摘要
为探究盐胁迫下水稻地上部和根部N
我国盐碱地面积大、分布广,总面积约为3.6×1
离子通道蛋白及其编码基因是调控离子平衡的关键因子,主要来自于HAK、AKT、NHX和HKT等
近年来,众多国内外学者在钠钾离子平衡调控水稻耐盐性生理机制的解析方面开展了大量工作,也克隆了一些离子平衡相关基因;但关于盐胁迫下地上部和根部N
采用宁夏大学农学院作物遗传育种实验室提供的51份水稻种质资源(
编号 No. | 名称 Name | 原产地或来源 Origin | D值 D value | 排名 Ranking | 单倍型 Haplotype | 编号 No. | 名称 Name | 原产地或来源 Origin | D值 D value | 排名 Ranking | 单倍型 Haplotype | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 长白26 | 中国吉林 | 0.708 | 3 | Hap1 | 27 | 杨和白皮稻 | 中国宁夏 | 0.632 | 18 | Hap1 | |
2 | 宁资629 | 中国宁夏 | 0.619 | 21 | Hap1 | 28 | 叶盛白皮大稻 | 中国宁夏 | 0.585 | 26 | Hap1 | |
3 | 丰光 | 日本 | 0.676 | 6 | Hap1 | 29 | 大白芒稻 | 中国宁夏 | 0.435 | 35 | Hap1 | |
4 | 新稻10号 | 中国新疆 | 0.666 | 7 | Hap1 | 30 | 小红板稻 | 中国宁夏 | 0.470 | 31 | Hap1 | |
5 | 长白9号 | 中国吉林 | 0.692 | 4 | Hap1 | 31 | 小琥板稻 | 中国宁夏 | 0.645 | 12 | Hap1 | |
6 | 农科843 | 中国宁夏 | 0.641 | 13 | Hap1 | 32 | 有芒小琥板稻 | 中国宁夏 | 0.548 | 28 | Hap2 | |
7 | 惠糯 | 日本 | 0.648 | 11 | Hap1 | 33 | 小白板稻 | 中国宁夏 | 0.623 | 19 | Hap1 | |
8 | 铁粳2号 | 中国辽宁 | 0.663 | 8 | Hap1 | 34 | 有芒大琥板稻 | 中国宁夏 | 0.509 | 30 | Hap2 | |
9 | 长元26 | 中国北京 | 0.632 | 17 | Hap1 | 35 | 呈贡旱谷 | 中国云南 | 0.603 | 24 | Hap1 | |
10 | 中科长6号 | 中国北京 | 0.652 | 9 | Hap1 | 36 | 上南旱稻 | 韩国 | 0.405 | 38 | Hap1 | |
11 | 云村稻 | 朝鲜 | 0.323 | 49 | Hap1 | 37 | 圭陆1号 | 中国云南 | 0.355 | 42 | Hap3 | |
12 | 龙粳22 | 中国黑龙江 | 0.351 | 45 | Hap1 | 38 | 漾濞光壳陆稻 | 中国云南 | 0.614 | 22 | Hap1 | |
13 | 新竹8号 | 中国台湾 | 0.299 | 50 | Hap4 | 39 | 罗平懒汉谷 | 中国云南 | 0.435 | 34 | Hap1 | |
14 | 嘉南8号 | 中国台湾 | 0.345 | 47 | Hap1 | 40 | Bertone | 葡萄牙 | 0.722 | 1 | Hap1 | |
15 | 花育2号 | 中国宁夏 | 0.333 | 48 | Hap1 | 41 | Agostono | 意大利 | 0.641 | 14 | Hap1 | |
16 | 美山锦 | 日本 | 0.354 | 44 | Hap5 | 42 | 湟罗 | 俄罗斯 | 0.634 | 15 | Hap1 | |
17 | 庆林518 | 中国吉林 | 0.376 | 41 | Hap1 | 43 | Banat725 | 澳大利亚 | 0.349 | 46 | Hap1 | |
18 | 新稻36号 | 中国新疆 | 0.408 | 36 | Hap1 | 44 | 矮脚早 | 中国云南 | 0.385 | 40 | Hap1 | |
19 | 辽开79 | 中国辽宁 | 0.236 | 51 | Hap1 | 45 | Pokkali | 印度 | 0.678 | 5 | Hap7 | |
20 | 六粳2号 | 中国贵州 | 0.390 | 39 | Hap1 | 46 | 9311 | 中国湖南 | 0.623 | 20 | Hap8 | |
21 | 4154-4 | 中国江苏 | 0.355 | 43 | Hap1 | 47 | 蜀恢881 | 中国四川 | 0.720 | 2 | Hap7 | |
22 | 千重浪 | 日本 | 0.406 | 37 | Hap1 | 48 | 露水稻 | 中国河南 | 0.649 | 10 | Hap7 | |
23 | 山福利亚 | 几内亚 | 0.526 | 29 | Hap6 | 49 | 中籼91499 | 中国江苏 | 0.602 | 25 | Hap9 | |
24 | 毛毛糯 | 中国宁夏 | 0.458 | 33 | Hap1 | 50 | Aus317 | 孟加拉 | 0.464 | 32 | Hap7 | |
25 | 小糯稻 | 中国宁夏 | 0.604 | 23 | Hap1 | 51 | Aus426 | 孟加拉 | 0.633 | 16 | Hap7 | |
26 | 黑兰稻 | 中国宁夏 | 0.553 | 27 | Hap1 |
编号1~23:粳稻栽培种质;24~44:粳稻地方种质;45~49:籼稻种质;50~51:Aus种质
No. 1-23: Japonica rice cultivars; 24-44: Japonica rice landraces; 45-49: Indica rice germplasm; 50-51: Aus rice germplasm
本试验分别于2020年和2021年7月在宁夏大学国家大学科技园日光温室进行。参照田蕾
参照Ren
采用改良1.5% CTAB
由
指标 Indexes | 最小值 Min. | 最大值 Max. | 中值Median | 平均值Mean | 标准差 SD | 变异系数(%) CV |
---|---|---|---|---|---|---|
耐盐级别 STS | 1.4 | 7.5 | 5.3 | 4.9 | 1.7 | 35.7 |
相对根长(%) RRL | 45.4 | 98.8 | 71.2 | 70.9 | 12.8 | 18.1 |
相对地上部干重(%) RSDW | 31.1 | 96.9 | 73.2 | 67.3 | 20.3 | 30.2 |
相对根干重(%) RRDW | 20.2 | 98.7 | 59.3 | 60.7 | 23.9 | 39.3 |
地上部含水量(%) SWC | 64.2 | 80.0 | 74.6 | 74.3 | 3.3 | 4.4 |
地上部N | 41.1 | 135.6 | 71.4 | 72.9 | 20.2 | 27.7 |
根系N | 44.2 | 263.9 | 64.7 | 75.2 | 34.1 | 45.4 |
地上部 | 5.0 | 42.3 | 21.0 | 21.8 | 7.1 | 32.6 |
根系 | 1.0 | 16.6 | 6.3 | 6.6 | 3.2 | 47.9 |
地上部N | 1.3 | 13.4 | 3.2 | 4.0 | 2.7 | 67.3 |
根系N | 3.6 | 60.1 | 11.0 | 14.7 | 11.6 | 78.9 |
STS: Salt tolerance score; RRL: Relative root length; RSDW: Relative shoot dry weight; RRDW: Relative root dry weight; SWC: Shoot water content; SNC: Shoot N
通过分析盐胁迫下水稻种质资源11个耐盐相关指标的相关性(
指标 Indexes | 耐盐级别STS | 相对根长RRL | 相对地上部干重 RSDW | 相对根 干重 RRDW | 地上部 含水量 SWC | 地上部 N SNC | 根系 N RNC | 地上部 SKC | 根系 RKC | 地上部 N SN | 根系 N RN |
---|---|---|---|---|---|---|---|---|---|---|---|
耐盐级别 STS | 1.000 | ||||||||||
相对根长 RRL | 0.280* | 1.000 | |||||||||
相对地上部干重 RSDW | 0.804** | 0.312* | 1.000 | ||||||||
相对根干重 RRDW | 0.655** | 0.239 | 0.764** | 1.000 | |||||||
地上部含水量 SWC | 0.482** | -0.184 | 0.403** | 0.442** | 1.000 | ||||||
地上部N SNC | -0.749** | -0.211 | -0.671** | -0.530** | -0.471** | 1.000 | |||||
根系N RNC | -0.478** | -0.205 | -0.507** | -0.404** | -0.264 | 0.769** | 1.000 | ||||
地上部 SKC | 0.197 | -0.135 | 0.360** | 0.381** | 0.231 | -0.309* | -0.356* | 1.000 | |||
根系 RKC | 0.023 | -0.329* | 0.097 | 0.191 | 0.488** | 0.012 | -0.106 | 0.183 | 1.000 | ||
地上部N SN | -0.444** | 0.024 | -0.493** | -0.358** | -0.254 | 0.603** | 0.615** | -0.748** | -0.150 | 1.000 | |
根系N RN | -0.225 | 0.152 | -0.324* | -0.302* | -0.524** | 0.420** | 0.535** | -0.348* | -0.617** | 0.555** | 1.000 |
表中数值为相关系数(
The values in the table are correlation coefficient (
使用SPSS25.0软件对51份水稻种质资源11个苗期耐盐相关指标进行主成分分析。结果发现,前4个主成分特征值均在0.84以上,累计贡献率为82.093%(
指标 Indexes | 主成分特征向量 Principal component feature vector | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |
耐盐级别 STS | 0.784 | 0.367 | 0.272 | 0.100 |
相对根长 RRL | 0.149 | 0.751 | 0.061 | -0.228 |
相对地上部干重 RSDW | 0.827 | 0.310 | 0.170 | 0.205 |
相对根干重 RRDW | 0.747 | 0.191 | 0.273 | 0.353 |
地上部含水量 SWC | 0.614 | -0.371 | 0.494 | 0.049 |
地上部N SNC | -0.847 | -0.241 | 0.040 | 0.237 |
根系N RNC | -0.756 | -0.090 | 0.269 | 0.465 |
地上部 SKC | 0.567 | -0.264 | -0.561 | 0.456 |
根系 RKC | 0.298 | -0.756 | 0.346 | -0.062 |
地上部N SN | -0.757 | 0.146 | 0.552 | -0.048 |
根系N RN | -0.642 | 0.556 | 0.000 | 0.361 |
特征值 Eigenvalues | 4.940 | 2.005 | 1.237 | 0.848 |
贡献率(%) Contribution rate | 44.909 | 18.231 | 11.247 | 7.706 |
累计贡献率(%) Cumulative contribution rate | 44.909 | 63.140 | 74.387 | 82.093 |
PC:主成分
PC: Principal component
利用提取到的4个主成分综合性状值分别计算参试水稻种质资源的隶属函数值u(Xj),根据4个主成分贡献率的大小,依次求出4个耐盐综合指标(主成分)的权重,分别为0.5470、0.2221、0.1370和0.0939。将4个隶属函数结合权重处理并累加计算综合评价D值(
利用主成分分析得到的水稻苗期6个重要耐盐相关指标与综合评价D值构建数学模型,将D值作为因变量,耐盐级别(STS)、相对地上部干重(RSDW)、相对根干重(RRDW)、地上部N
为深入了解最优方程中6个因子对综合评价D值的作用方向和影响程度,利用通径分析将因变量和自变量的相互影响分解为直接影响和间接影响(
指标 Indexes | 简单相关系数SCC | 直接通径 系数DPC | 间接通径系数IPC | 合计Total | |||||
---|---|---|---|---|---|---|---|---|---|
耐盐级别STS | 相对地上部干重RSDW | 相对根干重RRDW | 地上部N | 根系N SNC | 地上部N | ||||
耐盐级别 STS | 0.832 | 0.073 | 0.312756 | 0.249555 | 0.169274 | 0.068832 | -0.040404 | 0.760013 | |
相对地上部干重 RSDW | 0.917 | 0.389 | 0.058692 | 0.291084 | 0.151646 | 0.073008 | -0.044863 | 0.529567 | |
相对根干重 RRDW | 0.871 | 0.381 | 0.047815 | 0.297196 | 0.119780 | 0.058176 | -0.032578 | 0.490389 | |
地上部N SNC | -0.799 | -0.226 | -0.054677 | -0.261019 | -0.201930 | -0.110736 | 0.054873 | -0.573489 | |
根系N SNC | -0.647 | -0.144 | -0.034894 | -0.197223 | -0.153924 | -0.173794 | 0.055965 | -0.503870 | |
地上部N SN | -0.494 | -0.091 | -0.032412 | -0.191777 | -0.136398 | -0.136278 | -0.088560 | -0.585425 |
SCC: Simple correlation coefficient; DPC; Direct path coefficient; IPC: Indirect path coefficient
利用来自ECOGEM

图1 SKC1及其上下游染色体区域在不同类型水稻种质资源中的核苷酸多样性
Fig.1 Nucleotide diversity of SKC1 and its upstream and downstream chromosomal regions in different types of rice germplasm
利用DNAMAN对51份水稻种质资源SKC1编码区序列进行比对,共检测到15个多态性位点,均分布在第1个外显子中。共获得9种不同的单倍型(

图2 51份水稻种质资源SKC1基因编码区差异位点与D值差异显著性分析及9种单倍型在不同水稻类型中的分布
Fig.2 Analysis of the polymorphic loci and D value of SKC1 gene coding region in 51 rice germplasm resources and distribution of nine haplotypes in different rice types
A:51份水稻种质资源SKC1编码区不同单倍型分布和D值差异显著性分析;382~1183:SKC1基因编码区差异位点;差异位点下字母表示核苷酸差异影响氨基酸变化;红色字体表示Ren
A: Analysis of the distribution and D value differences of different haplotypes of the SKC1 gene coding region in 51 rice germplasm accessions; 382-1183: Polymorphic loci of SKC1 gene coding region; The letters below the polymorphic loci indicate that nucleotide differences affecting amino acid changes; The red font indicates that nucleotide polymorphic sites reported by Re
通过对SKC1 9种不同单倍型6个耐盐重要指标做差异显著性分析(
单倍型Haplotype | 耐盐级别 STS | 相对地上部干重(%)RSDW | 相对根干重(%)RRDW | 地上部N SNC | 根系N RNC | 地上部N SN |
---|---|---|---|---|---|---|
Hap1 | 5.13±1.07ab | 67.44±20.61abcd | 58.25±22.34bc | 72.03±20.05ab | 75.67±37.59ab | 3.94±2.48cd |
Hap2 | 5.60±0.48a | 74.47±4.58abc | 51.80±9.80bc | 72.50±0.14b | 83.13±16.49ab | 3.22±0.24cd |
Hap3 | 1.76±0.11c | 48.85±3.04cde | 26.93±0.58c | 80.35±2.08ab | 81.08±1.01b | 4.11±0.81cd |
Hap4 | 2.30±0.52c | 31.14±1.95e | 28.26±2.21c | 93.67±1.00ab | 112.13±0.53a | 13.12±0.73a |
Hap5 | 2.80±0.69bc | 40.89±0.93de | 33.94±2.29c | 98.97±0.88a | 96.75±2.18ab | 5.73±1.12bc |
Hap6 | 1.55±0.26c | 53.33±4.16bcde | 57.80±1.56bc | 79.24±1.67ab | 58.44±1.15c | 8.93±0.81b |
Hap7 | 4.98±1.05ab | 76.70±15.80abc | 89.68±6.91ab | 72.55±31.44ab | 65.20±23.87bc | 2.41±1.64cd |
Hap8 | 5.03±0.57ab | 80.67±0.60ab | 88.02±1.41ab | 61.11±0.62b | 66.30±3.13c | 1.74±0.33d |
Hap9 | 5.50±0.60a | 87.40±1.93a | 97.14±0.72a | 60.13±0.48b | 58.28±1.28c | 2.51±0.57cd |
相同列不同小写字母表示不同单倍型间该指标差异显著(P<0.05);各指标数据以均值±标准差表示
Different lowercase letters in the same column indicate significant difference of this index among different haplotypes (P<0.05); ± represents Mean±SD
耐盐种质资源筛选和鉴定是水稻耐盐育种的重要研究内容之一。耐盐评价指标的选择主要从水稻耐盐机理、试验目的或育种目标两个角度综合考虑。盐胁迫下水稻幼苗主要通过渗透调
在水稻的驯化过程中,由于自然或人工选择在全基因组范围内显著降低了基因的核苷酸多样性和等位基因频
单倍型是在一个给定群体的染色体片段上观察到的等位基因(标记)的特殊组
参考文献
杜学军, 闫彬伟, 许可, 汪顺义, 高子登, 任雪芹, 胡树文, 郧文聚. 盐碱地水盐运移理论及模型研究进展. 土壤通报, 2021, 52(3): 713-721 [百度学术]
Du X J, Yan B W, Xu K, Wang S Y, Gao Z D, Ren X Q, Hu S W, Yun W J. Research progress on water-salt transport theories and models in saline-alkali soil. Chinese Journal of Soil Science, 2021, 52(3): 713-721 [百度学术]
Khush G S. What it will take to feed 5.0 billion rice consumers in 2030. Plant Molecular Biology, 2005, 59(1): 1-6 [百度学术]
Frukh A, Siddiqi T O, Khan M I R, Ahmad A. Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress. Plant Physiology and Biochemistry, 2020, 146: 55-70 [百度学术]
Wang Y X, Wang J, Zhao X Q, Yang S, Huang L Y, Du F P, Li Z K, Zhao X Q, Fu B Y, Wang W S. Over expression of the transcription factor gene OsSTAP1 increases salt tolerance in rice. Rice, 2020, 13(1): 1-12 [百度学术]
Lee M H, Cho E J, Wi S G, Bae H, Kim J E, Cho J Y, Lee S, Kim J H, Chung B Y. Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress. Plant Physiology and Biochemistry, 2013, 70: 325-335 [百度学术]
Hasegawa P M. Sodium (N
Feng H M, Tang Q, Cai J, Xu B C, Xu G H, Yu L. Rice OsHAK16 functions in potassium uptake and translocation in shoot, maintaining potassium homeostasis and salt tolerance. Planta, 2019, 250(2): 549-561 [百度学术]
He Y Q, Yang B, He Y, Zhan C F, Cheng Y H, Zhang J H, Zhang H S, Cheng J P, Wang Z F. A quantitative trait locus, qSE3, promotes seed germination and seedling establishment under salinity stress in rice. The Plant Journal, 2019, 97(6): 1089-1104 [百度学术]
Yang T Y, Zhang S, Hu Y B, Wu F C, Hu Q D, Chen G, Cai J, Wu T, Moran N, Yu L, Xu G H. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiology, 2014, 166(2): 945-959 [百度学术]
Tian Q X, Shen L K, Luan J X, Zhou Z Z, Guo D S, Shen Y, Jing W, Zhang B L, Zhang Q, Zhang W H. Rice shaker potassium channel OsAKT2 positively regulates salt tolerance and grain yield by mediating
Liu S P, Zheng L Q, Xue Y H, Zhang Q, Wang L, Shou H X. Over expression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice. Journal of Plant Biology, 2010, 53(6): 444-452 [百度学术]
Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y. Molecular and functional analyses of rice NHX-type N
Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 2005, 37(10): 1141-1146 [百度学术]
Wang J, Nan N, Li N, Liu Y T, Wang T J, Hwang I, Liu B, Xu Z Y. A DNA methylation reader‒chaperone regulator‒transcription factor complex activates OsHKT1;5 expression during salinity stress. The Plant Cell, 2020, 32(11): 3535-3558 [百度学术]
田蕾, 王娜, 张雪艳, 杨斌林, 孙佳莹, 李敏, 李培富. 盐胁迫下不同粳稻品种的形态和生理特性. 广东农业科学, 2014, 41(23): 1-6,237 [百度学术]
Tian L, Wang N, Zhang X Y, Yang B L, Sun J Y, Li M, Li P F. Morphological and physiological characteristics of different japonica rice varieties under salt stress. Guangdong Agricultural Science, 2014, 41(23): 1-6,237 [百度学术]
马帅国, 田蓉蓉, 胡慧, 吕建东, 田蕾, 罗成科, 张银霞, 李培富. 粳稻种质资源苗期耐盐性综合评价与筛选. 植物遗传资源学报, 2020, 21(5): 1089-1101 [百度学术]
Ma S G, Tian R R, Hu H, Lv J D, Tian L, Luo C K, Zhang Y X, Li P F. Comprehensive evaluation and screening of salt tolerance of japonica rice germplasm resources at seedling stage. Journal of Plant Genetic Resources, 2020, 21(5): 1089-1101 [百度学术]
王小雷, 李炜星, 曾博虹, 孙晓棠, 欧阳林娟, 陈小荣, 贺浩华, 朱昌兰. 基于染色体片段置换系对水稻粒形及千粒重QTL检测与稳定性分析. 作物学报, 2020, 46(10): 1517-1525 [百度学术]
Wang X L, Li W X, Zeng B H, Sun X T, Ou-Yang L J, Chen X R, He H H, Zhu C L. QTL detection and stability analysis of rice grain shape and thousand-grain weight based on chromosome segment substitution lines. Acta Agronomica Sinica, 2020, 46(10): 1517-1525 [百度学术]
孙平勇, 张武汉, 舒服, 何强, 张莉, 阳祝红, 彭志荣, 谢芸, 邓华凤. 水稻资源芽期和苗期耐盐碱性综合评价及耐盐基因分析. 生物工程学报, 2022, 38(1): 252-263 [百度学术]
Sun P Y, Zhang W H, Shu F, He Q, Zhang L, Yang Z H, Peng Z R, Xie Y, Deng H F. Comprehensive evaluation of salt-alkali tolerance of rice germplasms at germination and seedling stages and analysis of salt-tolerant genes. Chinese Journal of Biotechnology, 2022, 38(1): 252-263 [百度学术]
耿雷跃, 马小定, 崔迪, 张启星, 韩冰, 韩龙植. 水稻全生育期耐盐性鉴定评价方法研究. 植物遗传资源学报, 2019, 20(2): 267-275 [百度学术]
Geng L Y, Ma X D, Cui D, Zhang Q X, Han B, Han L Z. Identification and evaluation method for saline tolerance in rice during the whole growth stage. Journal of Plant Genetic Resources, 2019, 20(2): 267-275 [百度学术]
Yao W, Huang F F, Zhang X H, Tang J H. ECOGEMS: Efficient compression and retrieve of SNP data of 2058 rice accessions with integer sparse matrices. Bioinformatics, 2019, 35(20): 4181-4183 [百度学术]
Zhao H, Li Z X, Wang Y Y, Wang J Y, Xiao M G, Liu H, Quan R D, Zhang H W, Huang R F, Zhu L, Zhang Z J. Cellulose synthase‐like protein OsCSLD4 plays an important role in the response of rice to salt stress by mediating abscisic acid biosynthesis to regulate osmotic stress tolerance. Plant Biotechnology Journal, 2022, 20(3): 468-484 [百度学术]
Wang T, Ma Y Q, Huang X X, Mu T J, Li Y J, Li X K, Liu X, Hou B K. Overexpression of OsUGT3 enhances drought and salt tolerance through modulating ABA synthesis and scavenging ROS in rice. Environmental and Experimental Botany, 2021, 192: 104653 [百度学术]
Chen G, Han H M, Yang X L, Du R Y, Wang X. Salt tolerance of rice is enhanced by the SS3 gene, which regulates ascorbic acid synthesis and ROS scavenging. International Journal of Molecular Sciences, 2022, 23(18): 10338 [百度学术]
Liu C T, Mao B G, Yuan D Y, Chu C C, Duan M J. Salt tolerance in rice: Physiological responses and molecular mechanisms. The Crop Journal, 2022, 10: 13-25 [百度学术]
Lu X P, Min W F, Shi Y F, Tian L, Li P F, Ma T L, Zhang Y X, Luo C K. Exogenous melatonin alleviates alkaline stress by removing reactive oxygen species and promoting antioxidant defence in rice seedlings. Frontiers in Plant Science, 2022, 13: 849553 [百度学术]
朱春艳, 宋佳伟, 白天亮, 王娜, 马帅国, 普正菲, 董艳, 吕建东, 李杰, 田蓉蓉, 罗成科, 张银霞, 马天利, 李培富, 田蕾. NaCl 胁迫对不同耐盐性粳稻种质幼苗叶绿素荧光特性的影响. 中国农业科学, 2022, 55(13): 2509-2525 [百度学术]
Zhu C Y, Song J W, Bai T L, Wang N, Ma S G, Pu Z F, Dong Y, Lv J D, Li J, Tian R R, Luo C K, Zhang Y X, Ma T L, Li P F, Tian L. Effects of NaCl stress on the chlorophyll fluorescence characteristics of seedlings of japonica rice germplasm with different salt tolerances. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525 [百度学术]
谢留杰, 段敏, 潘晓飚, 唐兴国, 朱长志, 黄善军. 不同类型水稻品系苗期和全生育期耐盐性鉴定与分析. 江西农业大学学报, 2015, 37(3): 404-410 [百度学术]
Xie L J, Duan M, Pan X B, Tang X G, Zhu C Z, Huang S J. Identification and analysis of salt tolerance in different type rice cultivars during seedling and whole plant growth stage. Acta Agriculturae Universitatis Jiangxiensis, 2015, 37(3): 404-410 [百度学术]
吴家富, 杨博文, 向珣朝, 许亮, 颜李梅. 不同水稻种质在不同生育期耐盐鉴定的差异. 植物学报, 2017, 52(1): 77-88 [百度学术]
Wu J F, Yang B W, Xiang X C, Xu L, Yan L M. Identification of salt tolerance in different rice germplasm at different growth stages. Chinese Bulletin of Botany, 2017, 52(1): 77-88 [百度学术]
Zheng H L, Wang J G, Zhao H W, Liu H L, Sun J, Guo L Y, Zou D T. Genetic structure, linkage disequilibrium and association mapping of salt tolerance in japonica rice germplasm at the seedling stage. Molecular Breeding, 2015, 35(7): 1-16 [百度学术]
Zhang J C, Zhang D J, Fan Y W, Li C C, Xu P K, Li W, Sun Q, Huang X D, Zhang C Y, Wu L Y, Yang H Z, Wang S Y, Su X M, Li X X, Song Y Y, Wu M E, Lian X M, Li Y B. The identification of grain size genes by RapMap reveals directional selection during rice domestication. Nature Communications, 2021, 12(1): 1-18 [百度学术]
Lu Y Q, Xu Y Z, Li N. Early domestication history of asian rice revealed by mutations and genome-wide analysis of gene genealogies. Rice, 2022, 15(1): 1-20 [百度学术]
Yin W C, Xiao Y H, Niu M, Meng W J, Li L L, Zhang X X, Liu D P, Zhang G X, Qian Y W, Sun Z T, Huang R Y, Wang S P, Liu C M, Chu C C, Tong H N. ARGONAUTE2 enhances grain length and salt tolerance by activating BIG GRAIN3 to modulate cytokinin distribution in rice. The Plant Cell, 2020, 32(7): 2292-2306 [百度学术]
Deng P, Jing W, Cao C J, Sun M F, Chi W C, Zhao S L, Dai J Y, Shi X Y, Wu Q, Zhang B L, Jin Z, Guo C X, Tian Q X, Shen L K, Yu J, Jiang L, Wang C M, Chin J H, Yuan J Y, Zhang Q, Zhang W H. Transcriptional repressor RST1 controls salt tolerance and grain yield in rice by regulating gene expression of asparagine synthetase. Proceedings of the National Academy of Sciences, 2022, 119(50): e2210338119 [百度学术]
Zhao J T, Sauvage C, Bitton F, Causse M. Multiple haplotype-based analyses provide genetic and evolutionary insights into tomato fruit weight and composition. Horticulture Research, 2022, 9: uhab009 [百度学术]
Garg S, Balboa R, Kuja J. Chromosome-scale haplotype-resolved pangenomics. Trends in Genetics, 2022, 38(11): 1103-1107 [百度学术]
Krishnamurthy S L, Sharma P C, Dewan D, Lokeshkumar B M, Rathor S, Warraich A S, Vinaykumar N M, Leung H, Singh R K. Genome wide association study of MAGIC population reveals a novel QTL for salinity and sodicity tolerance in rice. Physiology and Molecular Biology of Plants, 2022, 28(4): 819-835 [百度学术]