摘要
玉米遗传转化受体主要是未成熟幼胚,经过组织培养形成胚性愈伤组织,进而分化成苗。目前,对玉米胚性愈伤组织形成的分子机理的了解还不深入。为了挖掘调控玉米胚性愈伤组织形成的基因,本研究选取玉米自交系CAL28×郑58的F3群体中不同表型的愈伤组织进行RNA-seq分析。与愈伤发生差的II型愈伤相比,愈伤发生好的I型愈伤中共检测到4419个差异表达基因,其中1571个基因上调,2848个基因下调。GO富集分析结果表明,差异表达基因主要富集在细胞过程、催化活性、细胞组分等通路中。KEGG富集分析表明,差异表达基因主要富集在苯丙烷生物合成途径和植物激素信号转导途径。在生长素早期响应基因中,8个AUX/IAA家族基因,如IAA23、IAA33、IAA41,和4个GH3家族基因在I型愈伤中上调表达。差异显著基因中共有隶属56个转录因子家族的2968个转录因子,其中与愈伤形成相关的AP2、WOX和LBD转录因子家族基因中的ZmEREB53、ZmEREB206、ZmEREB184、ZmLBD10、ZmLBD24、ZmLBD31、ZmLBD32、ZmWOX5b、ZmWOX9b等在Ⅰ型愈伤中的表达量显著上调,对这些靶标基因进行遗传操作有可能促进玉米愈伤组织形成。本研究发现的靶标基因具有较大的应用潜力,研究结果也为解析玉米愈伤组织形成的分子机理提供了理论参考。
玉米是我国重要的粮食作物、工业原料和饲料作物,但随着我国畜牧业和玉米加工业的发展,常规玉米遗传育种已经不能满足我国社会和经济发展需求。转基因育种提供了一种新的解决方案,可以赋予玉米品种新的性状,促进玉米产业方式升级。高效遗传转化技术是转基因育种的前提,目前,农杆菌转化法和基因枪法是玉米遗传转化主要采用的技术,一般需要愈伤组织培养和植株再生过程。在玉米遗传转化过程中,基因型是限制愈伤形成的主要因
在拟南芥等双子叶植物中的研究表明生长素和细胞分裂素在诱导愈伤形成过程中必不可少,生长素响应因子(ARF)下游的LBD16、LBD17、LBD18和LBD29在拟南芥愈伤组织形成中发挥着重要作用,4个LBD基因异位表达可以促进拟南芥愈伤发
目前对于玉米愈伤组织形成机理的研究相对较少,需要深入解析玉米愈伤形成机制。Armstrong
为了解析玉米愈伤发生的分子机理,本研究利用RNA-seq技术,对两个愈伤诱导能力差异较大的自交系CAL28和郑58构建的分离群体F3诱导的Ⅰ型(愈伤生长好)、Ⅱ型(无愈伤生成)愈伤进行转录组测序分析,鉴定到一些重要差异表达基因,研究结果将对解析玉米愈伤形成的分子机理提供重要理论参考。
本研究利用愈伤诱导能力好的自交系CAL28和愈伤诱导能力差的自交系郑58杂交,F1植株于2020年冬种植于海南三亚,2021‒2022年在北京种植F2植株,取自交授粉后的F3果穗剥取幼胚,在诱导胚性愈伤组织培养基上继代3~4次(生长4~6周)后,对玉米幼胚生长表型进行鉴定。
取授粉后时间10~12 d的玉米穗,使用75%的酒精灭菌处理,去除玉米穗两端发育有差异的部位,在穗中间均匀取胚,幼胚大小约为1.2~1.5 mm。放置在NB培养基(4.1 g/L NB培养基(Phytotech,货号N492),1 mL/L 1000×维生素,0.7 g/L脯氨酸,0.5 g/L酪蛋白,10 g/L葡萄糖,20 g/L蔗糖,2 mg/L 2,4-D,10 mg/L硝酸银,3 g/L植物凝胶)中,28 ℃暗培养1周后,及时切除幼芽。每两周继代一次,继代2至3次。此时部分幼胚形成愈伤,生长状况较好。将诱导的愈伤分为3种类型,Ⅰ型(愈伤生长良好)、Ⅱ型(无愈伤生成)、Ⅲ型(部分愈伤生成)。取Ⅰ型、Ⅱ型愈伤进行后续试验。
分别取30个I型和II型愈伤进行混池,共3个生物学重复,使用天根生化科技有限公司的植物总RNA提取试剂盒(DP452)提取愈伤组织总RNA。利用1%琼脂糖凝胶电泳和NanoDrop 2000c型分光光度计检测检测RNA的质量及浓度。RNA高通量测序由安诺优达基因科技(北京)有限公司建库及测序。测序平台为Illumina NovaSeq 6000,测序数据量为6 G。
对原始数据进行处理,过滤低质量Reads,去除接头污染的Reads以及含N(高未知碱基)比例大于5%的Reads。使用HISAT2(转录本拼接比对的分层索引)将Clean reads比对到参考基因组B73 RefGen_v4(B73 RefGen_v4-Genome-Assembly-NCBI)。利用DESeq2进行基因差异表达分析,通过FPKM(Fragments per kilobase per million mapped fragments)
为了了解差异表达基因(DEGs, differentially expressed genes)的生物学功能,本研究对差异显著基因进行了Gene Ontology(GO)富集分析和KEGG分析,应用超几何检验进行富集分析,通过计算得到p-value值,通过校正之后,以FDR<0.05为阈值,找出差异表达基因中显著性富集的GO条目和代谢通路,从而确定差异表达基因的生物学功能。
为验证转录组测序的可信性,随机选取10个差异显著基因进行验证,GADPH(Zm00001d049641)作为内源基因对照。使用Primer 3.0设计引物,引物列表见
引物名称 Primer name | 正向引物(5'-3') Forward primer (5'-3') | 反向引物(5'-3') Reverse primer (5'-3') |
---|---|---|
Zm00001d028195 | GACTACCGATGAACCCGAGT | TTCCTGTTGCCTCTCCCATT |
Zm00001d020627 | GACCTCAACTACCCGTCCTT | CTTGCCGGCTTGACTCTAAC |
Zm00001d035323 | CCAATTGCCCGGTCAAGAAA | CCTGATCTCTCTTGGCAGCT |
Zm00001d020623 | GCCGCTTTCTACCAGTACCT | GCGGGATGATGGAGGAGG |
Zm00001d020622 | CTGGGTTGGTTTGTGGACTG | CATCATGACCACCACCGTTC |
Zm00001d020620 | GCAGGGAAGAAAAGGAGCAC | AGGCACTCGTCGATCTCTTT |
Zm00001d020618 | GTCATCTATCGCCCATCCCA | GCGTTGCGATCAGATCACTT |
Zm00001d020617 | CTCTCCGATATGCTGCCTGA | CACTGGAGTCTTGGATGGGT |
Zm00001d020615 | ATACACGGCCAAGACCTGAA | GCAGTCGTACGTGTGAAGAG |
Zm00001d020614 | AGCTGACCATCTTCTACGGC | ACTGTCGTGTGAAGGCCTAG |
GAPDH | CCCTTCATCACCACGGACTAC | AACCTTCTTGGCACCACCCT |
自交系CAL28与郑58的幼胚愈伤发生能力具有明显差异,CAL28×郑58的F3幼胚诱导愈伤生成3种不同的表型,Ⅰ型(愈伤生长良好)、Ⅱ型(无愈伤生成)、Ⅲ型(部分愈伤生成)。本研究共取5000个玉米幼胚,在NB培养基上诱导愈伤组织形成。在诱导过程中,249个胚发生污染,形成的Ⅰ型、Ⅱ型愈伤数量分别为720和600个,Ⅲ型愈伤数量为3351个(

图1 CAL28×郑58 F3幼胚愈伤发生类型
Fig.1 Callus formation of CAL28×Zheng58 F3 embryos
玉米幼胚在NB培养基中诱导愈伤生成;A:Ⅰ型愈伤;B:Ⅱ型愈伤;C:Ⅲ型愈伤;D:不同类型愈伤组织数量
Callus was induced from maize embryos cultured on NB medium; A: Type Ⅰ callus; B: Type Ⅱ callus; C: Type Ⅲ callus; D: Numbers of different types of callus
选取I型和II型愈伤,利用Illumina NovaSeq 6000进行转录组测序。测序共获得52.0 G数据量,Clean reads数量在41,308,494~80,526,076之间。Q30反应测序的碱基质量水平,6个样品的Q30平均为95.09%,表明测序质量良好。HISAT2将Clean reads比对到参考基因组B73 RefGen_v4,其比对率均大于80%以上(
样品 Sample | 原始序列数Raw reads | 过滤后序列数 Clean reads | 比对序列数 Mapped reads | 未比对序列数 Unmapped reads | 过滤Q30百分比(%) Clean Q30 bases rate | 基因总数 Total gene number |
---|---|---|---|---|---|---|
I-1 | 43,892,928 | 41,308,494 | 37,512,326 | 3,796,168 | 95.10 | 29,467 |
I-2 | 51,276,054 | 47,596,956 | 40,316,465 | 7,280,491 | 94.87 | 29,091 |
I-3 | 48,142,508 | 45,440,942 | 41,309,275 | 4,131,667 | 94.45 | 29,232 |
II-1 | 47,081,186 | 44,782,888 | 39,157,345 | 5,625,543 | 94.92 | 29,391 |
II-2 | 86,039,832 | 80,526,076 | 72,712,609 | 7,813,467 | 95.37 | 30,231 |
II-3 | 70,264,984 | 64,305,656 | 57,970,103 | 6,335,553 | 95.09 | 30,012 |
I-1、I-2、I-3代表I型愈伤的3个生物学重复;II-1、II-2、II-3代表II型愈伤的3个生物学重复
I-1,I-2,I-3 indicate the three biological repeats of type I calli; II-1,II-2,II-3 indicate the three biological repeats of type II calli
为了研究影响玉米愈伤形成基因的表达情况,利用FPKM计算基因的表达量,对Ⅰ型、Ⅱ型愈伤中转录本表达进行分析,转录本表达量小于0.01视为不表达。共有28,661个转录本表达,其中在I型愈伤中有912个基因特异性表达,II型愈伤中共有1600个基因特异性表达(

图2 愈伤中的转录本分析
Fig.2 Analysis of the transcripts in the calli
A:转录本数目韦恩图; 数字表示Ⅰ型和Ⅱ型愈伤中特异转录本数量;B:差异表达基因火山图
A: Venn diagram of unigene numbers; Numbers indicate the specific transcript numbers in type I and II callus tissue; B: Volcano map of DEGs
为了验证转录组测序的可靠性,随机选取10个参与不同生物学过程的差异显著基因进行qRT-PCR。检测在不同愈伤组织中基因的表达量,以Ⅰ型中基因的表达量为1,统计II型愈伤中各基因的相对表达,使用EXCEL软件分析RNA-seq的结果与qRT-PCR结果,结果表明

图3 差异显著基因的RAN-seq和qRT-PCR结果相关性分析
Fig.3 Correlation analysis of the expression changes of ten DEGs as revealed by RNA-seq and qRT-PCR
散点表示基因相对表达量的 log2 转化值
Scatter plots indicate the log2 transformed gene expression values
基于注释基因库,将鉴定到的差异显著基因进行GO富集分析,发现生物过程中GO富集到的差异显著基因主要参与细胞过程(Cellular process)和代谢过程(Metabolic process)等。分子功能中GO富集到的差异显著基因主要参与催化活性(Catalytic activity),结合(Binding)等。在细胞组分中GO富集到的差异显著基因主要参与细胞组分(Cell part),细胞器合成(Organelle)等途径(

图4 差异显著基因的GO富集分析
Fig.4 Gene Ontology enrichment analysis of DEGs
为了挖掘影响玉米愈伤发生的候选基因,通过KEGG方法分析差异表达基因参与的生化代谢途径,以明确差异显著基因在愈伤形成过程中的功能。差异显著基因主要富集在植物激素信号转导(Plant hormone signal transduction)、苯丙烷类生物合成(Phenylpropanoid biosynthesis)、异黄酮生物合成(Isoflavonoid biosynthesis)、牛磺酸和次牛磺酸代谢(Taurine and hypotaurine metabolism)及类胡萝卜素生物合成(Carotenoid biosynthesis)等5个代谢通路中,表明这些代谢通路可能是调控玉米愈伤形成的重要代谢途径(

图5 差异显著基因的KEGG富集分析
Fig.5 Enriched KEGG pathways of DEGs
仅列出前10个显著富集的 KEGG pathway
Only top ten most enriched KEGG pathways are listed
植物激素信号转导途径是差异显著基因富集数最多的途径,植物激素在植物体细胞胚诱导中发挥重要作用。在本研究中,共有87个差异显著基因参与植物激素信号转导途径,其中27个基因发生上调,60个基因发生下调,表明玉米愈伤发生与植物激素信号转导的关系密不可分。15个基因被注释为茉莉酸ZIM结构域蛋白(JAZ),1个呈上调表达,14个呈下调表达,其中ZIM29(Zm00001d014249)表达量上调4.50倍。11个基因注释为生长素响应蛋白(Aux/IAA),8个上调表达,3个呈下调表达,其中IAA23(Zm00001d016277)、IAA33(Zm00001d021279)和IAA41(Zm00001d045203)表达量分别上调7.53、23.75和7.73倍。9个基因被注释为SAUR生长素响应家族,均下调表达。4个基因为生长素响应基因GH3家族,均上调表达,其中Zm00001d010697表达量上调25.66倍。
苯丙烷类生物合成途径是差异显著基因富集程度最高的代谢通路,表明该调控途径对玉米胚性愈伤组织形成具有重要作用。有研究表明,苯丙类的生物合成会加速愈伤褐化,对愈伤生长和再次分化具有负向调节作
差异显著基因中共有2968个转录因子,隶属56个转录因子家族,其中1093个上调,1875个下调。包括310个bHLH(Basic helix-loop-helix)转录因子、193个WRKY转录因子、163个ERF(Ethylene responsive factor)、152个NAC(NAM、ATAF1/2、CUC1/2 NAC)、123个MYB(v-myb avian myeloblastosis viral oncogene homolog)和46个ARF转录因子等(

图6 差异表达转录因子分析
Fig.6 Analysis of the differentially expressed transcription factors
A:转录因子家族种类和数量; B:转录因子上下调表达的比例
A: Pie chart showing the type and number of transcription factors; B: Up-down ratio of transcription factors
基因编号Gene ID | 基因注释Gene annotation | 基因表达量(平均) Gene expression (average) | 上调/下调Up/Down | |
---|---|---|---|---|
Ⅰ | Ⅱ | |||
Zm00001d031796 | ZmEREB172 | 0 | 82.00 | 下调 |
Zm00001d002025 | ZmEREB24 | 149.47 | 65.05 | 上调 |
Zm00001d042492 | ZmEREB53(ZmBBM2) | 12.02 | 1.33 | 上调 |
Zm00001d034204 | ZmEREB184 | 4.00 | 0.41 | 上调 |
Zm00001d017207 | ZmEREB206 (ZmBBM) | 54.30 | 6.64 | 上调 |
Zm00001d027678 | ZmLBD1 | 6.89 | 2.87 | 上调 |
Zm00001d028721 | ZmLBD4 | 7.76 | 2.37 | 上调 |
Zm00001d033335 | ZmLBD10 | 3.46 | 0.54 | 上调 |
Zm00001d043036 | ZmLBD20 | 6.82 | 1.82 | 上调 |
Zm00001d051891 | ZmLBD24 | 11.16 | 1.81 | 上调 |
Zm00001d038013 | ZmLBD31 | 8.58 | 0.77 | 上调 |
Zm00001d038197 | ZmLBD32 | 2.95 | 0.49 | 上调 |
Zm00001d047921 | ZmLBD42 | 7.76 | 2.37 | 上调 |
Zm00001d029506 | ZmLBD5 | 22.44 | 153.82 | 下调 |
Zm00001d038717 | ZmLBD33 | 10.34 | 251.78 | 下调 |
Zm00001d010751 | ZmLBD38 | 4.64 | 129.69 | 下调 |
Zm00001d047752 | ZmLBD41 | 1.78 | 3.37 | 下调 |
Zm00001d047559 | ZmWOX11 | 1.80 | 4.03 | 下调 |
Zm00001d042821 | ZmWOX5b | 7.86 | 1.43 | 上调 |
Zm00001d043937 | ZmWOX9b | 2.67 | 0.53 | 上调 |
玉米转基因育种的困难之一是受体材料形成愈伤的能
植物激素信号转导途径在愈伤组织形成中起着重要的调控作用,研究表明植物胚性细胞的发生受植物生长素、细胞分裂素、茉莉酸等激素信号共同调
愈伤组织的褐化是组织培养体系中最大的阻碍,可能与POP(脯氨酰寡肽酶)和POD(过氧化物酶)酶活性相
AP2、WOX、LBD等转录因子家族与愈伤的发生相关,在不添加外源激素的条件下,过表达AP2转录因子家族基因ESR1(Enhanced shoot regeneration 1)或ESR2,能够提高其对细胞分裂素的响应能力,从而诱导愈伤组织的形
本研究对Ⅰ型(愈伤生长良好)和Ⅱ型(无愈伤生成)愈伤组织进行RNA-Seq分析,筛选出差异表达基因4419个,其中上调表达基因1571个,下调表达基因2848个。通过功能注释和富集分析发现,差异基因主要参与植物激素信号转导、苯丙烷的生物合成等代谢通路。发现转录因子在愈伤诱导的过程中起着重要的调控作用,共有2968个转录因子参与愈伤组织发生的调控过程,其中AP2、WOX和LBD转录因子家族显著富集,可能在玉米愈伤发生中发挥关键作用。
参考文献
Tomes D T,Smith O S. The effect of parental genotype on initiation of embryogenic callus from elite maize (Zea mays L.) germplasm. Theoretical and Applied Genetics, 1985, 70(5): 505-509 [百度学术]
Iwase A, Mita K, Nonaka S, Ikeuchi M, Koizuka C, Ohnuma M, Ezura H, Imamura J, Sugimoto K. WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed. Journal of Plant Research, 2015, 128(3): 389-397 [百度学术]
Ishida Y, Hiei Y,Komari T. Agrobacterium-mediated transformation of maize. Nature Protocols, 2007, 2(7): 1614-1621 [百度学术]
朱晋云,许玉娟,杨丽萍,亢秀丽,孙毅,杜建忠.小麦组织培养再生系统及农杆菌介导的转基因技术研究.植物遗传资源学报,2008(1):84-89 [百度学术]
Zhu J Y, Xu Y J, Yang L P, Kang X L, Sun Y, Du J Z. Research on wheat tissue culture regeneration system and agrobacterium-mediated transgenic technology. Journal of Plant Genetic Resources, 2008, 9(1): 84-89 [百度学术]
张红伟,张红梅,郑祖平,刘汉梅,刘亚娟,谭振波,陈刚.不同杂种优势类群玉米幼胚愈伤组织的诱导及植株再生特性的评价.植物遗传资源学报,2004,5(2):117-122 [百度学术]
Zhang H W, Zhang H M, Zheng Z P, Liu H M, Liu Y J, Tan Z B, Chen G. Induction of callus and evaluation of plant regeneration characteristics of maize young embryo in different heterogeneous dominant taxa. Journal of Plant Genetic Resources, 2004, 5(2): 117-122 [百度学术]
贾华岚,杜丽璞,胡琳.河南省新育成8个小麦品种(系)幼胚培养再生性能评价.植物遗传资源学报,2017,18(4):728-733 [百度学术]
Jia H L, Du L P, Hu L. Evaluation of regenerative performance of young embryo culture of 8 newly bred wheat varieties (lines) in Henan province. Journal of Plant Genetic Resources, 2017, 18(4): 728-733 [百度学术]
Lowe K, La Rota M, Hoerster G, Hastings C, Wang N, Chamberlin M, Wu E, Jones T,Gordon-Kamm W. Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cellular & Developmental Biology-Plant, 2018, 54(3): 240-252 [百度学术]
Ma L, Liu M, Yan Y, Qing C, Zhang X, Zhang Y, Long Y, Wang L, Pan L, Zou C, Li Z, Wang Y, Peng H, Pan G, Jiang Z,Shen Y. Genetic dissection of maize embryonic callus regenerative capacity using multi-locus genome-wide association studies. Frontiers in Plant Science, 2018, 9: 561 [百度学术]
Fan M, Xu C, Xu K,Hu Y. LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Research , 2012, 22(7): 1169-1180 [百度学术]
刘同金,张晓雪,张晓辉,王海平,邱杨,宋江萍,李锡香.萝卜全基因组中LBD基因家族成员的鉴定与分析.植物遗传资源学报,2019,20(1):168-178 [百度学术]
Liu T J, Zhang X X, Zhang X H, Wang H P, Qiu Y, Song J P, Li X X. Identification and analysis of LBD gene family members in radish whole genome. Journal of Plant Genetic Resources, 2019, 20(1): 168-178 [百度学术]
孙亭亭,龚达平,张磊,陈雅琼,赵维,向小华,孙玉合.普通烟草LBD基因家族的全基因组序列鉴定与表达分析.植物遗传资源学报,2016,17(2):316-325 [百度学术]
Sun T T, Gong D P, Zhang L, Chen Y Q, Zhao W, Xiang X H, Sun Y H. Genome-wide sequence identification and expression analysis of LBD gene family of common tobacco. Journal of Plant Genetic Resources, 2016, 17(2): 316-325 [百度学术]
Lee K, Park O S,Seo P J. JMJ30-mediated demethylation of H3K9me3 drives tissue identity changes to promote callus formation in Arabidopsis. Plant Journal, 2018, 95(6): 961-975 [百度学术]
Schoof H, Lenhard M, Haecker A, Mayer K F, Jürgens G, Laux T. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 2000, 100(6): 635-644 [百度学术]
Chatfield S P, Capron R, Severino A, Penttila P A, Alfred S, Nahal H, Provart N J. Incipient stem cell niche conversion in tissue culture: Using a systems approach to probe early events in WUSCHEL-dependent conversion of lateral root primordia into shoot meristems. Plant Journal, 2013, 73(5): 798-813 [百度学术]
Hecht V, Vielle-Calzada J P, Hartog M V, Schmidt E D, Boutilier K, Grossniklaus U,de Vries S C. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiology, 2001, 127(3): 803-816 [百度学术]
Sarkar A K, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K, Scheres B, Heidstra R,Laux T. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature, 2007, 446(7137): 811-814 [百度学术]
Sakai H, Honma T, Aoyama T, Sato S, Kato T, Tabata S,Oka A. ARR1, a transcription factor for genes immediately responsive to cytokinins. Science, 2001, 294(5546): 1519-1521 [百度学术]
Liu Z, Li J, Wang L, Li Q, Lu Q, Yu Y, Li S, Bai M Y, Hu Y,Xiang F. Repression of callus initiation by the miRNA-directed interaction of auxin-cytokinin in Arabidopsis thaliana. Plant Journal, 2016, 87(4): 391-402 [百度学术]
Tajima Y, Imamura A, Kiba T, Amano Y, Yamashino T,Mizuno T. Comparative studies on the type-B response regulators revealing their distinctive properties in the His-to-Asp phosphorelay signal transduction of Arabidopsis thaliana. Plant Cell Physiology, 2004, 45(1): 28-39 [百度学术]
Armstrong C L, Romero-Severson J,Hodges T K. Improved tissue culture response of an elite maize inbred through backcross breeding, and identification of chromosomal regions important for regeneration by RFLP analysis. Theoretical Applied Genetics, 1992, 84(5-6): 755-762 [百度学术]
Krakowsky M D, Lee M, Garay L, Woodman-Clikeman W, Long M J, Sharopova N, Frame B,Wang K. Quantitative trait loci for callus initiation and totipotency in maize (Zea mays L.). Theoretical Applied Genetics, 2006, 113(5): 821-830 [百度学术]
张红伟, 刘亚娟, 郭晓琳, 张峰, 李建生, 谭振波,陈刚.玉米幼胚愈伤组织的诱导和植株再生的QTL分析. 作物学报, 2006, 32: 385-389 [百度学术]
Zhang H W, Liu Y J, Guo X L, Zhang F, Li J S, Tan Z B, Chen G. QTL Mapping for callus induction and plant regeneration in maize immature embryos. Acta Agronomica Sinica, 2006, 32: 385-389 [百度学术]
Salvo S, Cook J, Carlson A R, Hirsch C N, Kaeppler M,Kaeppler H F. Genetic fine-mapping of a Quantitative Trait Locus (QTL) associated with embryogenic tissue culture response and plant regeneration ability in maize (Zea mays L.). Plant Genome, 2018, 11(2): 170111 [百度学术]
郭栋,杜媚,周宝元,刘颖慧,赵明.玉米SAUR基因家族的鉴定与生物信息学分析.植物遗传资源学报,2019,20(1):90-99 [百度学术]
Guo D, Du M, Zhou B Y, Liu Y H, Zhao M. Identification and bioinformatics analysis of maize saur gene family. Journal of Plant Genetic Resources, 2019,20(1):90-99 [百度学术]
Wang Y, He S, Long Y, Zhang X, Zhang X, Hu H, Li Z, Hou F, Ge F, Gao S, Pan G, Ma L,Shen Y. Genetic variations in ZmSAUR15 contribute to the formation of immature embryo-derived embryonic calluses in maize. Plant Journal, 2022, 109(4): 980-991 [百度学术]
Guttman M, Garber M, Levin J Z, Donaghey J, Robinson J, Adiconis X, Fan L, Koziol M J, Gnirke A,Nusbaum C. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nature Biotechnology, 2010, 28(5): 503-510 [百度学术]
Dixon R A,Paiva N L. Stress-induced phenylpropanoid metabolism. Plant Cell, 1995, 7(7): 1085-1097 [百度学术]
Yadava P, Abhishek A, Singh R, Singh I, Kaul T, Pattanayak A,Agrawal P K. Advances in maize transformation technologies and development of transgenic maize. Frontiers in Plant Science, 2016, 7: 1949 [百度学术]
Ikeuchi M, Sugimoto K,Iwase A. Plant callus: Mechanisms of induction and repression. Plant Cell, 2013, 25(9): 3159-3173 [百度学术]
Lee B H, Johnston R, Yang Y, Gallavotti A, Kojima M, Travençolo B A, Costa Lda F, Sakakibara H,Jackson D. Studies of aberrant phyllotaxy1 mutants of maize indicate complex interactions between auxin and cytokinin signaling in the shoot apical meristem. Plant Physiology, 2009, 150(1): 205-216 [百度学术]
Sang Y L, Cheng Z J,Zhang X S. Plant stem cells and de novo organogenesis. New Phytologist , 2018, 218(4): 1334-1339 [百度学术]
Zhang G, Zhao F, Chen L, Pan Y, Sun L, Bao N, Zhang T, Cui C X, Qiu Z, Zhang Y, Yang L,Xu L. Jasmonate-mediated wound signalling promotes plant regeneration. Nature Plants , 2019, 5(5): 491-497 [百度学术]
Haddon L,Northcote D H. Correlation of the induction of various enzymes concerned with phenylpropanoid and lignin synthesis during differentiation of bean callus (Phaseolus vulgaris L.). Planta, 1976, 128(3): 255-262 [百度学术]
Yari Khosroushahi A, Naderi-Manesh H,Toft Simonsen H. Effect of antioxidants and carbohydrates in callus cultures of taxus brevifolia: Evaluation of browning, callus growth, total phenolics and paclitaxel production. Bioimpacts, 2011, 1(1): 37-45 [百度学术]
He Y, Guo X, Lu R, Niu B, Pasapula V, Hou P, Cai F, Xu Y,Chen F. Changes in morphology and biochemical indices in browning callus derived from Jatropha curcas hypocotyls. Plant Cell Tissue and Organ Culture, 2009, 98(1): 11-17 [百度学术]
Laukkanen H, Rautiainen L, Taulavuori E,Hohtola A. Changes in cellular structures and enzymatic activities during browning of Scots pine callus derived from mature buds. Tree Physiology, 2000, 20(7): 467-475 [百度学术]
Wang X, Yang Z, Wang M, Meng L, Jiang Y,Han Y. The BRANCHING ENZYME1 gene, encoding a glycoside hydrolase family 13 protein, is required for in vitro plant regeneration in Arabidopsis. Plant Cell Tissue and Organ Culture, 2014, 117(2): 279-291 [百度学术]
Banno H, Ikeda Y, Niu Q W,Chua N H. Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell, 2001, 13(12): 2609-2618 [百度学术]
Du X, Fang T, Liu Y, Huang L, Zang M, Wang G, Liu Y,Fu J. Transcriptome profiling predicts new genes to promote maize callus formation and transformation. Frontiers in Plant Science , 2019, 10: 1633 [百度学术]
Sugimoto K, Temman H, Kadokura S,Matsunaga S. To regenerate or not to regenerate: Factors that drive plant regeneration. Current Opinion in Plant Biology, 2019, 47: 138-150 [百度学术]
Hu B, Zhang G, Liu W, Shi J, Wang H, Qi M, Li J, Qin P, Ruan Y, Huang H, Zhang Y,Xu L. Divergent regeneration-competent cells adopt a common mechanism for callus initiation in angiosperms. Regeneration (Oxf), 2017, 4(3): 132-139 [百度学术]
Xu C, Cao H, Xu E, Zhang S,Hu Y. Genome-Wide identification of Arabidopsis LBD29 target genes reveals the molecular events behind Auxin-induced cell reprogramming during callus formation. Plant Cell Physiology , 2018, 59(4): 744-755 [百度学术]