摘要
花器是种子生成的基础,水稻花器发育直接影响稻谷产量与品质。源美丝苗与P704杂交后代中发现一株开颖突变体(oh,open-hull),其穗部发育有缺陷,主要表现为:开颖,结实率显著下降,种子变小。遗传分析发现开颖表型由一对隐性细胞核基因控制。通过BSA分析,开颖基因被定位于水稻第3染色体上,检索发现候选区间与OsMADS1(LOC_Os03g11614)基因重合,与蜀恢498参考基因序列进行比对,oh中OsMADS1的第一外显子第118位发生碱基颠换,导致编码的天冬氨酸变成酪氨酸,将该等位基因命名为OsMADS
水稻(Oryza sativa L.)是全球主要的粮食作物之一,花器的发育与品质、产量密切相关,研究其遗传机理和调控机制具有重要意
水稻中有多个开颖相关基因被报道,sl1编码C2H2型锌指转录因子,突变后颖壳开裂,出现钩状颖,雄蕊发育成雌蕊,不
OsMADS1属于植物特有的MADS蛋白,在水稻花器官的分生和发育过程中发挥关键作
野生稻保留着栽培稻不具有的或已经消失了的遗传基
本研究供试材料水稻开颖突变体(oh,open-hull)来自籼稻源美丝苗和P704的杂交后代F6世代。源美丝苗是2020年广东省审定的常规籼稻品种。P704是将小粒野生稻DNA通过花粉管通道法导入青桂占(常规籼稻中间材料,无开颖表型),从其后代中选育的稳定中间材料。源美丝苗和P704均没有开颖表型,oh的开颖表型应是自然变异引起的。取oh单株,连续两季套袋自交,后代开颖表型稳定。取表型正常单株,套袋自交,筛选无开颖后代的株系作为野生型对照。转基因实验采用易于转化的粳稻中花11作为受体。
源美丝苗和P704的杂交后代F6世代,种植于广东省农业科学院白云试验基地,2021年早季分单株收集表型正常的种子,2021年晚季种植4个F7家系,其中3个F7家系中出现开颖和闭颖(正常颖壳)两种表型,将这类家系记为分离群体,调查其小花表型,统计分离比例,利用Excel软件进行卡方
采用BSA法定位开颖基因。从分离群体中随机选取开颖和闭颖的植株各20株,提取每个单株基因组DNA,相同表型植株的DNA等量混合形成一个基因池,构建开颖和闭颖两个基因池。以蜀恢498基因组为参照,检测野生型、oh 和混池DNA的SNP,利用混池间的SNP频率差异做关联分析,由北京诺禾致源生物公司完成。根据候选基因序列信息,利用在线软件(http://www.ncbi.nlm.nih.gov/tools/primer-blast/)设计扩增引物(Psnp118),由上海生工生物有限公司合成(引物序列见
引物名称 Primer name | 序列 (5'-3') Sequence(5'-3') | 目的 Purpose | |
---|---|---|---|
上游引物 Upstream primer | 下游引物 Downstream primer | ||
Psnp118 | TTTGTCTCCCCACTCCCTCG | GAGACCCCAAACTCCAAGCATA | SNP118位点检测 |
PMADS | GAGAACTAGTATGGGGAGGGGGAAGGT | CATAGGATCCAAGCCTGAAGCCTGAACTGAA | 载体构建 |
HPT | ATTTGTGTACGCCCGACAGT | GTGCTTGACATTGGGGAGTT | 转基因后代鉴定 |
EF1α | TTTCACTCTTGGTGTGAAGCAGAT | GACTTCCTTCACGATTTCATCGTAA | 基因表达分析 |
MADS1re | TGGCAAGATGGTGGTGGG | GCTTCATTGCTCAGATGGTCC | |
GW2Re | CCTTTTCAGTGCCGTCATACC | GCCAAATCGCTTCCATAACC | |
MADS14re | AGAAAGTCCAGAAGCAACAAGTGC | TGGCAGCCCAATGCGAAC | |
MADS15re | CTTATGCTTGAGTCCATTTCCG | TGGTCCCACTGCCCTACTTG | |
MADS5re | GGTCGCCCTCATCATCTTCTC | GCGGTATCGCTCCAGTGTCT | |
MADS55re | GGGGAAAACAGATAAGCAGCC | TGAATGCCCTTTCGTTGGAG | |
MADS8re | AGGTCGCCCTCATCATCTTCT | AGGTACTCATTGCGGCTGCTT | |
YABBY5re | TAGGGTCCTGCATGTCTC | ATACGATCGATGCATGCC | |
AP2-3re | ACAGGGGCGTCACCTTCTACA | GCACAAACTCCTCCTTGGTCC | |
AP2-5re | ATTACGAGGATGACCTGAAGCA | CGAACAGCCCCAAGTAGACG |
取oh幼穗,用Trizol提取总RNA,用EvoM-MLV反转录试剂盒(艾科瑞生物工程有限公司,湖南,中国)反转录成cDNA(具体操作见试剂盒说明书),以此为模板,加入引物(PMADS),聚合酶KOD-FX,按照KOD-FX说明书配置反应体系进行扩增,扩增条件:94 ℃ 30 s,58 ℃ 30 s,68 ℃ 50 s,30个循环,回收扩增产物,双酶切(SpeI/BamHI)插入过表达载体pOX(刘耀光院士馈赠),OsMADS
幼穗长至5 cm左右取样,取5个小穗,混合后,用Trizol提取总RNA;测定浓度,取1μg的总RNA反转录获得cDNA,以EF1α基因为内源参照基因,根据荧光定量试剂盒(艾科瑞生物工程有限公司,湖南,中国)配置荧光定量PCR反应试剂(具体操作见试剂盒说明书)。利用实时荧光定量PCR仪(Bio-Rad)进行定量分析,扩增程序为:95 ℃ 3 min;95 ℃5 s,60 ℃ 30 s,循环40次,引物见
开颖突变体oh和野生型在营养生长期差异不明显。抽穗后,野生型小花的内外颖相互闭合,oh的内外颖扭曲变形,颖壳开裂不闭合,全部小花呈开颖状态(

图1 开颖突变体(oh)的形态特征
Fig.1 Morphological characteristics of open-hull mutant
A:野生型与oh穗子;B:野生型和oh的小花;C、E、F:剥开颖壳后小花;D:籽粒表型;G、H:小花颖壳的横切面;I、J:野生型和oh的颖壳长度和结实率比较; WT:野生型;标尺:1 mm;**表示差异极显著;下同
A: The panicles of WT and oh; B: The spikelets of WT and oh; C, E, F: Spikelet after opening the hulls; D: Seeds phenotype; G, H: Transverse section of spikelets hulls; I, J: Comparison of hull length and setting rate between WT and oh; WT: Wild type; Bar: 1 mm; ** indicates extremely significant difference; The same as below
oh开颖表型在多个世代稳定表达,表明该表型是可遗传的,是基因变异的结果。考察F7家系,选取3个分离群体,调查分析颖花表型,3个F7分离群体中,闭颖单株数与开颖单株数之比都符合为3∶1(
F7家系 F7 family line | 闭颖株数 Number of wild-type plants | 开颖株数 Number of open-hull plants | |
---|---|---|---|
1 | 149 | 35 | 3.196 |
2 | 163 | 42 | 2.353 |
3 | 201 | 55 | 1.505 |
为了鉴定开颖控制基因,利用分离群体构建极端池进行BSA分析。测序结果共获得了59.9 Gb的有效数据,野生型、闭颖池、oh和开颖池分别获得13.0 Gb、17.2 Gb、13.1 Gb和16.6 Gb的有效数据。各池的Q30均大于92.68%,GC含量分布正常(43.65%~44.19%);以蜀恢498为参考基因组(https://www.mbkbase.org/R498/),共鉴定出1138024个SNP。野生型和oh均来源于F6世代,因此二者DNA水平差异性低;2号染色体差异位点较多,其余几条染色体很少有差异位点。以1Mb为窗口,1kb为步长,计算每个窗口中极端池之间的SNP频率

图2 混池间SNP变异频率差分布
Fig.2 Distribution of △(SNP-index) between two pools
红色虚线为△(SNP-index);蓝色的线为95%阈值线;红色箭头指示候选区段
The red dotted line is △(SNP-index); The blue lines represent thresholds of 95%; The red arrow indicates the candidate interval
结合前面的遗传分析结果,候选变异在闭颖池中应该是杂合的,在开颖池中是纯合的。以此为标准,从候选区间915个SNP中筛选到2个SNP(
位置 Position | 参考 Reference | 变异 Alteration | 注释 Annotation |
---|---|---|---|
Chr3:5219419 | G | T | 基因间变异 |
Chr3:6190903 | C | A | OsR498G0305455800.01(OsMADS1),非同义突变 |
根据SNP注释结果,3号染色体5219419位SNP位于OsR498G0305399400.01上游446碱基,参照MBKbase(https://www.mbkbase.org/)统计结果,该变异在栽培稻中出现频率为24.44%,推测其与开颖表型无关。3号染色体6190903位SNP位于OsMADS1第一外显子的第118位碱基(SNP118),由此产生1个新等位基因,命名为OsMADS

图3 SNP118的测序结果
Fig.3 Sequence results of SNP118
* 指示了SNP118位点;Mix:野生型与oh的混合DNA
* indicates SNP118 site; Mix: The mixed DNA of WT and oh
构建OsMADS

图4 过表达OsMADS
Fig.4 Overexpression of OsMADS
A:过表达OsMADS
A: Open-hull phenotype of OsMADS
OsMADS1是花器、种子发育的关键调控基因,可能受其调控的下游基因有很

图5 相关基因的表达分析
Fig.5 The expression analysis of the related genes
本研究对来源于野生稻的开颖突变体(oh)进行了遗传分析和基因克隆研究,找到OsMADS1的1个新等位基因,命名为OsMADS
OsMADS1是花器发育的关键基因,既影响抽穗期又控制多种花器的发育,已有多个变异等位基因被发现,变异后代的表型不尽相
OsMADS1基因对花器发育的调控功能已得到确认,但其详细调控机制还不明确。通过miR172-AP2s通路的调控假说获得了较为可靠的结果,还需要更多的研究来进行多方面验证。OsMADS1既调控花器发育,又影响产量性状,深入解析其作用机制就显得十分必要。oh突变体的发现为OsMADS1基因研究提供了新种质,有望促进花器发育研究。将小粒野生稻DNA通过花粉管通道法导入青桂占获得P704,oh突变体是在P704后代中发现的,该突变有可能与野生稻基因导入有关,本研究结果为后续相关研究提供了重要参考。
参考文献
姜树坤,张喜娟,王嘉宇,张凤鸣. 水稻幼穗-颖花发育的研究进展. 植物遗传资源学报,2012,13(6):1018-1022,1030 [百度学术]
Jiang S K,Zhang X J,Wang J Y,Zhang F M. Research advancement on young panicle and spikelet development in rice(Oryza sativa L.). Journal of Plant Genetic Resources, 2012, 13(6):1018-1022,1030 [百度学术]
Li N, Xu R, Duan P, Li Y. Control of grain size in rice. Plant Reproduction, 2018, 31(3): 237-251 [百度学术]
Xiao H, Tang J, Li Y, Wang W, Li X, Jin L, Xie R, Luo H, Zhao X, Meng Z, He G, Zhu L. STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice. The Plant Journal, 2009,59(5): 789-801 [百度学术]
Duan Y, Diao Z, Liu H, Cai M, Wang F, Lan T, Wu W. Molecular cloning and functional characterization of OsJAG gene based on a complete-deletion mutant in rice (Oryza sativa L.). Plant Molecular Biology, 2010,74(6): 605-615 [百度学术]
Luo H, Li Y, Yang Z, Zhong B, Xie R, Ren M, Luo D, He G. Fine mapping of a pistilloid-stamen (PS) gene on the short arm of chromosome 1 in rice. Genome, 2006,49(8): 1016-1022 [百度学术]
陈晓东, 李飞, 李丹阳, 刘灵芝, 乔守晨, 孙红正, 李俊周, 张静, 彭廷, 谭金芳, 杜彦修, 赵全志. 水稻内颖畸形或缺失基因OsAPP1的图位克隆及表达分析. 植物遗传资源学报, 2021, 22(2): 416-426 [百度学术]
Chen X D, Li F, Li D Y, Liu L Z, Qiao S C, Sun H Z, Li J Z, Zhang J, Peng T, Tan J F, Du Y X, Zhao Q Z. Map-based cloning and expression analysis of rice abnormal or absent palea gene OsAPP1. Journal of Plant Genetic Resources, 2021, 22(2): 416-426 [百度学术]
Li P, Li H, Liu Z, Zhuang Y, Wei M, Gu Y, Liu Y, Sun X, Tang Y, Yue L, Lu L, Luo D, Huang W, Tu S, Wang S. Characterization of the 'Oat-Like Rice' caused by a novel allele OsMADS
Sun L P, Zhang Y X, Zhang P P, Yang Z F, Zhan X D, Shen X H, Zhang Z H, Hu X, Xuan D D, Wu W X, Cao L Y, Cheng S H. K-domain splicing factor OsMADS1 regulates open hull male sterility in rice. Rice Science, 2015,22(5): 207-216 [百度学术]
Chen Z X, Wu J G, Ding W N, Chen H M, Wu P, Shi C H. Morphogenesis and molecular basis on naked seed rice, a novel homeotic mutation of OsMADS1 regulating transcript level of AP3 homologue in rice. Planta, 2006,223(5): 882-890 [百度学术]
Zhang J, Cai Y, Yan H, Jin J, You X, Wang L, Kong F, Zheng M, Wang G, Jiang L, Zhang W, Wan J. A critical role of OsMADS1 in the development of the body of the palea in rice. Journal of Plant Biology, 2018,61(1): 11-24 [百度学术]
Jeon J S, Jang S, Lee S, Nam J, Kim C, Lee S H, Chung Y Y, Kim S R, Lee Y H, Cho Y G, An G. leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell, 2000,12(6): 871-884 [百度学术]
Yan D, Zhou Y, Ye S, Zeng L, Zhang X, He Z. BEAK-SHAPED GRAIN 1/TRIANGULAR HULL 1,a DUF640 gene, is associated with grain shape,size and weight in rice. Science China(Life Sciences), 2013,56(3): 275-284 [百度学术]
Cho S H, Yoo S C, Zhang H, Pandeya D, Koh H J, Hwang J Y, Kim G T, Paek N C. The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. New Phytologist, 2013,198(4): 1071-1084 [百度学术]
Dai Z, Wang J, Zhu M, Miao X, Shi Z. OsMADS1 represses microRNA172 in elongation of palea/lemma development in rice. Front Plant Science, 2016,7: 1891 [百度学术]
Wang K, Tang D, Hong L, Xu W, Huang J, Li M, Gu M, Xue Y, Cheng Z. DEP and AFO regulate reproductive habit in rice. PLoS Genetics, 2010,6(1): e1000818 [百度学术]
Liu C, Xue Z, Tang D, Shen Y, Shi W, Ren L, Du G, Li Y, Cheng Z. Ornithine δ-aminotransferase is critical for floret development and seed setting through mediating nitrogen reutilization in rice. The Plant Journal, 2018,96(4): 842-854 [百度学术]
Hu Y, Liang W, Yin C, Yang X, Ping B, Li A, Jia R, Chen M, Luo Z, Cai Q, Zhao X, Zhang D, Yuan Z. Interactions of OsMADS1 with floral homeotic genes in rice flower development. Molecular Plant, 2015,8(9): 1366-1384 [百度学术]
Yu J, Miao J, Zhang Z, Xiong H, Zhu X, Sun X, Pan Y, Liang Y, Zhang Q, Abdul Rehman R M, Li J, Zhang H, Li Z. Alternative splicing of OsLG3b controls grain length and yield in japonica rice. Plant Biotechnology Journal, 2018,16(9): 1667-1678 [百度学术]
Wang C, Tang S, Zhan Q, Hou Q, Zhao Y, Zhao Q, Feng Q, Zhou C, Lyu D, Cui L, Li Y, Miao J, Zhu C, Lu Y, Wang Y, Wang Z, Zhu J, Shang G Y, Gong J, Yang S, Wang W, Zhang J, Xie H, Huang X, Han B. Dissecting a heterotic gene through GradedPool-Seq mapping informs a rice-improvement strategy. Nature Communications, 2019,10(1): 2982 [百度学术]
Liu Q, Han R, Wu K, Zhang J, Ye Y, Wang S, Chen J, Pan Y, Li Q, Xu X, Zhou J, Tao D, Wu Y, Fu X. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nature Communications, 2018,9(1): 852 [百度学术]
Sun S, Wang L, Mao H, Shao L, Li X, Xiao J, Ouyang Y, Zhang Q. A G-protein pathway determines grain size in rice. Nature Communications, 2018,9(1): 851 [百度学术]
Huang Y, Bai X, Cheng N, Xiao J, Li X, Xing Y. Wide grain 7 increases grain width by enhancing H3K4me3 enrichment in the OsMADS1 promoter in rice (Oryza sativa L.). The Plant Journal, 2020,102(3): 517-528 [百度学术]
张静, 范芝兰, 潘大建, 刘维, 江立群, 吕树伟, 孙炳蕊, 刘清, 毛兴学, 陈文丰, 李晨. 广东普通野生稻对水稻白叶枯病的抗性评价及分析. 植物遗传资源学报, 2022,23(2): 422-429 [百度学术]
Zhang J, Fan Z L, Pan D J, Liu W, Jiang L Q, Lv S W, Sun B R, Liu Q, Mao X X, Chen W F, Li C. Identification and analysis of the bacterial blight resistance of common wild rice in Guangdong province. Journal of Plant Genetic Resources, 2022,23(2): 422-429 [百度学术]
潘大建, 李晨, 范芝兰, 孙炳蕊, 陈文丰, 江立群, 张静, 吕树伟, 刘清, 毛兴学. 广东省农业科学院水稻种质资源研究60年:成就与展望. 广东农业科学, 2020,47(11): 18-31 [百度学术]
Pan D J, Li C, Fan Z L, Sun B R, Chen W F, Jiang L Q, Zhang J, Lv S W, Liu Q, Mao X X. Sixty years' research on rice germplasm resources of Guangdong Academy of Agricultural Sciences: Achievements and prospects. Guangdong Agriculture Science, 2020,47(11): 18-31 [百度学术]
肖汉祥, 李燕芳, 张扬, 黄炳超. 野栽杂种后代水稻品种对褐稻虱抗性机制的研究. 广东农业科学, 2011,38(2): 14-15 [百度学术]
Xiao H X, Li Y F, Zhang Y, Huang B C. Studies on the resistance mechanism of offspring of wide rice to Nilapravata lugens(stal).Guangdong Agriculture Science, 2011,38(2): 14-15 [百度学术]
Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano L M, Kamoun S, Terauchi R. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. The Plant Journal , 2013,74(1): 174-183 [百度学术]
Kannan P, Chongloi G L, Majhi B B, Basu D, Veluthambi K, Vijayraghavan U. Characterization of a new rice OsMADS1 null mutant generated by homologous recombination-mediated gene targeting. Planta, 2021,253(2): 39 [百度学术]
Wang L, Zeng X Q, Zhuang H, Shen Y L, Chen H, Wang Z W, Long J C, Ling Y H, He G H, Li Y F. Ectopic expression of OsMADS1 caused dwarfism and spikelet alteration in rice. Plant Growth Regulation, 2017, 81(3): 433-442 [百度学术]
陈立凯, 黄明, 刘永柱, 王慧, 陈志强, 郭涛. 水稻开颖半不育突变体的观察、遗传分析和基因定位. 中国农业科学, 2016, 49(1): 1-13 [百度学术]
Chen L K, Huang M, Liu Y Z, Wang H, Chen Z Q, Guo T. Observation, genetic analysis and gene mapping of an open hull semi-sterility mutant in rice(Oryza sativa) . Scientia Agricultura Sinica, 2016, 49(1): 1-13 [百度学术]