摘要
C2H2锌指蛋白转录因子在植物生长发育、胁迫响应和次生代谢合成调控等方面发挥重要作用。前期研究发现金荞麦根部类黄酮含量高于苦荞麦可能是由于FdCHI, FdF3H, FdDFR等与类黄酮生物合成相关的基因家族被扩增。然而,参与类黄酮生物合成的C2H2锌指蛋白转录因子家族基因在金荞麦中如何调控芦丁合成尚未见报道。本研究对金荞麦FdC2H2-ZFP转录因子进行了全基因组鉴定和表达谱分析。共鉴定出114个FdC2H2-ZFPs。在对RNA-Seq数据分析基础上,筛选并克隆C2H2锌指蛋白基因FdC2H2-2。该基因具有3个典型的C2H2锌指结构,与拟南芥AtTREE1、AtDAZ3同源性较高。qRT-PCR显示FdC2H2-2基因的表达显著受茉莉酸诱导。此外,过表达FdC2H2-2毛状根中芦丁含量显著高于对照,且其芦丁合成途径中关键酶基因黄酮醇合成酶(FLS)、苯丙氨酸解氨酶(PAL)与类黄酮3',5'-羟化酶(F3'5'H)表达量显著提高。以上结果表明,金荞麦FdC2H2-2基因可能通过激活芦丁生物合成关键酶基因FLS、PAL以及F3'5'H的表达,从而正向调控芦丁的积累。本研究为今后解析金荞麦C2H2锌指蛋白基因的功能提供参考。
锌指蛋白是植物中最大的转录因子家族之一,根据其保守的Cys和His基序的数量和位置可分为9个亚家族,分别为C2H2、C3H、C3HC4、C2HC5、C4HC3、C2HC、C4、C6和C
金荞麦(Fagopyrum dibotrys)是蓼科荞麦属多年生草本植物,含有大量的类黄酮,特别是黄酮醇(如芦丁),因其具有丰富的药理活性和营养价值倍受人们瞩目。目前,在许多植物中已鉴定出大量参与类黄酮生物合成途径的酶基因,如C4H、CHS、CHI、F3H、F3'H和F3'5'H以及PAL、FLS、DFR、LAR、ANS、ANR和UFGT
本研究对金荞麦和苦荞麦C2H2-ZFP转录因子家族进行了全基因组鉴定,并进行系统发育分析、染色体分布和全基因组复制等综合分析。此外,通过比较金荞麦FdC2H2-ZFPs在不同组织中的表达模式,克隆了1个只在金荞麦花中显著高表达的C2H2锌指蛋白基因FdC2H2-2(Fd07G003220),对其进行生物信息学分析,利用qRT-PCR分析该基因在茉莉酸处理下的表达模式。为探索该基因在类黄酮代生物合成中的功能,通过农杆菌介导法诱导转基因毛状根,并采用HPLC法检测过表达FdC2H2-2基因毛状根的芦丁含量,同时检测芦丁合成途径中C4H、F3H、PAL、FLS和F3'5'H 5个关键酶基因的表达,以期为今后探究金荞麦C2H2-ZFP基因功能和植物生理作用机制提供参考。
螺髻山金荞麦种子、双元载体pCAMBIA1302、大肠杆菌DH5α感受态和发根农杆菌A4感受态菌种均由中国农业科学院作物科学研究所荞麦基因资源创新研究组保存。T载体试剂盒购于北京艾德莱生物科技有限公司。
根据iTAK软件对金荞麦和苦荞麦基因组转录因子的预测结果,提取C2H2-ZFP家族基因,通过SMART(http://smart.embl-heidelberg.de/)网站对所有蛋白序列进行保守结构域验证。利用MEGA11软件中的Clustal W工具对114个金荞麦、45个拟南芥和93个苦荞麦的C2H2-ZFPs氨基酸序列进行多序列比对,并利用邻接法(NJ,neighbour-joining)构建系统发育树,设置1000次重复(Bootstrap:1000)。最后应用iTOL在线软件进行美化。
使用SMART和InterPro(https://www.ebi.ac.uk/interpro/)网站对金荞麦FdC2H2-ZFP基因家族成员的保守结构域进行分析。通过MEME (http://meme-suite.org/tools/meme)网站进行保守基序(Motif)分析,将识别的Motif数量设置为10。利用TBtools可视化外显子/内含子结构,并绘制基因结构及保守基序组图。
根据金荞麦FdC2H2-ZFP家族基因的位置信息,以及FdC2H2-ZFP基因的拷贝数和基因组分布,使用TBtools可视化基因染色体分布和全基因组复制事件并计算非同义替换率Ka、同义替换率Ks及其比值。
利用金荞麦不同组织(根、地下膨大茎、茎、老叶、幼叶、花)转录组数
使用RNA提取试剂盒和反转录试剂盒(南京诺唯赞生物科技股份有限公司,南京)提取金荞麦RNA并进行反转录。以反转录得到的cDNA为模板,利用基因特异性引物进行PCR扩增(
引物名称 Primer name | 正向引物序列(5′→3′) Forward primer sequence (5′→3′) | 反向引物序列(5′→3′) Reverse primer sequence (5′→3′) | 用途 Function |
---|---|---|---|
C2H2-2-T | ATGGATGAACCTCACAGCTCG | CTAACATGGCGTCACTGCCA | 基因克隆 |
C2H2-2-1302 | ACGGGGGACTCTTGACCATGGATGGATGAACCTCACAGCTCGG | AAGTTCTTCTCCTTTACTAGTCTAACATGGCGTCACTGCCA | 过表达载体构建 |
Actin | GAGTTATGAGCTTCCTGATG | CCGCCACTCAACACAATGTT | qRT-PCR内参 |
C2H2-2-Q | CTCATGTGGCTATCCGGTGG | CCGACCCGTTCTTGGGTATG | qRT-PCR |
C4H-Q | GCGAAGAAGTACGGCGAGAT | CCGACGCATCTTTCTCCAGT | |
PAL-Q | AGGGTGGTGCTCTCCAAATG | GGCGATGTAGGAGAGAGGGA | |
F3H-Q | GACCAGGTGGACGGAAAGAG | CACGATGAATCCGCCCTTCT | |
FLS-Q | CACGGTGCTTCTTCAGGACT | CTGGATGCGGACAACACAAC | |
F3'5'H-Q | CGAAGCTACTTACGGCGGAT | CGTCACCACGTTCATTGCTG |
选取饱满的螺髻山金荞麦种子,浸泡20 min后,剥去种皮,用1%次氯酸钠溶液消毒20 min;无菌水清洗多次,用滤纸吸干水分后种于普通MS培养基中。于温度23 ℃、光周期16 h/8 h、湿度75%~80%的条件下培养。取3株大小一致、生长健壮的14 d苗龄无菌苗置于液体MS培养基中,室温震荡(120 r/min)黑暗预培养24 h。用50 µmol/L茉莉酸甲酯(MeJA)分别处理0、1、4、12 h后取样,以二甲基亚砜(DMSO)处理组为对照,其他条件均保持一致。吸干样品水分,液氮速冻后存于-80 ℃冰箱,RNA提取方法同1.2.5。
以金荞麦Actin作为内参基因,根据金荞麦FdC2H2-2序列设计荧光定量引物(
根据FdC2H2-2基因序列和过表达载体pCAMBIA1302图谱设计引物pCAMBIA1302-FdC2H2-2-F/R(
本研究分别从金荞麦和苦荞麦中鉴定出114个、93个C2H2-ZFPs。为进一步明确金荞麦、苦荞麦和拟南芥C2H2-ZFP转录因子间的进化关系,构建了系统进化树。根据拟南芥C2H2-ZFPs基因家族的分类,金荞麦、苦荞麦C2H2-ZFPs家族基因可聚为5个亚组,按照从Ⅰ到Ⅴ的顺序进行分类(

图1 拟南芥、苦荞和金荞之间C2H2-ZFP的系统发育树
Fig.1 Phylogenetic tree of C2H2-ZFP among Arabidopsis thaliana, Tartary Buckwheat and Golden buckwheat
At:拟南芥;Ft:苦荞麦;Fd:金荞麦;下同;外圈不同标签代表不同拟南芥C2H2-ZFPs基因亚家族名称
At: Arabidopsis; Ft: Tartary buckwheat; Fd: Golden buckwheat; The same as below; Different tags in the outer ring represent different Arabidopsis C2H2-ZFPs gene subfamily names
利用MEGA11软件构建金荞麦FdC2H2-ZFPs系统发育树,以明确金荞麦FdC2H2-ZFPs基因间的进化关系,结果如

图2 FdC2H2-ZFP基因的结构和基序组成
Fig.2 Gene structures and motif compositions of FdC2H2-ZFP genes
A:FdC2H2-ZFPs的系统进化分析;B:FdC2H2-ZFPs的保守基序组成;C:FdC2H2-ZFPs的外显子/内含子结构
A: Phylogenetic analysis of FdC2H2-ZFPs ; B: Conservative motif composition of FdC2H2-ZFPs; C: Exon/intron structure of FdC2H2-ZFPs
根据金荞麦基因组数据和染色体注释,发现114个FdC2H2-ZFPs随机分布在金荞麦8条染色体上(

图3 FdC2H2-ZFPs的染色体分布和基因复制事件
Fig.3 Chromosome distribution and gene replication events in FdC2H2-ZFPs
A:FdC2H2-ZFPs的染色体分布;B:金荞麦FdC2H2-ZFPs共线性分析
A: Chromosome distribution of FdC2H2-ZFPs; B: Collinearity analysis of FdC2H2-ZFPs in golden buckwheat
为了进一步评估基因复制事件的选择压力,本研究计算了非同义替换率(Ka)、同义替换率(Ks)和Ka/Ks值。结果显示,金荞麦FdC2H2-ZFPs共有24对FdC2H2-ZFP基因被证实为片段重复(
编号 Number | 基因1 Gene 1 | 基因2 Gene 2 | 非同义替换率 Ka | 同义替换率 Ks | 非同义替换率 / 同义替换率 Ka/Ks |
---|---|---|---|---|---|
1 | Fd01G004630 | Fd01G037840 | 0.275133779 | 0.983226634 | 0.279827427 |
2 | Fd01G004630 | Fd06G003320 | 0.322453092 | 0.831799009 | 0.387657461 |
3 | Fd01G006380 | Fd06G002360 | 0.159733064 | 0 | / |
4 | Fd01G037840 | Fd06G003320 | 0.451736074 | 1.585382226 | 0.284938273 |
5 | Fd02G031200 | Fd02G046130 | 0.190653453 | 1.392645964 | 0.136900158 |
6 | Fd02G029560 | Fd02G042460 | 0.154055514 | 1.727878937 | 0.089158743 |
7 | Fd02G032840 | Fd02G048180 | 0.498155349 | 0.802441347 | 0.620799702 |
8 | Fd02G033010 | Fd02G048120 | 0.268108068 | 0.952888503 | 0.281363525 |
9 | Fd02G010850 | Fd02G017580 | 0.088415159 | 1.278635257 | 0.069148069 |
10 | Fd02G048120 | Fd04G045640 | 0.342715559 | 1.559188794 | 0.219803759 |
11 | Fd02G048120 | Fd08G039460 | 0.307626972 | 2.227041224 | 0.13813259 |
12 | Fd02G010850 | Fd08G019890 | 0.086824343 | 0.802997949 | 0.108125236 |
13 | Fd02G052140 | Fd08G022020 | 0.182895163 | 1.653298657 | 0.110624395 |
14 | Fd02G017580 | Fd08G019890 | 0.168990641 | 0.776958719 | 0.217502729 |
15 | Fd04G004510 | Fd05G013400 | 0.551763098 | 2.007042713 | 0.274913481 |
16 | Fd04G008780 | Fd06G003320 | 0.507432713 | 1.347630862 | 0.376536875 |
17 | Fd04G002130 | Fd08G022020 | 0.265917924 | 1.739031335 | 0.15291152 |
18 | Fd04G001880 | Fd08G021270 | 0.302859215 | 0.860288308 | 0.352043859 |
19 | Fd05G005020 | Fd05G044310 | 0.242930067 | 1.433879038 | 0.169421591 |
20 | Fd05G045500 | Fd07G035260 | 0.157575369 | 0.703821884 | 0.223885293 |
21 | Fd05G044010 | Fd07G029490 | 0.234869659 | 1.429027963 | 0.164356237 |
22 | Fd05G049060 | Fd07G022940 | 0.193082342 | 0.959745578 | 0.201180757 |
23 | Fd05G040350 | Fd08G011390 | 0.663973651 | 0 | / |
24 | Fd06G028970 | Fd08G011990 | 0.191389144 | 1.144208133 | 0.167267771 |
/表示因同义替换率为零,不计算非同义替换率/同义替换率
/ indicates that the non-synonymous replacement rate/synonymous replacement rate is not calculated because the synonymous replacement rate is zero
在金荞麦不同组织转录组数据中共检测到104个FdC2H2-ZFPs,利用TBtools可视化这些基因的表达模式。结果发现104个FdC2H2-ZFPs聚为6个分支。其中,A亚组共包含17个基因,且在6个组织中的表达谱各不相同。B亚组包括14个基因,在地下膨大茎和根中均有高表达。此外,C、D、E和F亚群分别在茎、花、老叶和根组织中表达量较高。FdC2H2-2(Fd07G003220)只在金荞麦的花中特异性表达,推测该基因可能参与调控花的生长发育(

图4 FdC2H2-ZFP在不同组织中的表达谱
Fig.4 Expression profile of FdC2H2-ZFP in different tissues
红色和浅蓝色分别表示基因表达水平高和低
Red and light blue indicate high and low gene expression levels, respectively
为探究FdC2H2-ZFPs在类黄酮生物合成途径中的功能,筛选并克隆了FdC2H2-2基因,该基因全长1056 bp,PCR扩增结果见

图5 金荞麦FdC2H2-2基因的克隆与序列分析
Fig.5 Cloning and sequence analysis of FdC2H2-2 gene in golden buckwheat
A:FdC2H2-2基因PCR扩增结果;M: DL 2000 DNA 标记;1:FdC2H2-2基因;B:FdC2H2-2与其他C2H2锌指蛋白的系统进化树;C:FdC2H2-2蛋白二级结构;蓝色:α-螺旋;绿色:β-折叠;粉色:无规则卷曲;红色:延伸链;D:FdC2H2-2蛋白结构域预测;蓝色:SAMRT结构域;粉色:低复杂度区域;E:FdC2H2-2基因的启动子分析
A:FdC2H2-2 gene PCR amplification result; M: DL 2000 DNA marker; 1 :FdC2H2-2 gene ; B: Phylogenetic tree of FdC2H2-2 and other C2H2 zinc finger proteins; C: Secondary structure of FdC2H2-2 protein; Blue: α-helix; Green: β-folding; Pink: Random curling; Red: Extended chain; D: FdC2H2-2 protein domain prediction; Blue: SAMRT domain; Pink: Low complexity region;E: Promoter analysis of FdC2H2-2 gene
启动子分析结果表明,FdC2H2-2基因启动子序列中除了含有大量TATA-box、CAAT-box基本元件外,还包含多种与非生物胁迫及激素响应相关的顺式作用元件。其中,激素响应顺式作用元件包括1个脱落酸响应元件、1个茉莉酸甲酯响应元件、1个水杨酸响应元件;非生物胁迫响应顺式作用元件包括2个低温响应元件、2个厌氧诱导元件、1个干旱相关的MYB转录因子结合位点、2个光响应元件以及2个与光响应相关的MYB结合位点(
对FdC2H2-2基因的启动子进行分析,发现该基因启动子上有响应茉莉酸的顺式作用元件(

图6 MeJA 诱导下 FdC2H2-2基因的表达情况
Fig.6 Expression of FdC2H2-2 gene induced by MeJA
*表示与对照相比达到显著水平(P<0.05);下同
* indicates the significant difference compared with the control (P<0.05); The same as below
通过农杆菌介导法进行了野生型(A4)、转pCAMBIA1302空载体(A4-1302)和转pCAMBIA1302-FdC2H2-2(A4-1302-FdC2H2-2)毛状根的诱导,以探索FdC2H2-2在类黄酮生物合成途径中的作用,其诱导过程如

图7 过表达FdC2H2-2基因促进芦丁的合成积累
Fig.7 Overexpression of FdC2H2-2 gene promotes the synthesis and accumulation of rutin
A:金荞麦毛状根的诱导过程;a:培养 14 d 的金荞麦无菌苗;b:农杆菌侵染后 10 d 的毛状根;c:继代培养14 d的毛状根;d:MS 液体培养基中培养 14 d 的毛状根;B:转基因根系的鉴定;M:DL 2000 DNA 标记;1:pCAMBIA1302- FdC2H2-2质粒(阳性对照);2:A4金荞麦根系(阴性对照);3~6:转pCAMBIA1302-FdC2H2-2 阳性毛状根根系;C:芦丁含量的测定;D:芦丁合成途径关键酶基因的表达
A: Induction process of hairy roots of golden buckwheat; a: Cultured for 14 days of buckwheat seedlings without fungus; b: Hairy roots 10 days after Agrobacterium infection; c: Hairy roots cultured for 14 days subculture;d:Hairy roots cultured for 14 days in MS liquid medium; B: Identification of transgenic roots; M: DL 2000 DNA marker; 1: pCAMBIA1302-FdC2H2-2 plasmid (positive control); 2: A4 golden buckwheat root (negative control); 3~6: pCAMBIA1302-FdC2H2-2 positive hairy roots; C: Determination of rutin content; D: Expression of key enzyme genes in rutin synthesis pathway
分别选择3株生长状态一致的野生型A4、1302空载体和FdC2H2-2-1302过表达毛状根转基因株系进行芦丁含量的测定。结果显示,在过表达FdC2H2-2-1302毛状根株系中芦丁含量显著高于对照组A4,其芦丁含量高达2.35 mg/g(
大量研究表明,C2H2型锌指蛋白转录因子参与调控植物次生代谢物的合成积累。在拟南芥中,AtZAT6的表达正向调节花青素和总黄酮浓
本研究克隆了1个在花中特异高表达的C2H2型锌指蛋白基因FdC2H2-2。该基因全长为1056 bp,编码351个氨基酸,亚细胞定位预测为核蛋白。通过蛋白结构域分析发现FdC2H2-2含有3个典型的C2H2锌指结构。系统进化树显示FdC2H2-2与拟南芥AtTREE1、AtDAZ3亲缘关系较近,且这两个基因与EIN3相互作用,参与响应乙烯抑制芽生长的分子机
另有研究发现,黄酮类化合物的生物合成由多种植物激素介导,其中茉莉酸 (JA)诱导多种转录因子,参与黄酮类化合物生物合成途径相关基因的表
本研究对金荞麦C2H2锌指蛋白转录因子家族进行了全基因组鉴定和分析,共鉴定出114个FdC2H2-ZFPs。并利用不同组织转录组数据筛选并克隆出1个在金荞麦花中显著高表达的FdC2H2-2基因。通过分析FdC2H2-2在MeJA诱导下的表达模式,结果发现其被显著诱导表达。此外,在金荞麦毛状根中过表达FdC2H2-2基因,发现其芦丁含量显著高于对照,且芦丁生物合成关键酶基因FLS、PAL和F3'5'H的表达显著提高。表明FdC2H2-2与金荞麦中芦丁的合成积累呈正相关,其通过激活芦丁生物合成关键酶基因FLS、PAL和F3'5'H的表达,从而正向调控芦丁的生物合成。
参考文献
Iuchi S. Three classes of C2H2 zinc finger proteins. Cellular and Molecular Life Sciences CMLS,2001,58:625-635 [百度学术]
Ciftci-Yilmaz S, Mittler R. The zinc finger network of plants. Cellular and Molecular Life Sciences CMLS, 2008,65:1150-1160 [百度学术]
Han G, Lu C, Guo J, Qiao Z, Sui N, Qiu N, Wang B. C2H2 zinc finger proteins: Master regulators of abiotic stress responses in plants. Frontiers in Plant Science,2020,11:115 [百度学术]
Laity J H, Lee B M, Wright P E. Zinc finger proteins: New insights into structural and functional diversity. Current Opinion in Structural Biology, 2001,11:39-46 [百度学术]
Wang K, Ding Y, Cai C, Chen Z, Zhu C. The role of C2H2 zinc finger proteins in plant responses to abiotic stresses. Physiologia Plantarum, 2019,165:690-700 [百度学术]
Liu Y T, Shi Q H, Cao H J, Ma Q B, Nian H, Zhang X X. Heterologous expression of a glycine soja C2H2 zinc finger gene improves aluminum tolerance in arabidopsis. International Journal of Molecular Sciences,2020, 21(8):2754 [百度学术]
Li W, Zhu Z, Chern M, Yin J, Yang C, Ran L, Cheng M, He M, Wang K, Wang J, Zhou X, Zhu X, Chen Z, Wang J, Zhao W, Ma B, Qin P, Chen W, Wang Y, Liu J, Wang W, Wu X, Li P, Wang J, Zhu L, Li S, Chen X. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell, 2017,170(1):114-126 [百度学术]
Sun B, Zhao Y, Shi S, Yang M, Xiao K. TaZFP1, a C2H2 type-ZFP gene of T. aestivum, mediates salt stress tolerance of plants by modulating diverse stress-defensive physiological processes. Plant Physiology & Biochemistry, 2019, 136:127-142 [百度学术]
Zhang D, Tong J, Xu Z, Wei P, Xu L, Wan Q, Huang Y, He X, Yang J, Shao H, Ma H. Soybean C2H2-type zinc finger protein GmZFP3 with conserved QALGGH motif negatively regulates drought responses in transgenic arabidopsis. Frontiers in Plant Science,2016,7:325 [百度学术]
Li J, Zhang L, Yuan Y, Wang Q, Elbaiomy R G, Zhou W, Wu H, Soaud S A, Abbas M, Chen B, Zhao D, El-Sappah A H. In silico functional prediction and expression analysis of C2H2 zinc-finger family transcription factor revealed regulatory role of ZmZFP126 in maize growth. Frontiers in Genetics, 2021,12:770427 [百度学术]
Zhang X, Guo X P, Lei C L, Cheng Z J , Lin Q B ,Wang J L, Wu F Q, Wang J , Wan J M. Overexpression of SlCZFP1, a novel TFIIIA-type zinc finger protein from tomato, confers enhanced cold tolerance in transgenic Arabidopsis and rice. Plant Molecular Biology Reporter, 2011, 29: 185-196 [百度学术]
Zhang S, Liu J, Zhong G, Wang B. Genome-wide identification and expression patterns of the C2H2-Zinc Finger gene family related to stress responses and catechins accumulation in Camellia sinensis [L.] O. Kuntze. International Journal of Molecular Sciences, 2021,22(8):4197 [百度学术]
Liu W, Feng Y, Yu S, Fan Z, Li X, Li J, Yin H. The flavonoid biosynthesis network in plants. International Journal of Molecular Sciences, 2021,22(23):12824 [百度学术]
Yonekura-Sakakibara K, Higashi Y, Nakabayashi R. The origin and evolution of plant flavonoid metabolism. Frontiers in Plant Science, 2019,10:943 [百度学术]
Zhang K, Logacheva M D, Meng Y, Hu J, Wan D, Li L, Janovská D, Wang Z, Georgiev M I, Yu Z, Yang F, Yan M, Zhou M. Jasmonate-responsive MYB factors spatially repress rutin biosynthesis in Fagopyrum tataricum. Journal of Experimental Botany, 2018,69(8):1955-1966 [百度学术]
Zhao R, Song X, Yang N, Chen L, Xiang L, Liu X Q, Zhao K. Expression of the subgroup IIIf bHLH transcription factor CpbHLH1 from Chimonanthus praecox (L.) in transgenic model plants inhibits anthocyanin accumulation. Plant Cell Reports,2020,39(7):891-907 [百度学术]
Zhao C, Liu X, Gong Q, Cao J, Shen W, Yin X, Grierson D, Zhang B, Xu C, Li X, Chen K, Sun C.Three AP2/ERF family members modulate flavonoid synthesis by regulating type IV chalcone isomerase in citrus. Plant Biotechnology Journal,2021,19(4):671-688 [百度学术]
Han H, Xu F, Li Y, Yu L, Fu M, Liao Y, Yang X, Zhang W, Ye J. Genome-wide characterization of bZIP gene family identifies potential members involved in flavonoids biosynthesis in Ginkgo biloba L. Scientific Reports,2021,11(1):23420 [百度学术]
He M, He Y, Zhang K, Lu X, Zhang X, Gao B, Fan Y, Zhao H, Jha R, Huda M N, Tang Y, Wang J, Yang W, Yan M, Cheng J, Ruan J, Dulloo E, Zhang Z, Georgiev M I, Chapman M A, Zhou M. Comparison of buckwheat genomes reveals the genetic basis of metabolomic divergence and ecotype differentiation. New Phytologist, 2022,235(5):1927-1943 [百度学术]
谈天斌,卢晓玲,张凯旋,丁梦琦,廖志勇,周美亮. TrMYB308基因的克隆及在苦荞毛状根中的功能分析.植物遗传资源学报,2019,20(6):1542-1553 [百度学术]
Tan T B, Lu X L, Zhang K X, Ding M Q,Liao Z Y,Zhou M L. Cloning and functional analysis of TrMYB308 gene in hairy roots of Tartary buckwheat. Journal of Plant Genetic Resources, 2019, 20(6) : 1542-1553 [百度学术]
范昱,王红力,何凤,赖弟利,王佳俊,宋月,向达兵.后熟对苦荞子粒营养品质的影响.作物杂志,2018(1):96-101 [百度学术]
Fan Y, Wang H L, He F,Lai D L,Wang J J,Song Y,Xiang D B. Effects of post-ripening on grain nutritional quality of Tartary buckwheat. Crop Journal, 2018(1): 96-101 [百度学术]
Shi H, Liu G, Wei Y, Chan Z. The zinc-finger transcription factor ZAT6 is essential for hydrogen peroxide induction of anthocyanin synthesis in Arabidopsis. Plant Molecular Biology, 2018,97(1-2):165-176 [百度学术]
Wang D R, Yang K, Wang X, Lin X L, Rui L, Liu H F, Liu D D, You C X. Overexpression of MdZAT5, an C2H2-Type zinc finger protein, regulates anthocyanin accumulation and salt stress response in apple calli and Arabidopsis. International Journal of Molecular Sciences, 2022,23(3):1897 [百度学术]
罗曼.C2H2型锌指蛋白DkZF6在柿原花青素生物合成中的功能解析.武汉:华中农业大学,2021 [百度学术]
Luo M. Functional analysis of C2H2 zinc finger protein DkZF6 in persimmon proanthocyanidin biosynthesis.Wuhan:Huazhong Agricultural University,2021 [百度学术]
Xie M, Sun J, Gong D, Kong Y. The roles of Arabidopsis C1-2i subclass of C2H2-type zinc-finger transcription factors. Genes (Basel),2019,10(9):653 [百度学术]
Wang L, Ko E E, Tran J, Qiao H. TREE1-EIN3-mediated transcriptional repression inhibits shoot growth in response to ethylene. Proceedings of the National Academy of Sciences of the United States of America, 2020,117(46):29178-29189 [百度学术]
Liu D, Yang L, Luo M, Wu Q, Liu S, Liu Y.Molecular cloning and characterization of PtrZPT2-1, a ZPT2 family gene encoding a Cys2/His2-type zinc finger protein from trifoliate orange (Poncirus trifoliata (L.) Raf.) that enhances plant tolerance to multiple abiotic stresses. Plant Science,2017,263:66-78 [百度学术]
Yang K, An J P, Li C Y, Shen X N, Liu Y J, Wang D R, Ji X L, Hao Y J, You C X. The apple C2H2-type zinc finger transcription factor MdZAT10 positively regulates JA-induced leaf senescence by interacting with MdBT2. Horticulture Research,2021,8(1):159 [百度学术]
Shi H, Wang X, Ye T, Chen F, Deng J, Yang P, Zhang Y, Chan Z. The Cys2/His2-type zinc finger transcription factor ZAT6 modulates biotic and abiotic stress responses by activating salicylic acid-related genes and CBFs in Arabidopsis.Plant Physiology, 2014,165(3):1367-1379 [百度学术]
Sharma R, Mahanty B, Mishra R, Joshi R K. Genome wide identification and expression analysis of pepper C2H2 zinc finger transcription factors in response to anthracnose pathogen Colletotrichum truncatum. 3 Biotech,2021,11(3):118 [百度学术]
Ding M, He Y, Zhang K, Li J, Shi Y, Zhao M, Meng Y, Georgiev M I, Zhou M. JA-induced FtBPM3 accumulation promotes FtERF-EAR3 degradation and rutin biosynthesis in Tartary buckwheat. The Plant Journal,2022,111(2):323-334 [百度学术]
Zhou M, Memelink J. Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnology Advances,2016,34(4):441-449 [百度学术]
Gao J, Wang T, Liu M, Liu J, Zhang Z. Transcriptome analysis of filling stage seeds among three buckwheat species with emphasis on rutin accumulation. PLoS ONE,2017,12(12):e0189672 [百度学术]
Yao Y, Sun L, Wu W, Wang S, Xiao X, Hu M, Li C, Zhao H, Chen H, Wu Q. Genome-wide investigation of major enzyme-encoding genes in the flavonoid metabolic pathway in Tartary Buckwheat (Fagopyrum tataricum). Journal of Molecular Evolution, 2021,89(4-5):269-286 [百度学术]