摘要
利用高密度遗传图谱进行高粱穗部相关性状的QTL分析,为酒用高粱标记辅助育种和重要基因遗传机制解析提供理论依据。以美国籽粒高粱品种BTx623和酱香型白酒用高粱品种红缨子构建的包含205个家系的RIL群体为试验材料,2020‒2021年在贵州贵阳、安顺和海南乐东的5个环境下,开展了5个穗型性状(穗长、穗柄长、穗轴节数、一级枝梗数和最长一级枝梗长)的调查。利用高密度连锁图谱,采用完备区间作图法(ICIM)开展QTL定位。在高粱的基因组上一共检测到61个QTL涉及45个不同QTL遗传位点,其中与穗长、穗柄长、穗轴节数、一级枝梗数和最长一级枝梗长相关QTL分别为14、10、8、11和18个。在多个性状或多个环境中被重复检测到的19个重要QTL位点分别位于1(3个)、3(4个)、4(2个)、5(1个)、6(4个)、7(1个)、8(3个)和9(1个)号染色体上,并在其中12个QTL位点置信区间内或附近确定了13个候选基因,它们与控制水稻穗型的基因同源(DEP1、RGN1、OsPID、OsSPL7和WTG1等),为进一步克隆和功能验证这些候选基因提供依据。
关键词
高粱(Sorghum bicolor (L.) Moench)是仅次于玉米、小麦、水稻和大麦的世界第五大粮食作物,广泛分布于世界的热带干旱和半干旱地区,在我国有着悠久的栽培历
高粱穗型与籽粒产量和病虫害抗性密切相关。遗传分析表明穗部组成性状为复杂的数量性状,受到多基因位点控制,易受环境的影
截至目前,利用不同的遗传群体鉴定了约200个与高粱穗部性状(穗长、一级枝梗数、穗直径、穗型等)相关的QT
以美国籽粒高粱品种BTx623为母本,酱香白酒用高粱品种红缨子为父本,杂交得到F1,经单粒传法,构建了包含205个家系的F2:7 RIL群体。亲本之间在株型和穗型上存在显著差异。BTx623株高较低(1.2~1.5 m),具有紧凑型小穗。红缨子株高较高(2.5~3.0 m),呈侧散长穗型。
RIL群体和2个亲本的田间种植在2020年的贵阳(2020GY)、安顺(2020AS)和乐东(2020LD)、以及2021年的贵阳(2021GY)和安顺(2021AS)共5个环境中开展。采用随机区组设计,3次重复,行距60 cm,行长2 m,株距20 cm,人工点播,适时进行间苗定苗、追肥、除草和病虫害防治等田间管理工作。
参照《高粱种质资源描述规范和数据标准
(1) |
式中,
基于已经构建的高密度连锁遗传图
2020‒2021年,在贵州贵阳、安顺及海南乐东的5个环境下开展RIL群体的表型数据调查(
性状 Traits | 环境 Environment | 亲本 Parents | RIL群体 RIL population | |||||||
---|---|---|---|---|---|---|---|---|---|---|
BTx623 | 红缨子 Hongyingzi | 最小值 Min. | 最大值 Max. | 平均值 Mean | 标准差 SD | 变异系数(%) CV | 偏度 Skewness | 峰度 Kurtosis | ||
穗长(cm)PL | 2020GY | 28.47a | 33.60b | 21.07 | 42.20 | 30.16 | 4.19 | 13.88 | 0.091 | -0.267 |
2020AS | 27.50a | 33.44b | 22.80 | 42.17 | 31.60 | 3.84 | 12.16 | 0.209 | -0.296 | |
2020LD | 28.54a | 31.61b | 20.97 | 40.83 | 29.96 | 4.08 | 13.63 | 0.053 | -0.466 | |
2021GY | 28.75a | 33.75b | 19.83 | 45.17 | 30.30 | 4.75 | 15.67 | 0.465 | -0.045 | |
2021AS | 27.17a | 32.83b | 23.33 | 43.00 | 31.49 | 4.17 | 13.25 | 0.300 | -0.413 | |
穗柄长(cm) PHL | 2020GY | 45.33a | 57.23b | 27.67 | 83.53 | 53.11 | 9.06 | 17.06 | 0.415 | 0.742 |
2020AS | 45.83a | 59.90b | 34.10 | 83.90 | 53.25 | 8.66 | 16.26 | 0.412 | 0.282 | |
2020LD | 42.70a | 51.10b | 27.60 | 73.27 | 49.95 | 8.69 | 17.40 | 0.127 | -0.317 | |
2021GY | 44.33a | 54.17b | 31.50 | 82.17 | 54.85 | 9.58 | 17.47 | 0.212 | -0.140 | |
2021AS | 44.00a | 53.50b | 24.13 | 74.33 | 49.18 | 8.82 | 17.92 | 0.218 | 0.071 | |
穗轴节数 NCN | 2020GY | 8.33a | 8.67b | 5.33 | 13.67 | 9.63 | 1.60 | 16.59 | -0.149 | 0.003 |
2020AS | 9.00a | 9.67b | 5.33 | 14.00 | 9.30 | 1.60 | 17.20 | 0.056 | -0.224 | |
2020LD | 9.67a | 10.00b | 5.00 | 13.33 | 9.37 | 1.44 | 15.37 | -0.088 | 0.188 | |
2021GY | 9.33a | 9.67b | 5.67 | 13.33 | 8.99 | 1.34 | 14.92 | 0.319 | 0.416 | |
2021AS | 9.00a | 10.00b | 5.00 | 12.33 | 8.72 | 1.32 | 15.14 | -0.196 | 0.055 | |
一级枝梗数 NPB | 2020GY | 55.00a | 49.00b | 31.67 | 86.67 | 54.72 | 10.55 | 19.27 | 0.483 | 0.138 |
2020AS | 51.00a | 47.67b | 32.67 | 88.67 | 54.80 | 10.73 | 19.58 | 0.797 | 0.633 | |
2020LD | 45.33a | 43.33a | 28.00 | 94.00 | 48.96 | 10.70 | 21.85 | 1.198 | 2.307 | |
2021GY | 52.67a | 47.33b | 26.00 | 79.00 | 48.79 | 9.45 | 19.37 | 0.357 | 0.443 | |
2021AS | 53.00a | 47.33b | 31.00 | 88.67 | 54.45 | 10.88 | 19.98 | 0.656 | 0.585 | |
最长一级枝梗长(cm) LLPB | 2020GY | 8.60a | 13.93b | 8.03 | 24.77 | 14.29 | 2.82 | 19.75 | 0.375 | 0.399 |
2020AS | 12.50a | 14.67b | 7.43 | 21.40 | 13.79 | 2.40 | 17.38 | 0.332 | 0.104 | |
2020LD | 11.70a | 14.67b | 6.90 | 19.50 | 13.27 | 2.75 | 20.74 | 0.202 | -0.458 | |
2021GY | 10.83a | 15.17b | 4.50 | 20.50 | 13.30 | 2.78 | 20.91 | 0.160 | 0.079 | |
2021AS | 12.00a | 15.83b | 7.17 | 20.83 | 13.12 | 2.66 | 20.24 | 0.269 | -0.056 |
不同小写字母表示亲本在0.05 水平下的差异显著性;2020、2021分别代表2020和2021年度;GY、AS和LD分别指贵阳、安顺和乐东;下同
Different lowercase letters indicate significant difference between parents at 0.05 level. 2020 and 2021 indicate the year 2020 and 2021. GY, AS and LD indicate Guiyang, Anshun and Ledong. PL: Panicle length; PHL:Panicle handle length; NCN: Number of cob nodes; NPB: Number of primary branches; LLPB: Length of the longest primary branch; The same as below
为了进一步了解不同性状在不同环境之间的关系,开展了Pearson相关性分析(
环境 Environment | 性状 Traits | 穗长 PL | 穗柄长 PHL | 穗轴节数 NCN | 一级枝梗数 NPB |
---|---|---|---|---|---|
2020GY | 穗柄长 | 0.376** | |||
穗轴节数 | 0.152* | -0.142* | |||
一级枝梗数 | -0.043 | -0.212** | 0.558** | ||
最长一级枝梗长 | 0.678** | 0.285** | -0.099 | -0.189** | |
2020AS | 穗柄长 | 0.370** | |||
穗轴节数 | 0.134 | -0.199** | |||
一级枝梗数 | 0.059 | -0.192** | 0.294** | ||
最长一级枝梗长 | 0.669** | 0.375** | -0.131 | -0.196** | |
2020LD | 穗柄长 | 0.367** | |||
穗轴节数 | 0.183** | -0.093 | |||
一级枝梗数 | -0.005 | -0.272** | 0.368** | ||
最长一级枝梗长 | 0.729** | 0.302** | 0.017 | -0.212 | |
2021GY | 穗柄长 | 0.223* | |||
穗轴节数 | 0.198** | -0.133 | |||
一级枝梗数 | 0.253** | -0.205** | 0.460** | ||
最长一级枝梗长 | 0.739** | 0.113 | 0.082 | 0.085 | |
2021AS | 穗柄长 | 0.288** | |||
穗轴节数 | 0.134 | -0.203** | |||
一级枝梗数 | 0.131 | -0.248** | 0.262** | ||
最长一级枝梗长 | 0.728** | 0.307** | -0.068 | -0.053 |
*和**分别表示在0.05和0.01水平差异显著。下同
* and ** are significant difference at 0.05 and 0.01 level, respectively. The same as below
性状 Traits | 均方 Mean square | F值 F value | 广义遗传率(%) | ||||
---|---|---|---|---|---|---|---|
基因型 Genotype | 环境 Environment | 基因型×环境 G×E | 基因型 Genotype | 环境 Environment | 基因型×环境 G×E | ||
穗长 PL | 174.47 | 365.94 | 22.57 | 22.62** | 47.45** | 2.93** | 90.79 |
穗柄长 PHL | 947.99 | 3546.30 | 63.10 | 51.77** | 193.67** | 3.45** | 94.61 |
穗轴节数 NCN | 20.34 | 74.47 | 2.90 | 17.65** | 64.61** | 2.52** | 90.33 |
一级枝梗数 NPB | 1170.67 | 6192.78 | 115.42 | 36.33** | 192.17** | 3.58** | 91.90 |
最长一级枝梗长LLPB | 69.80 | 138.21 | 9.56 | 21.58** | 42.74** | 2.95** | 90.24 |
G×E:Genotype × Environment
利用ICIM方法,在5个环境下共定位到61个QTL与高粱的5个穗部性状相关,分别位于高粱的10条染色体上(
性状 Traits | 染色体 Chr. | 位点 QTL | 环境 Environment | 位置(cM) Position | 标记区间 Marker interval | 物理距离(Mb) Physical distance | 阈值 LOD | 贡献率(%) PVE | 加性效应 Add |
---|---|---|---|---|---|---|---|---|---|
穗长 PL | 3 | qPL3.1 | 2021GY | 59.90 | Sb035466~Sb035520 | 53.57~55.06 | 19.30 | 27.40 | -2.62 |
qPL3.2 | 2021AS | 63.20 | Sb035549~Sb035554 | 56.02~56.09 | 4.09 | 6.87 | -1.16 | ||
2020AS | 64.50 | Sb035556~Sb035611 | 56.09~57.32 | 5.56 | 8.43 | -1.17 | |||
2020LD | 67.70 | Sb035578~Sb035622 | 56.29~57.42 | 3.14 | 5.19 | -0.95 | |||
2020GY | 65.20 | Sb035592~Sb035599 | 56.69~56.95 | 13.16 | 19.16 | -1.93 | |||
qPL3.3 | 2020AS | 101.70 | Sb036039~Sb036 101 | 68.03~68.98 | 3.23 | 4.44 | -0.84 | ||
2021AS | 102.20 | Sb036039~Sb036101 | 68.03~68.98 | 4.09 | 7.02 | -1.17 | |||
2020LD | 102.80 | Sb036103~Sb036104 | 69.03~69.05 | 4.05 | 6.28 | -1.05 | |||
4 | qPL4.1 | 2021GY | 0.00 | Sb046548~Sb046572 | 1.37~1.48 | 4.87 | 5.68 | -1.19 | |
qPL4.2 | 2020GY | 3.60 | Sb046612~Sb046631 | 2.23~2.83 | 3.98 | 5.15 | -1.00 | ||
6 | qPL6.1 | 2020AS | 39.80 | Sb0610495~Sb0610507 | 45.09~45.35 | 3.75 | 4.98 | -0.89 | |
qPL6.2 | 2020LD | 50.40 | Sb0610559~Sb0610624 | 47.17~48.33 | 3.86 | 6.50 | -1.06 | ||
7 | qPL7.1 | 2020GY | 49.40 | Sb0712466~Sb0712517 | 61.47~62.15 | 4.62 | 6.03 | 1.09 | |
2020AS | 49.40 | Sb0712466~Sb0712517 | 61.47~62.15 | 9.01 | 12.72 | 1.44 | |||
2021GY | 49.40 | Sb0712466~Sb0712517 | 61.47~62.15 | 4.27 | 4.96 | 1.12 | |||
qPL7.2 | 2021AS | 53.60 | Sb0712544~Sb0712554 | 62.78~62.92 | 3.54 | 5.93 | 1.09 | ||
2020LD | 54.80 | Sb0712548~Sb0712550 | 62.91~62.91 | 3.95 | 6.10 | 1.04 | |||
8 | qPL8.1 | 2021AS | 43.80 | Sb0813577~Sb0813508 | 48.99~50.62 | 2.62 | 4.32 | 0.92 | |
2020LD | 44.00 | Sb0813524~Sb0813584 | 49.58~51.03 | 3.60 | 5.55 | 0.98 | |||
2020AS | 44.10 | Sb0813480~Sb0813584 | 47.76~51.03 | 3.90 | 5.20 | 0.92 | |||
qPL8.2 | 2020GY | 83.90 | Sb0814023~Sb0814025 | 61.58~61.58 | 4.01 | 5.19 | -1.01 | ||
9 | qPL9.1 | 2021GY | 0.60 | Sb0914123~Sb0914124 | 0.37~0.55 | 3.49 | 4.02 | -1.00 | |
qPL9.2 | 2020LD | 78.60 | Sb0915233~Sb0915254 | 52.93~53.94 | 3.16 | 4.98 | -0.94 | ||
2021GY | 79.50 | Sb0915254~Sb0915270 | 53.94~54.55 | 2.70 | 3.19 | -0.90 | |||
10 | qPL10.1 | 2020GY | 9.70 | Sb1016007~Sb1016043 | 23.01~35.44 | 2.96 | 3.81 | 0.86 | |
穗柄长 PHL | 1 | qPHL1.1 | 2020LD | 28.30 | Sb01903~Sb01925 | 24.77~25.81 | 3.29 | 4.92 | 2.08 |
2020AS | 28.70 | Sb01903~Sb01925 | 24.77~25.81 | 4.72 | 7.13 | 2.40 | |||
2020GY | 28.80 | Sb01925~Sb01957 | 25.81~27.00 | 5.73 | 8.66 | 2.76 | |||
2021GY | 28.80 | Sb01925~Sb01957 | 25.81~27.00 | 3.03 | 3.77 | 1.92 | |||
qPHL1.2 | 2020AS | 78.80 | Sb012123~Sb012129 | 74.54~74.58 | 4.98 | 7.50 | -2.45 | ||
2020GY | 79.00 | Sb012123~Sb012129 | 74.54~74.58 | 5.95 | 9.20 | -2.83 | |||
2021GY | 79.60 | Sb012123~Sb012129 | 74.54~74.58 | 4.81 | 6.24 | -2.46 | |||
2020LD | 80.90 | Sb012152~Sb012158 | 75.28~75.51 | 4.46 | 6.44 | -2.37 | |||
3 | qPHL3.1 | 2021GY | 56.90 | Sb035426~Sb035466 | 52.69~53.57 | 5.49 | 7.36 | 2.68 | |
6 | qPHL6.1 | 2020AS | 67.20 | Sb061080~Sb0610854 | 52.21~52.92 | 2.51 | 3.70 | -1.73 | |
qPHL6.2 | 2021GY | 79.30 | Sb0611237~Sb0611249 | 57.61~58.20 | 3.06 | 3.82 | -1.93 | ||
7 | qPHL7.1 | 2020GY | 55.10 | Sb0712548~Sb0712556 | 62.91~62.98 | 4.13 | 6.44 | 2.38 | |
2020AS | 55.20 | Sb0712548~Sb0712556 | 62.91~62.98 | 5.59 | 8.72 | 2.65 | |||
2021GY | 56.00 | Sb0712328~Sb0712556 | 58.85~62.98 | 7.59 | 12.02 | 3.44 | |||
2020LD | 56.20 | Sb0712328~Sb0712556 | 58.85~62.98 | 7.53 | 13.82 | 3.49 | |||
8 | qPHL8.1 | 2021GY | 9.80 | Sb0812842~Sb0812844 | 2.84~2.90 | 4.71 | 5.99 | -2.43 | |
qPHL8.2 | 2020AS | 14.70 | Sb0812881~Sb0812905 | 3.28~4.60 | 3.17 | 4.84 | -2.00 | ||
qPHL8.3 | 2020LD | 81.40 | Sb0813988~Sb0813997 | 60.76~60.99 | 5.96 | 8.89 | -2.80 | ||
2021GY | 82.40 | Sb0813988~Sb0813997 | 60.76~60.99 | 2.84 | 3.67 | -1.91 | |||
qPHL8.4 | 2020GY | 85.50 | Sb0814061~Sb0814062 | 62.05~62.05 | 4.06 | 6.01 | -2.29 | ||
穗轴节数 NCN | 1 | qNCN1.1 | 2020LD | 58.30 | Sb011739~Sb011746 | 63.33~63.56 | 4.42 | 7.39 | -0.38 |
2020AS | 66.60 | Sb011779~Sb011847 | 63.30~64.73 | 3.31 | 5.76 | -0.37 | |||
qNCN1.2 | 2021AS | 75.30 | Sb012035~Sb012088 | 73.24~74.03 | 3.44 | 6.12 | -0.32 | ||
2 | qNCN2.1 | 2020GY | 95.20 | Sb023957~Sb024033 | 64.43~66.06 | 3.64 | 7.99 | -0.45 | |
3 | qNCN3.1 | 2020LD | 20.80 | Sb034865~Sb034969 | 4.67~6.99 | 3.93 | 7.22 | 0.37 | |
4 | qNCN4.1 | 2020AS | 88.40 | Sb048347~Sb048353 | 66.52~66.53 | 4.66 | 7.56 | 0.43 | |
2020LD | 88.40 | Sb048347~Sb048353 | 66.52~66.53 | 3.95 | 6.56 | 0.35 | |||
6 | qNCN6.1 | 2021AS | 66.00 | Sb0610882~Sb0610839 | 52.73~53.33 | 4.68 | 8.40 | 0.38 | |
7 | qNCN7.1 | 2020LD | 45.90 | Sb0712406~Sb0712430 | 59.68~60.22 | 2.86 | 4.70 | -0.30 | |
8 | qNCN8.1 | 2021GY | 12.70 | Sb0812825~Sb0812881 | 2.52~3.28 | 6.55 | 13.59 | 0.53 | |
2020GY | 13.70 | Sb0812825~Sb0812881 | 2.52~3.28 | 6.96 | 13.72 | 0.60 | |||
2021AS | 14.20 | Sb0812825~Sb0812881 | 2.52~3.28 | 8.14 | 15.17 | 0.52 | |||
2020LD | 14.30 | Sb0812825~Sb0812905 | 3.28~4.26 | 6.24 | 10.68 | 0.46 | |||
2020AS | 16.70 | Sb0812825~Sb0812905 | 3.28~4.26 | 8.32 | 15.75 | 0.63 | |||
一级枝梗数 NPB | 3 | qNPB3.1 | 2020GY | 44.50 | Sb035242~Sb035254 | 12.86~13.5 | 3.34 | 5.18 | 2.47 |
qNPB3.2 | 2020AS | 52.20 | Sb035389~Sb035395 | 50.62~50.72 | 2.51 | 4.62 | 2.15 | ||
2020LD | 52.20 | Sb035389~Sb035395 | 50.62~50.72 | 7.56 | 14.46 | 3.87 | |||
4 | qNPB4.1 | 2020GY | 19.10 | Sb046812~Sb046816 | 6.72~6.79 | 2.85 | 4.04 | -2.18 | |
qNPB4.2 | 2020LD | 45.10 | Sb047636~Sb047553 | 44.12~48.97 | 3.07 | 5.72 | -2.47 | ||
2020AS | 45.30 | Sb047636~Sb047553 | 44.12~48.97 | 2.73 | 5.10 | -2.30 | |||
qNPB4.3 | 2020AS | 88.40 | Sb048347~Sb048353 | 66.52~66.53 | 3.41 | 6.33 | 2.53 | ||
2020LD | 88.40 | Sb048347~Sb048353 | 66.52~66.53 | 3.54 | 6.44 | 2.59 | |||
qNPB4.4 | 2020GY | 91.00 | Sb048377~Sb048434 | 67.22~68.37 | 3.73 | 5.71 | 2.59 | ||
5 | qNPB5.1 | 2020GY | 32.30 | Sb059299~Sb059335 | 60.02~65.69 | 3.70 | 5.34 | -2.51 | |
2020AS | 32.30 | Sb059299~Sb059335 | 60.02~65.69 | 3.59 | 6.71 | -2.61 | |||
2021GY | 32.30 | Sb059299~Sb059335 | 60.02~65.69 | 4.41 | 8.46 | -2.73 | |||
2021AS | 32.30 | Sb059299~Sb059335 | 60.02~65.69 | 4.64 | 7.77 | -3.21 | |||
6 | qNPB6.1 | 2021AS | 57.70 | Sb0610677~Sb0610772 | 50.12~51.83 | 4.98 | 9.76 | 3.58 | |
2020GY | 58.00 | Sb0610677~Sb0610772 | 50.12~51.83 | 4.34 | 7.19 | 2.90 | |||
7 | qNPB7.1 | 2021AS | 78.80 | Sb0712235~Sb0712263 | 56.27~57.43 | 3.19 | 5.24 | 2.74 | |
8 | qNPB8.1 | 2020AS | 8.30 | Sb0812824~Sb0812846 | 2.51~3.17 | 3.32 | 6.41 | 2.55 | |
2021GY | 8.30 | Sb0812824~Sb0812846 | 2.51~3.17 | 6.26 | 12.62 | 3.34 | |||
2020GY | 9.10 | Sb0812824~Sb0812846 | 2.51~3.17 | 5.80 | 8.61 | 3.19 | |||
10 | qNPB10.1 | 2021AS | 35.30 | Sb1016288~Sb1016294 | 55.31~55.34 | 2.59 | 4.21 | -2.35 | |
最长一级枝梗长 LLPB | 2 | qLLPB2.1 | 2020GY | 50.70 | Sb023050~Sb023041 | 14.26~14.52 | 3.57 | 5.63 | 0.67 |
3 | qLLPB3.1 | 2020LD | 12.20 | Sb034809~Sb034816 | 3.16~3.25 | 8.66 | 13.30 | -1.01 | |
qLLPB3.2 | 2021GY | 37.90 | Sb035161~Sb035175 | 10.54~10.78 | 2.66 | 4.14 | -0.54 | ||
qLLPB3.3 | 2021GY | 60.10 | Sb035466~Sb035520 | 53.57~55.06 | 8.48 | 14.30 | -1.01 | ||
qLLPB3.4 | 2020GY | 63.50 | Sb035554~Sb035557 | 56.08~56.14 | 6.17 | 10.01 | -0.90 | ||
qLLPB3.5 | 2020LD | 76.60 | Sb035622~Sb035737 | 57.42~60.19 | 6.95 | 12.10 | -0.96 | ||
qLLPB3.6 | 2020AS | 103.40 | Sb036115~Sb036124 | 69.23~69.63 | 4.72 | 6.68 | -0.64 | ||
qLLPB3.7 | 2021AS | 118.70 | Sb036370~Sb036391 | 72.55~73.31 | 4.16 | 7.04 | -0.77 | ||
6 | qLLPB6.1 | 2020LD | 40.30 | Sb0610495~Sb0610507 | 45.09~45.35 | 3.26 | 4.76 | -0.60 | |
qLLPB6.2 | 2020AS | 59.00 | Sb0610677~Sb0610772 | 50.12~51.83 | 4.87 | 8.26 | -0.71 | ||
qLLPB6.3 | 2021GY | 77.40 | Sb0610981~Sb0611205 | 54.59~57.26 | 4.68 | 7.91 | -0.75 | ||
2020GY | 77.60 | Sb0610981~Sb0611205 | 54.59~57.26 | 2.53 | 4.21 | -0.58 | |||
qLLPB6.4 | 2021AS | 84.10 | Sb0611297~Sb0611392 | 58.73~61.13 | 3.85 | 6.38 | -0.73 | ||
7 | qLLPB7.1 | 2021AS | 53.60 | Sb0712544~Sb0712554 | 62.78~62.92 | 2.90 | 4.50 | 0.62 | |
2020AS | 55.00 | Sb0712550~Sb0712548 | 62.91~62.91 | 4.79 | 6.77 | 0.65 | |||
8 | qLLPB8.1 | 2020LD | 43.80 | Sb0813508~Sb0813577 | 48.99~50.62 | 5.96 | 8.97 | 0.83 | |
2020GY | 44.00 | Sb0813524~Sb0813584 | 49.58~51.03 | 4.70 | 7.53 | 0.78 | |||
2020AS | 44.00 | Sb0813524~Sb0813584 | 49.58~51.03 | 5.20 | 7.40 | 0.68 | |||
2021AS | 45.40 | Sb0813480~Sb0813584 | 47.76~51.03 | 5.08 | 8.04 | 0.82 | |||
qLLPB8.2 | 2021GY | 48.90 | Sb0813651~Sb0813683 | 53.51~53.80 | 3.42 | 5.39 | 0.62 | ||
qLLPB8.3 | 2020GY | 80.20 | Sb0813812~Sb0813988 | 58.25~60.76 | 2.99 | 4.95 | -0.63 | ||
9 | qLLPB9.1 | 2021GY | 72.00 | Sb0915209~Sb0915215 | 52.36~52.61 | 3.93 | 6.26 | -0.67 | |
10 | qLLPB10.1 | 2020AS | 33.00 | Sb1016269~Sb1016286 | 54.66~55.27 | 2.62 | 3.70 | 0.48 |
加性效应的正值和负值分别表示其增效等位基因来源于亲本BTx623和红缨子
Positive and negative additive effects refer to alleles from parents BTx623 and Hongyingzi,respectively; PEV:Phenotypic variance explained
与穗长相关的14个QTL分别位于3(3个)、4(2个)、6(2个)、7(2个)、8(2个)和9(2个)和10(1个)号染色体上。位于3号染色体的qPL3.2在4个环境中都能够被检测到,平均LOD值为6.48,变化范围为3.14~13.16,可解释表型变异率的平均值为9.91%,变化范围为5.19%~19.16%。在3个环境下检测到3个QTL(qPL3.3、qPL7.1和qPL8.1),最大LOD值分别为4.09、9.01和3.90,可解释表型贡献率的最大值分别为7.02%、12.72%和5.55%。除qPL7.1、qPL7.2、qPL8.1和qPL10.1以外,其余10个QTL增效的等位基因均来源于亲本红缨子。
与穗柄长性状相关的10个QTL分别定位于1(2个)、3(1个)、6(2个)、7(1个)和8(4个)号染色体上。在4个环境下均检测到的3个重要QTL(qPHL1.1、qPHL1.2和qPHL7.1)定位于1号和7号染色体上,LOD值范围分别为3.03~5.73、4.46~5.95和4.13~7.59,可解释表型贡献率的范围分别为3.77%~8.66%、6.24%~9.20%和6.44%~13.82%。在2个环境下均检测到的qPHL8.3位于8号染色体,其LOD值和表型贡献率的范围分别为2.84~5.96和3.67%~8.89%。3个QTL (qPHL1.1、qPHL3.1和qPHL7.1)的增效等位基因来源于亲本BTx623,其余7个QTL的增效等位基因来源于亲本红缨子。
与穗轴节数相关的8个QTL分别定位于1(2个)、2(1个)、3(1个)、4(1个)、6(1个)、7(1个)和8(1个)号染色体上。在5个环境下均检测到的1个重要QTL(qNCN8.1)定位于8号染色体上,最大LOD值和表型贡献率分别为8.32和15.75%,在2020年乐东和安顺环境下检测到2个QTL(qNCN1.1和qNCN4.1),其LOD值变化范围为3.31~4.66,可解释的表型贡献率为5.76%~7.56%。4个QTL (qNCN3.1、qNCN4.1、qNCN6.1和qNCN8.1)的增效等位基因来源于亲本BTx623,其余4个QTL的增效等位基因来源于亲本红缨子。
控制高粱一级枝梗数的11个QTL分别位于3(2个)、4(4个)、5(1个)、6(1个)、7(1个)、8(1个)和10(1个)号染色体上。在4个环境下都能检测到位于5号染色体的qNPB5.1,其最大LOD值和表型贡献率分别为4.64和7.77%。在3个环境下都定位到位于8号染色体上的QTL(qNPB8.1),其最大LOD值和表型贡献率分别为6.26和12.62%。4个QTL(qNPB4.1、qNPB4.2、qNPB5.1和qNPB10.1)的增效等位基因来源于亲本红缨子,其余7个QTL的增效等位基因来源于亲本BTx623。
影响最长一级枝梗长的18个QTL分别位于2(1个)、3(7个)、6(4个)、7(1个)、8(3个)、9(1个)和10(1个)号染色体上。在4个环境下都能检测到位于8号染色体的QTL(qLLPB8.1),其最大LOD值和表型贡献率分别为5.96和8.97%。在2个环境下均检测到的两个QTL(qLLPB6.3和qLLPB7.1)定位于6号染色体和7号染色体上,LOD值分别为2.53~4.68和2.90~4.79,其表型贡献率范围分别为4.21%~7.91%和4.50%~6.77%。除qLLPB2.1、qLLPB7.1、qLLPB8.1、qLLPB8.2和qLLPB10.1以外,其余13个QTL的增效等位基因均来源于亲本红缨子。
综合比较,与5个性状相关的QTL共涉及到45个不同的QTL位点,其中有19个重要的QTL位点在多个环境或性状中被同时定位(

图1 高粱穗型相关性状QTL位点在遗传图谱上的分布
Fig.1 Distribution of QTLs for panicle architecture-related traits on genetic map
单个环境下检测到的QTL呈黑色,两个或两个以上环境下重复检测到的QTL则呈红色;黑色下划线表示该QTL位点与先前已报道的高粱穗型相关性状的QTL一致
QTL detected in a single environment are shown in black, and those consistently detected in multi-environments are shown in red; Black underline indicates that the QTL locus is consistent with previously reported QTLs related to sorghum panicle traits
根据上述结果,针对19个重要的遗传位点进行了候选基因分析。利用植物基因组数据库,识别高粱基因ID、蛋白质注释信息及相应的同源基因,结合前人研究报道,在19个QTL位点中的12个置信区间内或附近确定了13个候选基因(
QTL | 基因 Gene | 基因组位置 Genomic location | 同源基因 Orthologous gene | 蛋白注释 Protein annotation | GO注释 GO annotation | KEGG注释 KEGG annotation |
---|---|---|---|---|---|---|
qPHL1.2 | Sobic.001G484200 | Chr01:75526130~75530742 | RGA1(LOC_Os05g26890) | 异三聚体G蛋白α亚基 | 0031683, 0007186, 0019001, 0003924 | K04640 |
qPHL3.1 | Sobic.003G202200 | Chr03:53189807~53194411 | LOG(LOC_Os01g40630) | 细胞分裂素激活酶 | K06966 | |
qPL3.1 | ||||||
qLLPB3.3 | ||||||
qPL3.2 qLLPB3.4 qLLPB3.5 | Sobic.003G260300 | Chr03:59812779~59814750 | RGN1(LOC_Os01g49160) | MYB转录因子 | 0003677 | |
qNPB5.1 | Sobic.005G143300 | Chr05:60679647~60688236 | OsChz1(LOC_Os11g34190) | 组蛋白伴侣 | 0046982 | |
qPL6.1 qLLPB6.1 | Sobic.006G089300 | Chr06:45893608~45897801 | SP1(LOC_Os11g12740) | 小肽转运蛋白 |
0006810,0016020, 0005215 | |
qNPB6.1 qLLPB6.2 | Sobic.006G171000 | Chr06:52741860~52745908 | OsSPL7(LOC_Os04g46580) | Squamosa启动子结合蛋白 | 0005634,0003677 | |
qPHL6.1 qNCN6.1 | Sobic.006G182500 | Chr06:53762626~53766480 | OsKRN(LOC_Os04g48010) | WD40蛋白 | 0005515 | |
qPL7.1 qPL7.2
qPHL7.1 qNCN7.1 qLLPB7.1 | Sobic.007G149200 | Chr07:58010696~58016328 | DEP1(LOC_Os09g26999) | 异三聚体G蛋白γ亚基 |
0007186,0005834, 0004871 | |
Sobic.007G189000 | Chr07:62168847~62174483 | WTG1(LOC_Os08g42540) | 去泛素化酶 | K09602 | ||
qPHL8.1 qNCN8.1 qNPB8.2 | Sobic.008G037300 | Chr08:3535583~3536770 | OsCSLD4(LOC_Os12g36890) | 类纤维素合酶 | 0003712,0009910 | |
qPL8.1 qLLPB8.1 | Sobic.008G115000 | Chr08:52390176~52396758 | OsVIL2(LOC_Os12g34850) | PRC2复合体组分 | 0005515 | |
qPHL8.3 qLLPB8.3 | Sobic.008G170500 | Chr08:60472113~60473745 | OsPID(LOC_Os12g42020) | 苏氨酸蛋白激酶 |
0004672,0006468, 0004713,0005524 | |
qPL9.2 | Sobic.009G176400 | Chr09:53137542~53147354 | EUI1(LOC_Os05g40384) | 细胞色素P450单加氧酶 | 0005506, 0016705, 0020037, 0055114 |
高粱起源于非洲地区,传播到印度之后,再通过西南丝绸之路传入中
本研究中,19个QTL位点在多个环境或多个性状中被重复检测到,其中12个位点与已报道的高粱穗型相关QTL位置一致(
与水稻相
本研究利用QTL定位,在5个环境下共定位到14个穗长、10个穗柄长、8个穗轴节数、11个一级枝梗数和18个最长一级枝梗长相关的QTL。在多个环境或性状中确定了19个重要QTL位点,从中发现13个可能控制高粱穗部相关性状的候选基因,为下一步开展这些关键基因克隆和调控机理分析提供了理论依据。
参考文献
李顺国, 刘猛, 刘斐, 邹剑秋, 陆晓春, 刁现民. 中国高粱产业和种业发展现状与未来展望. 中国农业科学, 2021, 54(3): 471-482 [百度学术]
Li S G, Liu M, Liu F, Zou J Q, Lu X C, Diao X M. Current status and future prospective of sorghum production and seed industry in china. Scientia Agricultura Sinica, 2021, 54(3): 471-482 [百度学术]
Brown P J, Klein P, Bortiri E, Acharya B E, Rooney W Y, Kresovich S. Inheritance of inflorescence architecture in sorghum. Theoretical and Applied Genetics, 2006, 113(5): 931-942 [百度学术]
Hmon K P W, Shehzad T, Okuno K. Variation in inflorescence architecture associated with yield components in a sorghum germplasm. Plant Genetic Resources, 2013, 11(3): 258-265 [百度学术]
Baggett J P, Tillett R L, Cooper E A, Yerka M K. De novo identification and targeted sequencing of SSRs efficiently fingerprints Sorghum bicolor sub-population identity. PLoS ONE, 2021, 16(3): e0248213 [百度学术]
Wang L M, Jiao S J, Jiang Y X, Yan H D, Su D F, Sun G Q, Yan X F, Sun L F. Genetic diversity in parent lines of sweet sorghum based on agronomical traits and SSR markers. Field Crops Research, 2013, 149: 11-19 [百度学术]
Nagaraja R R, Madhusudhana R, Murali M S, Chakravarthi D V, Mehtre S P, Seetharama N, Patil J V. Mapping QTL for grain yield and other agronomic traits in post-rainy sorghum [Sorghum bicolor (L.) Moench]. Theoretical and Applied Genetics, 2013, 126(8): 1921-1939 [百度学术]
Bai C M, Wang C Y, Wang P, Zhu Z X, Cong L, Liu D, Liu Y F, Zheng W J, Lu X C. QTL mapping of agronomically important traits in sorghum (Sorghum bicolor L.). Euphytica, 2017, 213(12):1-12 [百度学术]
Liu H H, Liu H Q, Zhou L N, Lin Z W. Genetic architecture of domestication-and improvement-related traits using a population derived from Sorghum virgatum and Sorghum bicolor. Plant Science , 2019, 283: 135-146 [百度学术]
Zou G H, Zhai G W, Yan S, Li S, Zhou L B, Ding Y Q, Liu H, Zhang Z, Zou J, Zhang L Y, Chen J, Xin Z G, Tao Y Z. Sorghum qTGW1a encodes a G-protein subunit and acts as a negative regulator of grain size. Journal of Experimental Botany, 2020, 71(18): 5389-5401 [百度学术]
Zou G H, Zhai G W, Feng Q, Yan S, Wang A, Zhao Q, Shao J, Zhang Z, Zou J, Han B, Tao Y Z. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. Journal of Experimental Botany, 2012, 63(15): 5451-5462 [百度学术]
Kajiya-Kanegae H, Takanashi H, Fujimoto M, Ishimori M, Ohnishi N, Wacera W F, Omollo E A, Kobayashi M, Yano K, Nakano M, Kozuka T, Kusaba M, Iwata H, Tsutsumi N, Sakamoto W. RAD-seq-based high-density linkage map construction and QTL mapping of biomass-related traits in sorghum using the Japanese landrace Takakibi NOG. Plant Cell Physiology, 2020, 61(7): 1262-1272 [百度学术]
Takanashi H, Shichijo M, Sakamoto L, Kajiya-Kanegae H, Iwata H, Sakamoto W, Tsutsumi N. Genetic dissection of QTLs associated with spikelet-related traits and grain size in sorghum. Scientific Reports, 2021, 11(1): 9398 [百度学术]
Souza V F, Pereira G D S, Pastina M M, Parrella R A D C, Simeone M L F, Barros B A, Noda R W, da Costa E Silva L, Magalhães J V, Schaffert R E, Garcia A A F, Damasceno C M B. QTL mapping for bioenergy traits in sweet sorghum recombinant inbred lines. G3-Genes Genomes Genetics, 2021, 11(11): jkab314 [百度学术]
Wang L H, Liu Y L, Gao L, Yang X C, Zhang X, Xie S P, Chen M, Wang Y H, Li J Q. Genome-wide association mapping identifies novel panicle morphology loci and candidate genes in sorghum. Frontiers in Plant Science, 2021, 12: 743838 [百度学术]
Olatoye M O, Marla S R, Hu Z, Bouchet S, Perumal R, Morris G P. Dissecting adaptive traits with nested association mapping: genetic architecture of inflorescence morphology in sorghum. G3-Genes Genomes Genetics, 2020, 10(5): 1785-1796 [百度学术]
Zhou Y, Srinivasan S, Mirnezami S V, Kusmec A, Fu Q, Attigala L, Salas Fernandez M G. Semiautomated feature extraction from RGB images for sorghum panicle architecture GWAS. Plant Physiology, 2019, 179(1): 24-37 [百度学术]
Hu Z B, Olatoye M O, Marla S, Morris G P. An integrated genotyping-by-sequencing polymorphism map for over 10,000 sorghum genotypes. The Plant Genome, 2019, 12(1): 180044 [百度学术]
陆平. 高粱种质资源描述规范和数据标准. 北京:中国农业出版社, 2006:52-54 [百度学术]
Lu P. Description specification and data standard of sorghum germplasm resources. Beijing:China Agricultural Press, 2006:52-54 [百度学术]
刘欢欢. 高粱驯化相关性状遗传结构的解析. 北京:中国农业大学, 2016 [百度学术]
Liu H H. Genetic architecture of domestication-related traits sorghum. Beijing:China Agricultural University, 2016 [百度学术]
白晓倩, 于澎湃, 李延玲, 高建明, 裴忠有, 罗峰, 孙守钧. 粒用高粱F2群体农艺性状数量遗传分析. 华北农学报, 2019, 34(1): 107-114 [百度学术]
Bai X Q, Yu P P, Li Y L, Gao J M, Pei Z Y, Luo F, Sun S J. Genetic analysis of agronomic characters in F2 population of Sorghum bicolor. Acta Agriculturae Boreali-Sinica, 2019, 34(1): 107-114 [百度学术]
曹永策, 李曙光, 张新草, 孔杰杰, 赵团结. 夏大豆重组自交系群体遗传图谱构建及开花期QTL分析. 中国农业科学, 2020, 53(4): 683-694 [百度学术]
Cao Y C, Li S G, Zhang X C, Kong J J, Zhao T J. Construction of genetic map and mapping QTL for flowering time in a summer planting soybean recombinant inbred line population. Scientia Agricultura Sinica, 2020, 53(4): 683-694 [百度学术]
丁延庆, 徐建霞, 汪灿, 周棱波, 张国兵, 赵强, 邵明波, 张立异. 基于Super-GBS技术的高粱籽粒酿造相关性状QTL定位. 核农学报, 2023, 37(2): 241-250 [百度学术]
Ding Y Q, Xu J X, Wang C, Zhou L B, Zhang G B, Zhao Q, Shao M B, Zhang L Y. QTL mapping of grain traits related to brewing in sorghum based on super-GBS technology. Journal of Nuclear Agricultural Sciences, 2023, 37(2): 241-250 [百度学术]
Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 2015, 3(3): 269-283 [百度学术]
Zhang L Y, Ding Y Q, Xu J X, Gao X, Cao N, Li K Y, Feng Z, Cheng B, Zhou L B, Ren M J, Lu X C, Bao Z G, Tao Y Z, Xin Z G, Zou G H. Selection signatures in chinese sorghum reveals its unique liquor-making properties. Frontiers in Plant Science, 2022, 13: 923734 [百度学术]
Mocoeur A, Zhang Y M, Liu Z Q, Shen X, Zhang L M, Rasmussen S K, Jing H C. Stability and genetic control of morphological, biomass and biofuel traits under temperate maritime and continental conditions in sweet sorghum (Sorghum bicolour). Theoretical and Applied Genetics, 2015, 128(9): 1685-1701 [百度学术]
Hart G, S Schertz K F, Peng Y, Syed N H. Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. Theoretical and Applied Genetics, 2001, 103: 1232-1242 [百度学术]
Morris G P, Ramu P, Deshpande S P, Hash C T, Shah T, Upadhyaya H D, Riera-Lizarazu O, Brown P J, Acharya C B, Mitchell S E, Harriman J, Glaubitz J C, Buckler E S, Kresovich S. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(2): 453-458 [百度学术]
Shehzad T, Okuno K. QTL mapping for yield and yield-contributing traits in sorghum (Sorghum bicolor (L.) Moench) with genome-based SSR markers. Euphytica, 2015, 203: 17-31 [百度学术]
Srinivas G, Satish K, Madhusudhana R, Reddy R N, Mohan S M, Seetharama N. Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum. Theoretical and Applied Genetics, 2009, 118(8): 1439-1454 [百度学术]
Zhao J, Mantilla Perez M B, Hu J, Salas Fernandez M G. Genome-wide association study for nine plant architecture traits in Sorghum. The Plant Genome, 2016, DOI:10.3835/ plantgenome 2015.06.0044 [百度学术]
Zhang D, Kong W Q, Robertson J, Goff V H, Epps E, Kerr A, Mills G, Cromwell J, Lugin Y, Phillips C, Paterson A H. Genetic analysis of inflorescence and plant height components in sorghum (Panicoidae) and comparative genetics with rice (Oryzoidae). BMC Plant Biology, 2015, 15(1): 1-15 [百度学术]
Zhou Y, Srinivasan S, Mirnezami S V, Kusmec A, Fu Q, Attigala L, Salas Fernandez M G, Ganapathysubramanian B, Schnable P S. Semiautomated feature extraction from RGB images for sorghum panicle architecture GWAS. Plant Physiology, 2019, 179(1): 24-37 [百度学术]
Witt Hmon K P, Shehzad T, Okuno K. QTLs underlying inflorescence architecture in sorghum (Sorghum bicolor (L.) Moench) as detected by association analysis. Genetic Resources and Crop Evolution, 2014, 61: 1545-1564 [百度学术]
Pereira M G, Ahnert D, Lee M, Klier K. Genetic-mapping of quantitative trait loci for panicle characteristics and seed weight in sorghum. Revista Brasileira De Genetica, 1995, 18(2): 249-257 [百度学术]
Wang L, Ming L C, Liao K Y, Xia C J, Sun S Y, Chang Y, Wang H K, Fu D B, Xu C B, Wang Z J, Li X, Xie W B, Ouyang Y D, Zhang Q L, Li X H, Zhang Q H, Xiao J H, Zhang Q F. Bract suppression regulated by the miR156/529-SPLs-NL1-PLA1 module is required for the transition from vegetative to reproductive branching in rice. Molecular Plant, 2021, 14(7): 1168-1184 [百度学术]
Sun S Y, Wang L, Mao H L, Shao L, Li X H, Xiao J H, Ouyang Y D, Zhang Q F. A G-protein pathway determines grain size in rice. Nature Communications, 2018, 9(1): 851 [百度学术]
Liu Q, Han R X, Wu K, Zhang J Q, Ye Y F, Wang S S, Chen J F, Pan Y J, Li Q, Xu X P, Zhou J W, Tao D Y, Wu J Y, Fu X D. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nature Communications, 2018, 9(1): 852 [百度学术]
Huang K, Wang D K, Duan P G, Zhang B L, Xu R, Li N, Li Y H. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. The Plant Journal, 2017, 91(5): 849-860 [百度学术]
Zhao H, Li Z X, Wang Y Y, Wang J Y, Xiao M G, Liu H, Quan R D, Zhang H W, Huang R F, Zhu L, Zhang Z J. Cellulose synthase-like protein OsCSLD4 plays an important role in the response of rice to salt stress by mediating abscisic acid biosynthesis to regulate osmotic stress tolerance. Plant Biotechnology Journal, 2022, 20(3): 468-484 [百度学术]
Li G L, Xu B X, Zhang Y P, Xu Y W, Khan N U, Xie J Y, Sun X M, Guo H F, Wu Z Y, Wang X Q, Zhang H L, Li J J, Xu J L, Wang W S, Zhang Z Y, Li Z C. RGN1 controls grain number and shapes panicle architecture in rice. Plant Biotechnology Journal, 2022, 20(1): 158-167 [百度学术]
Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J. Direct control of shoot meristem activity by a cytokinin-activating enzyme.Nature, 2007, 445: 652-655 [百度学术]
Yang J, Cho L, Yoon J, Yoon H, Wai A H, Hong W J, Han M, Sakakibara H, Liang W, Jung K H, Jeon J S, Koh H J, Zhang D, An G. Chromatin interacting factor OsVIL2 increases biomass and rice grain yield. Plant Biotechnology Journal, 2019, 17(1): 178-187 [百度学术]
Wu H M, Xie D J, Tang Z S, Shi D Q, Yang W C. PINOID regulates floral organ development by modulating auxin transport and interacts with MADS16 in rice. Plant Biotechnology Journal, 2020, 18(8): 1778-1795 [百度学术]