摘要
AP2/ERF (APETALA2/ethylene-responsive factor)是植物中最大的转录因子家族之一,至少含有1个由60~70个高度保守的氨基酸组成的特有的AP2结构域,根据AP2结构域数量和相似性可划分为5个亚家族:AP2 (APETALA2)、DREB (Dehydration-responsive element binding proteins)、ERF (Ethylene-responsive factor)、RAV (Related to AB13/VP)和Soloist。AP2/ERF转录因子通过AP2结构域中的YRG和RAYD保守元件与靶基因结合,实现对相关基因的转录调控功能。目前,AP2/ERF已成为研究植物抗逆机制和活性成分生物合成的热点候选基因,越来越多植物AP2/ERF家族及其成员被报道。本研究对近年来有关AP2/ERF家族的最新研究成果进行了总结,综述了AP2/ERF家族转录因子的结构特征与分类,重点介绍了该类转录因子调控植物次生代谢产物的合成以及参与生物、非生物胁迫应答等方面的研究进展,并展望了AP2/ERF转录因子可能的研究热点和领域,以期为今后进一步挖掘和利用该类转录因子基因进行植物遗传改良以及种质创新提供参考。
转录因子(TFs,transcription factors)作为介导基因表达的最重要的调控元件,能识别和结合靶基因启动子区的特异性序列,通过激活或抑制靶基因转录活性,决定不同基因的时间和空间特异性表达。AP2/ERF转录因子超家族被认为是最大的转录因子家族之一,主要存在于植物中,广泛参与植物的生长发育、次生代谢调控以及生物和非生物胁迫响应等重要生物学过
AP2/ERF转录因子超家族被认为是植物中最大的转录因子家族之一,其共同特征是至少存在1个特有的AP2结构域。AP2结构域由1个β-折叠和1个近似平行β-折叠的α-螺旋组成,含有60~70个高度保守的氨基酸残
根据AP2/ERF转录因子所包含的AP2结构域数量和相似性,可将其划分为5大类,即AP2 (APETALA2)、DREB (Dehydration-responsive element binding proteins)、ERF (Ethylene-responsive factor)、RAV (Related to AB13/VP)以及Soloist 亚家族(

图1 AP2/ERF转录因子家族分类及结构特征
Fig. 1 AP2/ERF transcription factors family classification and structural characteristics
黄酮类化合物又称为类黄酮物质,是所有植物次生代谢物中最主要的一类低分子量的多酚物质,它主要包括花青素、黄酮、黄烷酮、原花青素等,在植物中发挥多种功能,包括抵御生物和非生物胁迫、帮助授粉和种子传播等。AP2/ERF转录因子广泛参与黄酮类化合物的次生代谢调控,如梨 (Pyrus spp.) Pp4ERF24和Pp12ERF96通过与PpMYB114相互作用,促进PpMYB114与PpbHLH3的结合,增强PpMYB114对花青素合成关键基因PpUFGT的激活,显著诱导花青素积
类胡萝卜素是植物着色的主要色素之一,对植物的光合作用和人类健康具有重要的意
木质素又称木素,是植物细胞次生壁的重要组成成分,其含量是影响植株形态、茎秆硬度以及抗病抗逆性能的重要因素。与MYB等转录因子相比,AP2/ ERF在植物中参与木质化的研究相对滞后。有证据表明,AP2/ ERF可能与菘蓝(Isatis indigotica Fort.)木质素的生物合成密切相关,即通过激活水杨酸(SA, salicylic acid)信号通路和调节木质素代谢途径中的主要结构基因两条途径来控制木质素的合
除参与黄酮类化合物、类胡萝卜素、木质素外,AP2/ERF转录因子还广泛参与其他次生代谢产物的合成。柿(Diospyros kaki Thunb.)DkERF19和DkERF22可激活脱涩关键基因DkADH、DkPDC转录表达,促进乙醛合成并与可溶性单宁结合生成不溶性单宁,进而实现果实脱
植物名称 Plant species | 转录因子 Transcription factor | 对次生代谢产物的调控作用 Regulation of the secondary metabolites | 参考文献 Reference |
---|---|---|---|
梨Pyrus spp. | Pp4ERF24/12ERF96 | 正调控花青素的积累 |
[ |
桑树Morus alba L. | MlERF5 | 正调控花青素的合成 |
[ |
苹果 Malus×domestica(Suckow)Borkh. | MdERF38 | 促进花青素的合成 |
[ |
茄子Solanum melongena L. | Smechr0902114.1/1102075.1 | 正调控花青素的合成 |
[ |
拟南芥 Arabidopsis thaliana (L.) Heynh. | AtERF4/8 | 负调控花青素的合成 |
[ |
梨Pyrus spp. | PpERF105 | 抑制花青素的合成 |
[ |
麻疯树Jatropha curcas L. | JcERF035 | 负调控花青素的合成 |
[ |
柑橘Citrus reticulata Blanco. | CitERF32/33/RAV1 | 调控柑橘黄烷酮和黄酮的积累 |
[ |
苹果 Malus ×domestica(Suckow)Borkh. | MdERF1B | 正调控原花青素的积累 |
[ |
拟南芥 Arabidopsis thaliana (L.) Heynh. | AtRAP2.2 | 正调控类胡萝卜素的合成 |
[ |
苹果 Malus×domestica(Suckow)Borkh. | MdAP2-34 | 正调控类胡萝卜素的合成 |
[ |
柚Citrus maxima (Burm) Merr. | CmERF23 | 调节类胡萝卜素的积累 |
[ |
柑橘Citrus reticulata Blanco. | CsERF061 | 调控类胡萝卜素的积累 |
[ |
番茄Solanum lycopersicum L. | SlPti4 | 调控β-胡萝卜素的合成 |
[ |
桃Prunus persica (L.) Batsch | PpeERF2/3 | 调控类胡萝卜素的合成 |
[ |
番茄Solanum lycopersicum L. | SlERF6 | 抑制类胡萝卜素的合成 |
[ |
番茄Solanum lycopersicum L. | SlAP2a | 负调控类胡萝卜素的合成 |
[ |
菘蓝Isatis indigotica Fort. | Ii049 | 正调控菘蓝中木质素的合成 |
[ |
水稻Oryza sativa L. | OsERF34 | 促进纤维素和木质素的积累 |
[ |
甘薯Ipomoea batatas (L.) Lam. | IbRAP2.4 | 调控木质素的合成 |
[ |
枇杷Eriobotrya japonica (Thunb.) Lindl. | EjERF39 | 促进枇杷果实低温木质化 |
[ |
枇杷Eriobotrya japonica (Thunb.) Lindl. | EjAP2-1 | 减弱枇杷果实在低温下的木质化 |
[ |
柿Diospyros kaki Thunb. | DkERF19/22 | 促进乙醛的合成 |
[ |
丹参Salvia miltiorrhiza Bge. | SmERF6 | 参与丹参酮的合成 |
[ |
丹参Salvia miltiorrhiza Bge. | SmERF115 | 正调控丹参酸的合成 |
[ |
丹参Salvia miltiorrhiza Bge. | SmERF1L1 | 调控丹参中丹参酮和丹酚酸的合成 |
[ |
拟南芥 Arabidopsis thaliana (L.) Heynh. | AtERF72 | 负调控叶绿素的合成 |
[ |
苹果 Malus ×domestica(Suckow)Borkh. | MaERF17 | 促进叶绿素的降解 |
[ |
烟草Nicotiana tabacum L. | NtERF189 /199 | 正调控烟碱的合成 |
[ |
三七Panax notoginseng (Burk.)F.H.Chen | PnERF1 | 促进皂苷的合成 |
[ |
青蒿Artemisia annua L. | TAR1 | 调控青蒿素的合成 |
[ |
高盐、高温、干旱、冷害、病虫害等是影响植物生长发育、作物产量及品质的主要逆境胁迫因素。在漫长的进化过程中,植物逐渐形成了适应生物及非生物胁迫的复杂且相对完善的内在防御机制,这些机制包括乙烯、脱落酸、 茉莉酸(JA, jasmonic acid)、水杨酸(SA, salicylic acid)等在内的多种信号转导通路,转录因子一方面在信号通路中激活或抑制防御相关基因的表达,另一方面,还参与调控不同信号通路间的交互作用,提高植物适应逆境的能力。AP2/ERF转录因子广泛参与了调控植物对各种逆境胁迫的应答反应。
AP2/ERF转录因子在高盐、干旱和热等多种非生物胁迫响应过程中具有重要功能,尤其是DREB和ERF亚族对高盐、高温、干旱诱导较为敏感。研究表明,大豆DREB3b基因的自然变异与大豆耐盐性差异有关,携带野大豆(Glycine soja Sieb. et Zucc.) DREB3b等位基因 DREB3b39Del的大豆植株比含有等位基因(DREB3bRef)的大豆植株更耐盐,通过栽培大豆的驯化,DREB3b39Del等位基因的丧失可能导致大豆耐盐性的降
干旱胁迫方面,拟南芥 AP2 / ERF转录因子TINY和油菜素内酯对植物生长和逆境响应基因的作用相反,在正常生长条件下,油菜素内酯信号通过糖原合成酶激酶3-like蛋白激酶BR- INSENSITIVE2 (BIN2)磷酸化负调控TINY,为油菜素内酯介导TINY下调提供了机制,以阻止最适生长条件下胁迫反应的激活;但在干旱条件下,TINY-BES1拮抗作用抑制油菜素内酯介导的植株生长,正向调控响应干旱胁
AP2/ERF转录因子对热胁迫也有明显的响应,拟南芥AtDREB2
低温、冷害和冻害胁迫会破坏植物的细胞结构,抑制植株代谢功能和光合作用,导致生长紊乱、生殖能力下降及早衰等现象。AP2/ERF转录因子可能是耐受温度胁迫的关键,尤其是DREB亚族A1组CBF转录因子被认为是调控大量冷胁迫基因表达的“中枢”,其通过与顺式作用元件DRE/CRT的特异结合,激活下游基因的表达来提高植株抗
除DREBA1组外,其他AP2/ERF转录因子也参与调控植物低温、冷害和冻害胁迫响应。枳 (Poncirus trifoliata (L.) Raf.) PtrERF108通过转录调控棉子糖合成酶基因PtrRafS来调控棉籽糖合成,从而发挥耐寒作用。过表达PtrERF108可以增强转基因柠檬的耐冷性,而在枳中通过病毒诱导的基因沉默 (VIGS, virus induced gene silencing) 技术敲低PtrERF108可以显著提高冷敏感
除响应上述非生物胁迫外,AP2/ERF转录因子还参与植物对其他逆境胁迫的响应。拟南芥DREBA1组成员DEAR4的表达与叶片衰老相关,可被黑暗胁迫诱导,在正常和黑暗条件下,过表达DEAR4的转基因植株表现出明显的叶片衰老表型,而敲低DEAR4明显延缓植株衰
生物胁迫主要包括细菌、真菌、病毒以及植食性昆虫的侵害等,AP2/ERF转录因子通常激活下游防御基因的表达,进而在植物抵御各种生物胁迫中发挥作用,提高植株的抗性。玉米转录激活因子ZmERF105能与GCC - box元件结合,增强过表达株系的超氧化物歧化酶和过氧化物酶活性,提高对玉米大斑病菌(Exserohilum turcicum)的抗
研究表明,AP2/ERF转录因子在响应生物胁迫过程中还存在负调控模式,例如水稻OsERF922是一个稻瘟病抗性负调控因子,受脱落酸、盐及稻瘟病菌诱导,利用RNAi技术沉默OsERF922基因能够增加PR、PAL和其他编码植物抗毒素生物合成酶基因的表达量,增强了对稻瘟病菌的抗性;而过表达该基因植株表现出明显的易感
胁迫类型 Stress type | 植物名称 Plant species | 转录因子 Transcription factor | 作用 Function | 参考文献 Reference |
---|---|---|---|---|
非生物胁迫 Abiotic stress | 野大豆 | DREB3b39Del | 丧失可能导致植株耐盐性的降低 |
[ |
绿豆 | VrDREB2A | 过表达提高拟南芥对高盐和干旱的耐受性 |
[ | |
小麦 | TaERF3 | 正向调控小麦对盐胁迫和干旱胁迫的适应响应 |
[ | |
齿肋墙藓 | ScDREB5 | 过表达提高转基因拟南芥的耐盐性 |
[ | |
小立碗藓 | PpWIN1 | 过表达提高转基因拟南芥的耐盐性 |
[ | |
月季 | Rctiny2 | 沉默降低转基因月季对干旱和盐胁迫的耐受性 |
[ | |
非生物胁迫 Abiotic stress | 茄子 | SmERF1 | 正向调控盐胁迫 |
[ |
陆地棉 | GhERF13.12 | 提高陆地棉耐盐性 |
[ | |
拟南芥 | TINY | 正调控响应干旱胁迫 |
[ | |
番茄 | SlERF84 | 增强转基因拟南芥对干旱和盐胁迫的耐受性 |
[ | |
甘薯 | IbRAP2-12 | 过表达提高转基因拟南芥耐旱和耐盐性 |
[ | |
玉米 | ZmEREBP60 | 过表达增强了玉米的抗旱性 |
[ | |
大豆 | GmDREB1 | 过表达增强转基因大豆耐旱性 |
[ | |
杨树 | PalERF2 | 正向调节杨树对磷的吸收和耐旱性 |
[ | |
马尾松 | PmAP2/ERFs | 正向或负向调控干旱胁迫响应 |
[ | |
月季 | RcDREB2B | 负调控干旱胁迫响应 |
[ | |
番茄 | SlERF.B1 | 降低了对盐和干旱的耐受性 |
[ | |
水稻 | OsDERF1 | 负调控水稻的乙烯合成和耐旱性 |
[ | |
辣椒 | CaDRAT1 | 负调控干旱胁迫响应 |
[ | |
拟南芥 | AtDREB2A | 增强拟南芥盐、干旱以及热胁迫的耐受性 |
[ | |
毛花菊 | DvDREB2A | 提高对盐、干旱以及热胁迫的耐受性 |
[ | |
大豆 | GmDREB2A | 提高对盐、干旱以及热胁迫的耐受性 |
[ | |
穇子 | DREB2A | 过表达提高了转基因烟草耐热性 |
[ | |
番茄 | SlDREBA4 | 过表达提高了番茄耐热性 |
[ | |
菊花 | CmDREB6 | 过表达增强菊花耐热性 |
[ | |
麝香百合 | LlERF110 | 过表达降低了百合耐热性 |
[ | |
拟南芥 | CBF1/2/3 | 提高拟南芥冷冻耐受性 |
[ | |
枳 | PtrERF108 | 过量表达增强转基因柠檬的耐冷性 |
[ | |
白桦 | BpERF13 | 过表达提高桦树的耐寒性 |
[ | |
水稻 | OsBIERF3 | 负调控水稻抗冷胁迫 |
[ | |
拟南芥 | DEAR4 | 过表达延缓拟南芥衰老 |
[ | |
拟南芥 | AtERF-VII | 组成型表达提高拟南芥耐低氧胁迫 |
[ | |
拟南芥 | AtERF71/HRE2 | 参与低氧和盐胁迫应答 |
[ | |
辣椒 | CaPF1 | 过表达显著增强转基因弗吉尼亚松树对重金属镉、铜、锌及高温的耐受性 |
[ | |
生物胁迫 Biotic stress | 玉米 | ZmERF105 | 正向调控对玉米大斑病菌的抗性 |
[ |
青蒿 | AaORA | 正向调控青蒿素生物合成增强转基因拟南芥对灰霉病抗性 |
[ | |
桃 | PpERF21/27 | 受硅诱导抑制桃流胶 |
[ | |
烟草 | NtERF189 | 促进尼古丁生物合成增强植物对食草性动物的抗性 |
[ | |
拟南芥 | At4g13040 | 正调控水杨酸的积累以提高拟南芥对细菌病原体的抗性 |
[ | |
水稻 | OsERF96 | 参与水稻对稻瘟病的抗性 |
[ | |
番茄 | ERF2 | 增强番茄对条斑病菌的抗性 |
[ | |
毛葡萄 | VqERF112/114/072 | 增强转基因拟南芥对丁香假单胞菌和灰霉病菌的抗性 |
[ | |
水稻 | OsERF922 | 负调控稻瘟病抗性 |
[ | |
马铃薯 | StERF3 | 负调控马铃薯对致病疫霉的抗性 |
[ | |
拟南芥 | AtERF19 | 负调控对番茄灰霉菌和丁香假单胞菌抗性 |
[ |
AP2/ERF转录因子广泛存在于植物中,并积极参与植物次生代谢产物合成调控以及逆境胁迫响
培育高产、稳产、品质优良兼具多抗性的农作物品种是当今育种工作的重要方向。植物抗性受多基因控制,通过调控抗性基因或相关转录因子的表达来提高植物的抗性已成为目前研究的热点。AP2/ERF家族转录因子,尤其是DREB和ERF亚族广泛参与了植物对非生物及生物胁迫的防御反应。大量研究发现,沉默或过表达DREB和ERF基因,可同时提高转基因植株对逆境胁迫的耐受性,说明这类转录因子在转基因育种中的巨大潜力,也为通过基因工程进行植物遗传改良与种质创新提供了新思路。
参考文献
Feng K, Hou X L, Xing G M, Liu J X, Duan A Q, Xu Z S, Li M Y, Zhuang J, Xiong A S. Advances in AP2/ERF super-family transcription factors in plant. Critical Reviews in Biotechnology, 2020, 40(6):750-776 [百度学术]
Shoji T, Yuan L. ERF gene clusters: Working together to regulate metabolism. Trends in Plant Science, 2021, 26(1): 23-32 [百度学术]
Jofuku K D, den Boer B G, Van Montagu M, Okamuro J K. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell, 1994, 6(9):1211-1225 [百度学术]
Chandler J W. Class VIIIb APETALA2 ethylene response factors in plant development. Trends in Plant Science, 2018, 23(2):151-162 [百度学术]
Owji H, Hajiebrahimi A, Seradj H, Hemmati S. Identification and functional prediction of stress responsive AP2/ERF transcription factors in Brassica napus by genome-wide analysis. Computational Biology and Chemistry, 2017, 71: 32-56 [百度学术]
Okamuro J K, Caster B, Villarroel R, Van Montagu M, Jofuku K D. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(13): 7076-7081 [百度学术]
Lakhwani D, Pandey A, Dhar Y V, Bag S K, Trivedi P K, Asif M H. Genome-wide analysis of the AP2/ERF family in Musa species reveals divergence and neo-functionalisation during evolution. Scientific Reports, 2016, 6:18878 [百度学术]
Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 2002, 290(3): 998-1009 [百度学术]
Zhuang J, Peng R H, Cheng Z M , Zhang J, Cai B, Zhang Z, Gao F, Zhu B, Fu X Y, Jin X F, Chen J M, Qiao Y S, Xiong A S, Yao Q H. Genome-wide analysis of the putative AP2/ERF family genes in Vitis Vinifera. Scientia Horticulturae, 2009, 123(1): 73-81 [百度学术]
Jofuku K D, Omidyar P K, Gee Z, Okamuro J K. Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(8):3117-3122 [百度学术]
Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(3):1035-1040 [百度学术]
Sohn K H, Lee S C, Jung H W, Hong J K, Hwang B K. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Molecular Biology, 2006, 61(6): 897-915 [百度学术]
Licausi F, Ohme-Takagi M, Perata P. APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: Mediators of stress responses and developmental programs. The New Phytologist, 2013, 199(3):639-649 [百度学术]
Ni J, Bai S, Zhao Y, Qian M, Tao R, Yin L, Gao L, Teng Y. Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynthesis in 'Red Zaosu' pear fruits by interacting with MYB114. Plant Molecular Biology, 2019, 99(1-2):67-78 [百度学术]
Mo R, Han G, Zhu Z, Essemine J, Dong Z, Li Y, Deng W, Qu M, Zhang C, Yu C.The ethylene response factor ERF5 regulates anthocyanin biosynthesis in 'Zijin' mulberry fruits by interacting with MYBA and F3H genes. International Journal of Molecular Sciences, 2022, 23:7615 [百度学术]
An J P, Zhang X W, Bi S Q, You C X, Wang X F, Hao Y J. The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple. Plant Journal, 2020, 101(3):573-589 [百度学术]
Li D, He Y, Li S, Shi S, Li L, Liu Y, Chen H. Genome-wide characterization and expression analysis of AP2/ERF genes in eggplant (Solanum melongena L.). Plant Physiology and Biochemistry, 2021, 167:492-503 [百度学术]
Koyama T, Sato F. The function of ETHYLENE RESPONSE FACTOR genes in the light-induced anthocyanin production of Arabidopsis thaliana leaves. Plant Biotechnology (Tokyo), 2018, 35(1):87-91 [百度学术]
Ni J, Premathilake A T, Gao Y, Yu W, Tao R, Teng Y, Bai S. Ethylene-activated PpERF105 induces the expression of the repressor-type R2R3-MYB gene PpMYB140 to inhibit anthocyanin biosynthesis in red pear fruit. Plant Journal, 2021, 105(1):167-181 [百度学术]
Chen Y, Wu P, Zhao Q, Tang Y, Chen Y, Li M, Jiang H, Wu G. Overexpression of a phosphate starvation response AP2/ERF gene from physic nut in Arabidopsis alters root morphological traits and phosphate starvation-induced anthocyanin accumulation.Frontiers in Plant Science, 2018, 9:1186 [百度学术]
Zhao C, Liu X, Gong Q, Cao J, Shen W, Yin X, Grierson D, Zhang B, Xu C, Li X, Chen K, Sun C. Three AP2/ERF family members modulate flavonoid synthesis by regulating type IV chalcone isomerase in citrus. Plant Biotechnology Journal,2021, 19(4):671-688 [百度学术]
Zhang J, Xu H, Wang N, Jiang S, Fang H, Zhang Z, Yang G, Wang Y, Su M, Xu L, Chen X. The ethylene response factor MdERF1B regulates anthocyanin and proanthocyanidin biosynthesis in apple. Plant Molecular Biology, 2018, 98(3):205-218 [百度学术]
Domonkos I, Kis M, Gombos Z, Ughy B. Carotenoids, versatile components of oxygenic photosynthesis. Progress in Lipid Research, 2013, 52(4):539-561 [百度学术]
Fiedor J, Burda K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 2014, 6:466-488 [百度学术]
Welsch R, Maass D, Voegel T, Dellapenna D, Beyer P. Transcription factor RAP2.2 and its interacting partner SINAT2:Stable elements in the carotenogenesis of Arabidopsis leaves.Plant Physiology, 2007, 145(3):1073 [百度学术]
Dang Q, Sha H, Nie J, Wang Y, Yuan Y, Jia D. An apple (Malus domestica) AP2/ERF transcription factor modulates carotenoid accumulation. Horticulture Research, 2021, 8(1):223 [百度学术]
Jiang C C, Zhang Y F, Lin Y J, Chen Y, Lu X K. Illumina (R) sequencing reveals candidate genes of carotenoid metabolism in three pummelo Cultivars (Citrus Maxima) with different pulp color. International Journal of Molecular Sciences, 2019, 20(9): 2246 [百度学术]
Zhu K, Sun Q, Chen H, Mei X, Lu S, Ye J, Chai L, Xu Q, Deng X. Ethylene activation of carotenoid biosynthesis by a novel transcription factor CsERF061. Journal of Experimental Botany, 2021, 72(8):3137-3154 [百度学术]
Sun Y, Liang B, Wang J, Kai W, Chen P, Jiang L, Du Y, Leng P. SlPti4 affects regulation of fruit ripening, seed germination, and stress responses by modulating ABA signaling in tomato. Plant & Cell Physiology, 2018, 59(10):1956-1965 [百度学术]
Wang X, Zeng W, Ding Y, Wang Y, Niu L, Yao J L, Pan L, Lu Z, Cui G, Li G, Wang Z. PpERF3 positively regulates ABA biosynthesis by activating PpNCED2/3 transcription during fruit ripening in peach. Horticulture Research, 2019, 6:19 [百度学术]
Lee J M, Joung J G, McQuinn R, Chung M Y, Fei Z, Tieman D, Klee H, Giovannoni J. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Plant Journal, 2012, 70(2):191-204 [百度学术]
Chung M Y, Vrebalov J, Alba R, Lee J, McQuinn R, Chung J D, Klein P, Giovannoni J. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant Journal, 2010, 64(6):936-947 [百度学术]
Zhang J, Hu Z, Yao Q, Guo X, Nguyen V, Li F, Chen G. A tomato MADS-box protein, SlCMB1, regulates ethylene biosynthesis and carotenoid accumulation during fruit ripening. Scientific Reports, 2018, 8: 3413 [百度学术]
Ma R, Xiao Y, Lv Z, Tan H, Chen R, Li Q, Chen J, Wang Y, Yin J, Zhang L, Chen W. AP2/ERF transcription factor, Ii049, positively regulates lignan biosynthesis in Isatis indigotica through activating salicylic acid signaling and lignan/lignin pathway genes. Frontiers in Plant Science, 2017, 8:1361 [百度学术]
Zhang J, Liu Z, Sakamoto S, Mitsuda N, Ren A, Persson S, Zhang D. ETHYLENE RESPONSE FACTOR 34 promotes secondary cell wall thickening and strength of rice peduncles. Plant Physiology, 2022, 190:1806-1820 [百度学术]
Bian X, Kim H S, Kwak S S, Zhang Q, Liu S, Ma P, Jia Z, Xie Y, Zhang P, Yu Y. Different functions of IbRAP2.4, a drought-responsive AP2/ERF transcription factor, in regulating root development between Arabidopsis and sweetpotato. Frontiers in Plant Science, 2022, 13:820450 [百度学术]
Zhang J, Yin X R, Li H, Xu M, Zhang M X, Li S J, Liu X F, Shi Y N, Grierson D, Chen K S. ETHYLENE RESPONSE FACTOR39-MYB8 complex regulates low-temperature-induced lignification of loquat fruit. Journal of Experimental Botany, 2020, 71(10):3172-3184 [百度学术]
Zeng J K, Li X, Xu Q, Chen J Y, Yin X R, Ferguson I B, Chen K S. EjAP2-1, an AP2/ERF gene, is a novel regulator of fruit lignification induced by chilling injury, via interaction with EjMYB transcription factors. Plant Biotechnology Journal, 2015, 13(9): 1325-1334 [百度学术]
Min T, Fang F, Ge H, Shi Y N, Luo Z R, Yao Y C, Grierson D, Yin X R, Chen K S. Two novel anoxia-induced ethylene response factors that interact with promoters of deastringency-related genes from persimmon. PLoS ONE,2014, 9(5):e97043 [百度学术]
Bai Z, Li W, Jia Y, Yue Z, Jiao J, Huang W, Xia P, Liang Z. The ethylene response factor SmERF6 co-regulates the transcription of SmCPS1 and SmKSL1 and is involved in tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. Planta, 2018, 248(1) : 243 [百度学术]
Sun M, Shi M, Wang Y, Huang Q, Yuan T, Wang Q, Wang C, Zhou W, Kai G. The biosynthesis of phenolic acids is positively regulated by the JA-responsive transcription factor ERF115 in Salvia miltiorrhiza. Journal of Experimental Botany, 2019, 70(1):243-254 [百度学术]
Huang Q, Sun M, Yuan T, Wang Y, Shi M, Lu S, Tang B, Pan J, Wang Y, Kai G. The AP2/ERF transcription factor SmERF1L1 regulates the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Food Chemistry, 2019, 274:368-375 [百度学术]
Liu W, Li Q, Wang Y, Wu T, Yang Y, Zhang X, Han Z, Xu X. Ethylene response factor AtERF72 negatively regulates Arabidopsis thaliana response to iron deficiency. Biochemical and Biophysical Research Communications, 2017, 491(3):862-868 [百度学术]
Han Z, Hu Y, Lv Y, Rose J K C, Sun Y, Shen F, Wang Y, Zhang X, Xu X, Wu T, Han Z. Natural variation underlies differences in etheylene response facton17 activity in fruit peel degreening. Plant Physiology, 2018, 176(3): 2292-2304 [百度学术]
Hayashi S, Watanabe M, Kobayashi M, Tohge T, Hashimoto T, Shoji T. Genetic manipulation of transcriptional regulators alters nicotine biosynthesis in tobacco. Plant & Cell Physiology, 2020, 61(6):1041-1053 [百度学术]
Deng B,Huang Z,Ge F, Liu D, Lu R, Chen C. An AP2 /ERF family transcription factor PnERF1 raised the biosynthesis of saponins in Panax notoginseng. Journal of Plant Growth Regulation, 2017, 36(3) : 691 [百度学术]
Tan H, Xiao L, Gao S, Li Q, Chen J, Xiao Y, Ji Q, Chen R, Chen W, Zhang L. Trichome and artemisinin regulator 1 is required for trichome development and artemisinin biosynthesis in Artemisia annua. Molecular Plant, 2015, 8(9):1396-1411 [百度学术]
Hou Z, Li Y, Cheng Y, Li W, Li T, Du H, Kong F, Dong L, Zheng D, Feng N, Liu B, Cheng Q. Genome-wide analysis of DREB genes identifies a novel salt tolerance gene in wild soybean (Glycine soja). Frontiers in Plant Science, 2022, 13:821647 [百度学术]
Chen H, Liu L, Wang L, Wang S, Cheng X. VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana. Journal of Plant Research, 2016, 129(2):263-273 [百度学术]
Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnology Journal,2014, 12(4): 468-479 [百度学术]
Liu J, Yang R, Liang Y, Wang Y, Li X. The DREB A-5 transcription factor ScDREB5 from Syntrichia caninervis enhanced salt tolerance by regulating jasmonic acid biosynthesis in transgenic Arabidopsis. Frontiers in Plant Science, 2022, 13:857396 [百度学术]
Kim R J, Lee S B, Pandey G, Suh M C. Functional conservation of an AP2/ERF transcription factor in cuticle formation suggests an important role in the terrestrialization of early land plants. Journal of Experimental Botany, 2022,73(22): 7450-7466 [百度学术]
Geng L, Su L, Wang L, Geng Z, Lin S, Zhang Y, Yu S, Fu L, Liu Q, Cheng C, Jiang X. Role of RcTINY2 in the regulation of drought and salt stress response in Arabidopsis and rose. Horticulturae, 2022, 8(8):747 [百度学术]
Shen L, Zhao E, Liu R, Yang X. Transcriptome analysis of eggplant under salt stress: AP2/ERF transcription factor SmERF1 acts as a positive regulator of salt stress. Plants (Basel), 2022, 11(17):2205 [百度学术]
Lu L, Qanmber G, Li J, Pu M, Chen G, Li S, Liu L, Qin W, Ma S, Wang Y, Chen Q, Liu Z. Identification and characterization of the ERF subfamily B3 group revealed GhERF13.12 improves salt tolerance in Upland Cotton. Frontiers in Plant Science, 2021, 12:705883 [百度学术]
Xie Z, Nolan T, Jiang H, Tang B, Zhang M, Li Z, Yin Y. The AP2/ERF transcription factor TINY modulates brassinosteroid-regulated plant growth and drought responses in Arabidopsis. Plant Cell, 2019, 31(8):1788-1806 [百度学术]
Li Z, Tian Y, Xu J, Fu X, Gao J, Wang B, Han H, Wang L, Peng R, Yao Q. A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. tomato DC3000. Plant physiology and Biochemistry, 2018, 132:683-695 [百度学术]
Li Y, Zhang H, Zhang Q, Liu Q, Zhai H, Zhao N, He S. An AP2/ERF gene, IbRAP2-12, from sweetpotato is involved in salt and drought tolerance in transgenic Arabidopsis. Plant Science, 2019, 281:19-30 [百度学术]
Zhu Y, Liu Y, Zhou K, Tian C, Aslam M, Zhang B, Liu W, Zou H. Overexpression of ZmEREBP60 enhances drought tolerance in maize. Journal of Plant Physiology, 2022, 275:153763 [百度学术]
Chen K, Tang W, Zhou Y, Chen J, Xu Z, Ma R, Dong Y, Ma Y, Chen M. AP2/ERF transcription factor GmDREB1 confers drought tolerance in transgenic soybean by interacting with GmERFs. Plant Physiology and Biochemistry, 2022, 170:287-295 [百度学术]
Chen N, Qin J, Tong S, Wang W, Jiang Y. One AP2/ERF transcription factor positively regulates Pi uptake and drought tolerance in Poplar. International Journal of Molecular Sciences, 2022, 23(9):5241 [百度学术]
Sun S,Liang X,Chen H, Hu L, Yang Z. Identification of AP2/ERF transcription factor family genes and expression patterns in response to drought stress in Pinus massoniana. Forests, 2022, 13(9):1430 [百度学术]
Li W, Geng Z, Zhang C, Wang K, Jiang X. Whole-genome characterization of Rosa chinensis AP2/ERF transcription factors and analysis of negative regulator RcDREB2B in Arabidopsis. BMC Genomics, 2021, 22(1):90 [百度学术]
Wang Y, Xia D, Li W, Cao X, Ma F, Wang Q, Zhan X, Hu T. Overexpression of a tomato AP2/ERF transcription factor SlERF.B1 increases sensitivity to salt and drought stresses. Scientia Horticulturae, 2022, 304:111332 [百度学术]
Wan L, Zhang J, Zhang H, Zhang Z, Quan R, Zhou S, Huang R. Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS ONE, 2018, 6(9):e25216 [百度学术]
Lim C W, Lim J, Lee S C. The pepper AP2 domain-containing transcription factor CaDRAT1 plays a negative role in response to dehydration stress. Environmental and Experimental Botany, 2019, 164:170-180 [百度学术]
Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell, 2006, 18(5):1292-1309 [百度学术]
Liu L, Zhu K, Yang Y, Wu J, Chen F, Yu D. Molecular cloning, expression profiling and trans-activation property studies of a DREB2-like gene from chrysanthemum (Dendranthema vestitum). Journal of Plant Research, 2008 , 121(2):215-226 [百度学术]
Mizoi J, Ohori T, Moriwaki T, Kidokoro S, Todaka D, Maruyama K, Kusakabe K, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K. GmDREB2A;2, a canonical DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2-type transcription factor in soybean, is posttranslationally regulated and mediates dehydration-responsive element-dependent gene expression. Plant Physiology, 2013, 161(1):346-361 [百度学术]
Singh S, Chopperla R, Shingote P, Chhapekar S S, Deshmukh R, Khan S, Padaria J C, Sharma T R, Solanke A U. Overexpression of EcDREB2A transcription factor from finger millet in tobacco enhances tolerance to heat stress through ROS scavenging. Journal of Biotechnology, 2021, 336:10-24 [百度学术]
Mao L, Deng M, Jiang S, Zhu H, Yang Z, Yue Y, Zhao K. Characterization of the DREBA4-type transcription factor (SlDREBA4), which contributes to heat tolerance in tomatoes. Frontiers in Plant Science, 2020, 11:554520 [百度学术]
Du X, Li W, Sheng L, Deng Y, Wang Y, Zhang W, Yu K, Jiang J, Fang W, Guan Z, Chen F, Chen S. Over-expression of chrysanthemum CmDREB6 enhanced tolerance of chrysanthemum to heat stress. BMC Plant Biology, 2018, 18(1):178 [百度学术]
Li T, Wu Z, Xiang J, Zhang D, Teng N. Overexpression of a novel heat-inducible ethylene-responsive factor gene LlERF110 from Lilium longiflorum decreases thermotolerance. Plant Science, 2022, 319:111246 [百度学术]
Thomashow M F. Molecular basis of plant cold acclimation:Insights gained from studying the CBF cold response pathway. Plant Physiology, 2010, 154(2): 571-577 [百度学术]
Medina J, Bargues M, Terol J, Pérez-Alonso M, Salinas J. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiology, 1999, 119(2):463-470 [百度学术]
Jia Y, Ding Y, Shi Y, Zhang X, Gong Z, Yang S. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytologist, 2016, 212(2):345-353 [百度学术]
Zhao C, Zhang Z, Xie S, Si T, Li Y, Zhu J K. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiology, 2016, 171(4):2744-2759 [百度学术]
Novillo F, Medina J, Salinas J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(52):21002-21007 [百度学术]
Khan M, Hu J, Dahro B, Ming R, Zhang Y, Wang Y, Alhag A, Li C, Liu J H. ERF108 from Poncirus trifoliata (L.) Raf. functions in cold tolerance by modulating raffinose synthesis through transcriptional regulation of PtrRafS. Plant Journal, 2021, 108(3):705-724 [百度学术]
Lv K, Li J, Zhao K, Chen S, Nie J, Zhang W, Liu G, Wei H. Overexpression of an AP2/ERF family gene, BpERF13, in birch enhances cold tolerance through upregulating CBF genes and mitigating reactive oxygen species. Plant Science, 2020, 292:110375 [百度学术]
Hong Y, Wang H, Gao Y, Bi Y, Xiong X, Yan Y, Wang J, Li D, Song F. ERF transcription factor OsBIERF3 positively contributes to immunity against fungal and bacterial diseases but negatively regulates cold tolerance in rice. International Journal of Molecular Sciences, 2022, 23(2):606 [百度学术]
Xie Z, Yang C, Liu S, Li M, Gu L, Peng X, Zhang Z. Identification of AP2/ERF transcription factors in Tetrastigma hemsleyanum revealed the specific roles of ERF46 under cold stress. Frontiers in Plant Science, 2022, 13: 936602 [百度学术]
Chen J, Zhou Y, Zhang Q, Liu Q, Li L, Sun C, Wang K, Wang Y, Zhao M, Li H, Han Y, Chen P, Li R, Lei J, Zhang M, Wang Y. Structural variation, functional differentiation and expression characteristics of the AP2/ERF gene family and its response to cold stress and methyl jasmonate in Panax ginseng C.A. Meyer. PLoS ONE, 2020, 15(3): e0226055 [百度学术]
Zhao M, Li Y, Zhang X, You X, Yu H, Guo R, Zhao X. Genome-wide identification of AP2/ERF superfamily genes in Juglans mandshurica and expression analysis under cold stress. International Journal of Molecular Sciences, 2022, 23(23):15225 [百度学术]
Zhang Z, Li W, Gao X, Xu M, Guo Y. DEAR4, a member of DREB/CBF family, positively regulates leaf senescence and response to multiple stressors in Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11:367 [百度学术]
Bui L T, Giuntoli B, Kosmacz M, Parlanti S, Licausi F. Constitutively expressed ERF-VII transcription factors redundantly activate the core anaerobic response in Arabidopsis thaliana. Plant Science, 2015, 236:37-43 [百度学术]
Seok H Y, Tran H T, Lee S Y, Moon Y H. AtERF71/HRE2, an Arabidopsis AP2/ERF transcription factor gene, contains both positive and negative cis-regulatory elements in its promoter region involved in hypoxia and salt stress responses. International Journal of Molecular Sciences, 2022, 23(10):5310 [百度学术]
Tang W, Charles T M, Newton R J. Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine (Pinus Virginiana Mill.) confers multiple stress tolerance and enhances organ growth. Plant Molecular Biology, 2005, 59(4):603-617 [百度学术]
Zang Z, Lv Y, Liu S, Yang W, Ci J, Ren X, Wang Z, Wu H, Ma W, Jiang L, Yang W. A novel ERF transcription factor, ZmERF105, positively regulates maize resistance to exserohilum turcicum. Frontiers in Plant Science, 2020, 11:850 [百度学术]
Lu X, Zhang L, Zhang F, Jiang W, Shen Q, Zhang L, Lv Z, Wang G, Tang K. AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytologist, 2013, 198(4):1191-1202 [百度学术]
Gao H, Wu X, Yang X, Sun M, Xiao Y, Peng F.Silicon inhibits gummosis in peach via ethylene and PpERF-PpPG1 pathway. Plant Science, 2022, 322:111362 [百度学术]
Shoji T, Hashimoto T. Tobacco MYC2 regulates jasmonate inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes. Plant & Cell Physiology, 2011, 52:1117-1130 [百度学术]
Giri M K, Swain S, Gautam J K, Singh S, Singh N, Bhattacharjee L, Nandi A K.The Arabidopsis thaliana At4g13040 gene, a unique member of the AP2/EREBP family, is a positive regulator for salicylic acid accumulation and basal defense against bacterial pathogens. Journal of Plant Physiology, 2014, 171(10):860-867 [百度学术]
牟少亮, 申磊, 石星辰, 官德义, 何水林. 水稻OsERF96应答病原菌的表达及启动子的功能分析. 植物遗传资源学报, 2017,18(1):133-138 [百度学术]
Mou S L, Shen L, Shi X C, Guan D Y, He S L. Expression of OsERF96 response to pathogen and functional analysis of its promoter. Journal of Plant Genetic Resources, 2017, 18(1) : 133-138 [百度学术]
Yang H, Sun Y, Wang H, Zhao T, Xu X, Jiang J, Li J. Genome-wide identification and functional analysis of the ERF2 gene family in response to disease resistance against Stemphylium lycopersici in tomato. BMC Plant Biology, 2021, 21(1):72 [百度学术]
Wang L, Liu W, Wang Y. Heterologous expression of Chinese wild grapevine VqERFs in Arabidopsis thaliana enhance resistance to Pseudomonas syringae pv. tomato DC3000 and to Botrytis cinerea. Plant Science,2020, 293:110421 [百度学术]
Liu D, Chen X, Liu J, Ye J, Guo Z. The rice ERF transcription factor OsERF922 negatively regulates resistance to magnaporthe oryzae and salt tolerance. Journal of Experimental Botany, 2012, 63(10):3899-3911 [百度学术]
Tian Z, He Q, Wang H, Liu Y, Zhang Y, Shao F, Xie C. The potato ERF transcription factor StERF3 negatively regulates resistance to phytophthora infestans and salt tolerance in potato. Plant & Cell Physiology, 2015, 56(5):992-1005 [百度学术]
Huang P Y, Zhang J, Jiang B, Chan C, Yu J H, Lu Y P, Chung K, Zimmerli L. NINJA-associated ERF19 negatively regulates Arabidopsis pattern-triggered immunity. Journal of Experimental Botany, 2019, 70:1033-1047 [百度学术]