Yin J, Li K E, Chen D K,Liu Z,Bi F C, Rong C,Yao N. The Arabidopsis AtGCD3 protein is a lucosylceramidase that preferentially hydrolyzes long-acyl-chain glucosylceramides. Journal of Biological Chemistry, 2020, 295(3): 717-728 [百度学术]
Hasjim J, Lee S O, Hendrich S, Setiawan S,Ai Y F,Jane J L .Characterization of a novel resistant‐starch and its effects on postprandial plasma-glucose and insulin responses. Cereal Chemistry, 2010, 87(4): 257-262 [百度学术]
Sun Y, Jiao G, Liu Z,Zhang X,Li J Y,Guo X P,Du W M,Du J L,Francis F ,Zhao Y D,Xia L Q. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Frontiers in Plant Science, 2017, 8: 298 [百度学术]
Li Q F, Huang L C, Chu R, Li J,Jiang M Y,Zhang C Q,Fan X L,Yu H X,Gu M H,Liu Q Q. Down-regulation of SSSII-2 gene expression results in novel low-amylose rice with soft, transparent grains. Journal of Agricultural and Food Chemistry, 2018, 66(37): 9750-9760 [百度学术]
高振楠,郝媛媛,李春寿,黄福灯,赵向前,田志宏.水稻调控淀粉合成基因的研究进展.植物遗传资源学报,2023,24(1):61-74 [百度学术]
Gao Z N,Hao Y Y,Li C S,Huang F D,Zhao X Q,Tian Z H.Study on genes regulating starch synthesis in rice.Journal of Plant Genetic Resources,2023,24(1): 61-74 [百度学术]
柏鹤,马小定,曹桂兰,刘宪虎,韩龙植.不同类型特种稻种质营养及功能性成分含量的差异.植物遗传资源学报,2017,18(6):1013-1022 [百度学术]
Bai H,Ma X D,Cao G L,Liu X H,Han L Z.The differences of nutritional and functional components content in different types of special rice.Journal of Plant Genetic Resources,2017,18(6):1013-1022 [百度学术]
原小年,徐姊玥,乔卫华,刘璇,史雪妍,刘忠学,丁鑫,刘亚煊,万甜恬,刘玲珑.稻米淀粉品质性状的资源筛选和相关基因初步鉴定.植物遗传资源学报,2022,23(6):1756-1765 [百度学术]
Yuan X N,Xu Z Y,Qiao W H,Liu X,Shi X Y,Liu Z X,Ding X,Liu Y X,Wan T T,Liu L L.Resource screening of starch quality traits and preliminary identification of related genes in rice.Journal of Plant Genetic Resources,2022,23(6):1756-1765 [百度学术]