摘要
工业大麻作为一种重要的特种经济作物,已经实现全产业链发展,尤其是其韧皮纤维作为重要原料而被广泛应用于纺织、造纸、建筑、家居、绝缘材料、建材以及汽车零部件和复合材料。国内对工业大麻的研发和应用较早,工业大麻纺织产品在全球市场上具有极大地竞争力。在纺织工业中随着市场对纤维产量的需求越来越高,对品质的要求也越来越严格,科研人员需要不断选育优质高产的纤维型工业大麻品种。全基因组关联分析(GWAS, genome-wide association study)能够揭示作物表型与基因型之间的联系,利于挖掘性状相关基因和遗传基础信息,进而分析群体遗传结构,推动分子育种与品种性状改良有机结合培育高产高质、抗病抗逆的优良品种。目前该技术方法已广泛应用在棉花、水稻、玉米、小麦等农作物中,在工业大麻等主要麻类纤维作物中的研究也取得一定进展。因此,本研究对目前工业大麻中GWAS的应用情况及研究结果进行阐述,并对未来应用该技术的研究方向进行了简要说明,以期为工业大麻后续采用GWAS分析提供见解。
工业大麻(Cannabis sativa L.)是无毒品利用价值的一种类型,其与毒性相关的四氢大麻酚(THC, delta-9-tetrahydrocannabinol)成分的含量低于0.3%,是人类最早种植的纤维作物之
在对人类疾病遗传学的研究中,Risch
在前人的研究中对基因进行标记多采用微卫星标记(SSR, simple sequence repetition
据记载,大麻作为药物已有近6000年的使用历史,因含有活性THC,其种植和使用在许多国家受到监管和限制。随着相关政策的不断放宽,许多国家开始允许种植药用型和纤维型等不同类型的大麻品种。GWAS除用于探索表型和基因之间的联系外,还被广泛应用于群体结构遗传分析中。Soorni
工业大麻的纤维品质与其应用价值密切相关,深入探索与品质相关的关键基因是培育高品质品种的前提。为了探究工业大麻的开花时间和性别与纤维品质是否存在密切联系,Petit
工业大麻的生产种植过程存在感染病虫害的风险,容易导致减产和品质降低。目前,对于工业大麻虫害的研究主要集中在发现、预防虫害以及探究虫害对生长发育的影响等。Bakro
目前GWAS在工业大麻抗逆性研究中还未得到广泛应用,多数研究是结合生理生化指标和转录组学技术进行分析。干旱胁迫会导致工业大麻病虫害发病率增加,生长缓慢,延迟纤维和种子成熟,最终影响产量和品
根据工业大麻用途可将其品种分为药用型、纤用型、籽用型、籽纤兼用及其他兼用型。大麻素是大麻植物中存在的酚类化合物的统称,其主要成分有THC、四氢大麻酚酸(THCA, tetrahydrocannabinoid acid)、大麻二酚(CBD, cannabidiol)和大麻二酚酸(CBDA, cannabidiol acid),THC主要用于精神药物,而CBD也被证实具有很高的医药保健功
序号No. | 项目 Items | 取样部位 Sampling location | 基因/QTL/分子标记 Gene/QTL/molecular marker | 参考文献 Reference | |
---|---|---|---|---|---|
1 | 开花时间 | 嫩叶 | 6个QTL |
[ | |
2 | 性别决定 | 嫩叶 | 2个QTL |
[ | |
3 | 纤维质量 | 嫩叶 | 16个QTL |
[ | |
4 | 纤维含量 | 嫩叶 | LOC115705530、LOC115707511、LOC115704794、LOC115705371、LOC115708688和LOC115705875 |
[ | |
5 | 白粉病 | 茎叶 | CH25和MLO |
[ | |
白粉病 | 不同时间点接种病毒的叶片 | CsMLO1和CsMLO4 |
[ | ||
6 | 抗旱 |
吲哚乙酸 细胞分裂素 | 植物基部完全展开的第三对真叶 | AUX1(1)、IAA(2)、SAUR(4)、GH3(5) |
[ |
AHK2_3_4(4)和ARR-A(1) |
[ | ||||
赤霉素 | DELLA(1) |
[ | |||
脱落酸 | PP2C(1)和SnRK2(2) |
[ | |||
脱落酸 | 叶、根、茎皮、茎芽 | PYL4、PP2C-1 ~ PP2C-6、SAPK3 |
[ | ||
生长素 | 叶、根、茎皮、茎芽 | X15-1、X15-2、IAA1、IAA-2 |
[ | ||
7 | 耐盐性 | 种子 | XM_030641043.1、XM_030641906.1、XM_030648362.1、XM_030648308.1和 XM_030646898.1 |
[ | |
8 | 镉胁迫 | 幼苗 | CsMYB045, CsMYB016, CsMYB067,CsMYB098,CsMYB010,CsMYB061和CsMYB005 |
[ | |
9 | 大麻素合成 | / | 杂交后代 | THCAS样基因 |
[ |
/ | 雌花 | ANUCS501位点 |
[ | ||
/ | 顶端花序 | OLS |
[ | ||
/ | 顶端总状花序 | BKR |
[ | ||
大麻素氧化 环化酶 | / | SW6和VSSL_BtBD |
[ | ||
/ | CBCAS、THCAS和CBCAS |
[ | |||
橄榄醇合酶 | / | OLS1和OLS2 |
[ | ||
橄榄酸环化酶 | / | OAC |
[ | ||
大麻酸合酶 | / | CsPT1、CsPT4和CsPT7 |
[ |
/:表示文献中未涉及取样部位或具体性状
/: Indicate that the sampling site or specific traits is not mentioned in the literature
因测序技术的更新替代以及成本的不断下降,GWAS将应用于更多作物的不同领域研究中。GWAS方法的不断发展为大量性状基因的挖掘和研究提供了极大便利,所发掘的大量优异基因为分子设计育种及培育优良新品种奠定了坚实的基础。但目前GWAS技术也存在不足,其只能粗略预测候选基因的区段,还需结合转录组学等不同方法对候选基因区域内的基因进行功能注释、分析及对关键基因进一步筛选确定。随着数据统计分析的多元化,遗传学、分子生物学以及生物信息学的迅猛发展,更多技术方法不断与GWAS结合,如利用新开发的分子标记、泛基因组技术等与GWAS技术相结合将更准确地锁定目标性状基因和开展群体遗传进化等研究。最新系列研究表明,GWAS数据与泛基因组等技术相结合,可深度挖掘玉米等作物基因组组成及特征,发现核心基因家族及揭示其杂种优势的分子机
目前,综合GWAS在工业大麻中的应用情况,可以发现该技术在纤维品质、产量、抗性以及药用成分等方面的研究较少,这对后续的研究提供了研究方向同时也会给研究带来一定的挑战。本研究中论述的部分基因大多是通过转录组或基因组等分子生物学技术挖掘的,对已知基因的功能、调控机制及遗传机理等还缺少相关研究。随着工业大麻全基因组数据库的不断更新,探索种群遗传变异和具有重要应用价值的基因位点信息,对研究群体进化、优良性状遗传机理和分子遗传育种是必不可少的,是今后GWAS在工业大麻研究中应用的重点。目前的研究只能为改良特定性状的分子遗传育种提供理论基础,还不足以充分支持选育目标性状的优良品种。故而结合不同技术方法,继续挖掘工业大麻重要性状相关基因、验证基因功能、阐明调控通路和遗传机制及开展基因编辑,将为工业大麻开展定向分子育种选育符合市场需求的新品种提供支撑。
参考文献
Li H L. The origin and use of cannabis in eastern asia linguistic-cultural implications. Economic Botany, 1974, 28(3):293-301 [百度学术]
孙宇峰,张晓艳,王晓楠,田媛.汉麻籽油的特性及利用现状.粮食与油脂, 2019, 32(3):9-11 [百度学术]
Sun Y F, Zhang X Y, Wang X N, Tian Y. Characteristics and utilization status of hemp seed oil. Grain and Oil, 2019, 32(3):9-11 [百度学术]
苏芳芳,杨光,郑玉光.工业大麻种植及育种现状研究.中国中药杂志, 2022, 47(5):1190-1195 [百度学术]
Su F F, Yang G, Zheng Y G. Study on the current situation of planting and breeding of industrial Cannabis. Chinese Journal of Traditional Chinese Medicine, 2022, 47(5):1190-1195 [百度学术]
陈来成,杨占红,何秋星,黄浩寒,宋相志.工业大麻法规现状及其在化妆品中开发应用概况.日用化学品科学, 2020, 43(1):20-24 [百度学术]
Chen L C, Yang Z H, He Q X, Huang H H, Song X Z. Current status of industrial Cannabis regulations and its development and application in cosmetics. Detergent & Cosmetics, 2020, 43(1):20-24 [百度学术]
徐锋奎.大麻药理作用研究与临床应用新进展.中国医药情报,2004, 10(2):31-32 [百度学术]
Xu F K. New progress in pharmacological research and clinical application of cannabis. Chinese Medical Intelligence, 2004, 10(2):31-32 [百度学术]
Nalli Y, Arora P, Riyaz-Ul-Hassan S, Ali A. Chemical investigation of Cannabis sativa leading to the discovery of a prenylspirodinone with anti-microbial potential. Tetrahedron Letters, 2018, 59(25):2470-2472 [百度学术]
Nuutinen T. Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus. European Journal of Medicinal Chemistry, 2018, 157:198-228 [百度学术]
徐峻.大麻芯秆硫酸盐法制浆工艺参数的建模与优化.中国造纸学报, 2007, 22(4):28-31 [百度学术]
Xu J. Modeling and optimization of process variables for kraft pulping of hemp core. Journal of China Paper Industry, 2007, 22(4):28-31 [百度学术]
Zhao K Y, Tung C W, Eizenga G, Wright M H, Ali M L, Price A, Norton G J, Islam M R, Reynolds A, Mezey J, McClung A M, Bustamante C D, McCouch S. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications, 2011, 2(1): 467 [百度学术]
Tung C W, Zhao K Y, Wright M H, Ali M L, Jung J K, Kimball J, Tyagi W, Thomson M, McNally K L, Leung H, Kim H J, Ahn S N, Reynolds A, Scheffler B, Eizenga G, McClung A, Bustamante C D, McCouch S. Development of a research platform for dissecting phenotype-genotype associations in rice (Oryza spp.). Rice, 2010, 3: 205-217 [百度学术]
Risch N J, Merikangas K R. The future of genetic studies of complex human diseases. Science, 1996, 273: 1516-1517 [百度学术]
Huang X H, Wei X H, Tao S, Zhao Q, Qi F, Zhao Y, Li C Y, Zhu C L, Lu T T, Zhang Z W, Li M, Fan D L, Guo Y L, Wang A H, Wang L, Deng L W, Li W J, Lu Y Q, Weng Q J, Liu K Y, Huang T, Zhou T Y, Jing Y F, Li W, Zhang L, Buckler E, Qian Q, Zhang Q F, Li J Y, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 2010, 42(11): 961-967 [百度学术]
Li P P, Jiang J, Zhang G G, Miao S Y, Lu J B, Qian Y K, Zhao X Q, Wang W S, Qiu X J, Zhang F, Xu J L. Integrating GWAS and transcriptomics to identify candidate genes conferring heat tolerance in rice. Frontiers in Plant Science, 2023, 13: 1102938 [百度学术]
He S P, Sun G F, Geng X L, Gong W F, Pan H D, Jia Y H, Shi W J, Zhao P, Wang J D, Wang L Y, Xiao S H, Chen B J, Cui S F, You C Y, Xie Z M, Wang F, Sun J, Fu G Y, Peng Z, Hu D W, Wang L R, Pang B Y, Du X M. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton. Nature Genetics, 2021, 53: 916-924 [百度学术]
Yasir M, Kanwal H H, Hussain Q, Riaz M, Sajjad M, Rong J K, Jiang Y R. Status and prospects of genome-wide association studies in cotton. Frontiers in Plant Science, 2022,13:1019347 [百度学术]
Sertse D, You F M, Ravichandran S, Braulio, Soto-Cerda B J, Duguid S, Cloutier S. Loci harboring genes with important role in drought and related abiotic stress responses in flax revealed by multiple GWAS models. Theoretical and Applied Genetics, 2021, 134:191-212 [百度学术]
Li X, Guo D, Xue M, Li G, Yan Q, Jiang H, Liu H, Chen J, Gao Y, Duan L, Xie L. Genome-wide association study of salt tolerance at the seed germination stage in flax (Linum usitatissimum L.). Genes, 2022, 13(3):486 [百度学术]
You F M, Rashid K Y, Zheng C, Khan N, Li P, Xiao J, He L, Yao Z, Cloutier S. Insights into the genetic architecture and genomic prediction of powdery mildew resistance in flax (Linum usitatissimum L.). International Journal of Molecular Sciences, 2022, 23(9):4960 [百度学术]
Xie D W, Dai Z G, Yang Z M, Tang Q, Sun J, Xue Y, Song X X, Lu Y, Zhao D B, Zhang L G, Su J G. Genomic variations and association study of agronomic traits in flax. BMC Genomics, 2018, 19:512 [百度学术]
Li G, Wang Y N,Kwon S W, Park Y J. Association analysis of seed longevity in rice under conventional and high-temperature germination conditions. Plant Systematics and Evolution, 2014, 300(3):389-402 [百度学术]
Huang X H, Kurata N, Wei X H, Wang Z X, Wang A H, Zhao Q, Zhao Y, Liu K Y, Lu H Y, Li W J, Guo Y L, Lu Y Q, Zhou C C, Fan D L, Weng Q J, Zhu C L, Huang T, Zhang L, Wang Y C, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X P, Xu Q, Dong G J, Zhan Q L, Li C Y, Fujiyama A, Toyoda A, Lu T T, Qi F, Qian Q, Li J Y, Han B. A map of rice genome variation reveals the origin of cultivated rice. Nature, 2012, 490(7421):497-501 [百度学术]
Bakel H V, Stout J M, Cote A, Clarke C M, Sharpe A G, Hughes T R, Page J E. The draft genome and transcriptome of Cannabis sativa. Genome Biology, 2011, 12: R102 [百度学术]
徐益,张力岚,祁建民,张列梅,张立武.主要麻类作物基因组学与遗传改良:现状与展望.作物学报, 2021, 47(6): 997-1019 [百度学术]
Xu Y, Zhang L L, Qi J M, Zhang L M, Zhang L W. Genomics and genetic improvement of major hemp crops: [百度学术]
Current status and prospects. Acta Agronomica Sinica, 2021, 47(6): 997-1019 [百度学术]
Soorni A, Fatahi R, Haak D, Salami S A, Bombarely A. Assessment of genetic diversity and population structure in Iranian Cannabis germplasm. Scientific Reports, 2017, 7(1): 15668 [百度学术]
Kovalchuk I, Pellino M, Rigault P, Velzen R V, Ebersbach J, Ashnest J, Mau M, Schranz E, Alcorn J, Laprairie R B, McKay J K, Burbridge C, Schneider D, Vergara D, Kane N C, Sharbel T F. The genomics of Cannabis and its close relatives. Annual Review of Plant Biology, 2020, 71(1): 713-739 [百度学术]
Murray A W. Can gene-inactivating mutations lead to evolutionary novelty? Current Biology, 2020, 30(10): R465-R471 [百度学术]
Ren G P, Zhang X, Li Y, Ridout K, Serrano-Serrano M L, Yang Y Z, Liu A, Ravikanth G, Nawaz M A, Mumtaz A S, Salamin N, Fumagalli L. Large-scale whole-genome resequencing unravels the domestication history of Cannabis sativa. Science Advances, 2021, 7(29): eabg2286 [百度学术]
Gao S, Wang B S, Xie S S, Xu X Y, Zhang J, Li P, Yu Y Y, Yang W F, Zhang Y. A high-quality reference genome of wild Cannabis sativa. Horticulture Research, 2020, 7: 73 [百度学术]
Petit J, Salentijn E M J, Paulo M J, Denneboom C, Trindade L M. Genetic architecture of flowering time and sex determination in hemp (Cannabis sativa L.): A genome-wide association study. Frontiers in Plant Science, 2020, 11: 569958 [百度学术]
Pedró J P, Salentijn E M J, Paulo M J, Denneboom C, Loo E N V, Trindade L M. Elucidating the genetic architecture of fiber quality in hemp (Cannabis sativa L.) using a genome-wide association study. Frontiers in Genetics, 2020, 11: 566314 [百度学术]
Woods P, Campbell B J, Nicodemus T J, Cahoon E, Mullen J L, McKay J K. Quantitative trait loci controlling agronomic and biochemical traits in Cannabis sativa. Genetics, 2021, 219(2):iyab099 [百度学术]
Zhong R Q, Ye Z H. Secondary cell walls: Biosynthesis, patterned deposition and transcriptional regulation. Plant and Cell Physiology, 2014, 56(2):195-214 [百度学术]
Behr M, Legay S, Žižková E, Motyka V, Dobrev P I, Hausman J F, Lutts S, Guerriero G. Studying secondary growth and bast fiber development: The hemp hypocotyl peeks behind the wall. Frontiers in Plant Science, 2016, 7:1733 [百度学术]
Han L B, Li Y B, Wang H Y, Wu X, Li C L, Luo M, Wu S J, Kong Z, Pei Y, Jiao G L, Xia G X. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. The Plant Cell, 2013, 25(11):4421-4438 [百度学术]
Zhao Y, Sun Y F, Cao K, Zhang X Y, Bian J, Han C W, Jiang Y, Xu L, Wang X N. Combined use of specific length amplified fragment sequencing (SLAF-seq) and bulked segregant analysis (BSA) for rapid identification of genes influencing fiber content of hemp (Cannabis sativa L.). BMC Plant Biology, 2022, 22(1):250 [百度学术]
Bakro F, Wielgusz K, Bunalski M, Jedryczka M. An overview of pathogen and insect threats to fibre and oilseed hemp (Cannabis sativa L.) and methods for their biocontrol. Integrated Control in Oilseed Crops, 2018, 136:9-20 [百度学术]
Cranshaw W, Halbert S, Favret C, Britt K, Miller G. Phorodon cannabis Passerini (Hemiptera: Aphididae), a newly recognized pest in North America found on industrial hemp. Insecta Mundi, 2018, 662:1-12 [百度学术]
Cranshaw W, Schreiner M, Britt K, Kuhar T P, McPartland J, Grant J. Developing insect pest management systems for hemp in the United States: A work in progress. Journal of Integrated Pest Management, 2019, 10(1):26 [百度学术]
Ajayi O S, Samuel-Foo M. Hemp pest spectrum and potential relationship between helicoverpa zea infestation and hemp production in the United States in the face of climate change. Insects, 2021, 12(10):940 [百度学术]
Stack G M, Toth J A, Carlson C H, Cala A R, Marrero-González M I, Wilk R L, Gentner D R, Crawford J L, Philippe G, Rose J K C, Viands D R, Smart C D, Smart L B. Season-long characterization of high-cannabinoid hemp (Cannabis sativa L.) reveals variation in cannabinoid accumulation, flowering time, and disease resistance. Global Change Biology Bioenergy, 2021, 13:546-561 [百度学术]
Lyngkjær M F, Newton A C, Atzema J L, Baker S J. The barley mlo-gene: An important powdery mildew resistance source. Agronomie, 2000, 20:745-756 [百度学术]
Adams D J. Fungal cell wall chitinases and glucanases. Microbiology, 2004, 150:2029-2035 [百度学术]
Jongedijk E, Tigelaar H, Roekel J S C V, Bres-Vloemans S A, Dekker I, Elzen P J M, Cornelissen B J C, Melchers L S. Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants. The Methodology of Plant Genetic Manipulation: Criteria for Decision Making, 1995, 3:173-180 [百度学术]
McKernan K, Helbert Y, Kane L T, Ebling H, Zhang L, Liu B, McLaughlin S, Eaton Z, Kingan S, Baybayan P, Concepcion G, Jordan M, Riva A, Barbazuk B, Harkins T. Sequence and annotation of 42 cannabis genomes reveals extensive copy number variation in cannabinoid synthesis and pathogen resistance genes. Bio-archive, 2020, DOI:10.1101/2020.01.03.894428 [百度学术]
Pépin N, Hebert F O, Joly D L. Genome-wide characterization of the MLO gene family in Cannabis sativa reveals two genes as strong candidates for powdery mildew susceptibility. Frontiers in Plant Science, 2021, DOI:10.3389/fpls.2021. 729261 [百度学术]
Abot A, Bonnafous C, Touchard F, Thibault F, Chocinski-Arnault L, Lemoine R, Dédaldéchamp F. Effects of cultural conditions on the hemp (Cannabis sativa) phloem fibres: Biological development and mechanical properties. Journal of Composite Materials, 2013, 47(8):1067-1077 [百度学术]
Mackay C E, Christopher Hall J, Hofstra G, Fletcher R A. Uniconazole-induced changes in abscisic acid, total amino acids, and proline in Phaseolus vulgaris. Pesticide Biochemistry Physiology, 1990, 37(1), 74-82 [百度学术]
姜颖, 赵越, 孙全军, 李振伟.植物生长调节剂在植物生长发育中的应用.黑龙江科学, 2018, 9(24):4-7,11 [百度学术]
Jiang Y, Zhao Y, Sun Q J, Li Z W. Application of plant growth regulators in plant growth and development. Heilongjiang Science, 2018, 9(24):4-7,11 [百度学术]
Jiang Y, Sun Y F, Zheng D F, Han C W, Cao K, Xu L, Liu S X, Cao Y Y, Feng N J. Physiological and transcriptome analyses for assessing the effects of exogenous uniconazole on drought tolerance in hemp (Cannabis sativa L.). Scientific Reports, 2021, 11(1):14476 [百度学术]
Gao C C, Cheng Z H, Zhao L, Yu Y T, Tang Q, Xin P F, Liu T M, Yan Z, Guo Y, Zang G G. Genome-wide expression profiles of hemp (Cannabis sativa L.) in response to drought stress. International Journal of Genomics, 2018, 2018:3057272 [百度学术]
Sun J, Chen J Q, Zhang X Y, Xu G C, Yue Y, Dai Z G, Su J G. Genome-wide association study of salt tolerance at the germination stage in hemp. Euphytica, 2023, 219:5 [百度学术]
Cao K, Sun Y F, Han C W, Zhang X Y, Zhao Y, Jiang Y, Jiang Y Z, Sun X L, Guo Y X, Wang X N. The transcriptome of saline-alkaline resistant industrial hemp (Cannabis sativa L.) exposed to NaHCO3 stress. Industrial Crops and Products, 2021, 170:113766 [百度学术]
Yin M, Pan G, Tao J, Zhao L N, Zheng L, Jiang H, Tang H J, Li C, Li J J, Chen A G,Deng Y, Zhang C P, Li D F, Husng S Q. Genome-wide identification of MYB gene family reveals their potential functions in cadmium stress response and the regulation of cannabinoid biosynthesis in hemp (Cannabis sativa L.). Preprint, 2021, http://dx.doi.org/10.21203/rs.3.rs-156720/v2 [百度学术]
Allen K D, Torres A, Cesare K D, Gaudino R. Evolution, expansion and characterization of cannabinoid synthase gene family in Cannabis sativa.Bio-archive, 2022,http://dx.doi.org/10.1101/2022.11.18.517131 [百度学术]
Cheng Y F, Kang N, Chen Y Z, Hou C, Yu H B, Yu H T, Chen S L, Guo X T, Dong L L. Identification of histone acetyltransferase genes responsible for cannabinoid synthesis in hemp. Chinese Medical Journal, 2023, 18(1): 16 [百度学术]
Sirikantaramas S, Morimoto S, Shoyama Y, Ishikawa Y, Wada Y, Shoyama Y, Taura F. The gene controlling marijuana psychoactivity. Journal of Biological Chemistry, 2004, 279:39767-39774 [百度学术]
Taura F, Sirikantaramas S, Shoyama Y, Yoshikai K, Shoyama Y, Morimoto S. Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Letters, 2007, 581:2929-2934 [百度学术]
Laverty K U, Stout J M, Sullivan M J, Shah H, Gill N, Holbrook L, Deikus G, Sebra R, Hughes T R, Page J E, Bakel H V. A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci.Genome Research, 2019, 29(1):146-156 [百度学术]
Weiblen G D, Wenger J, Craft K J, ElSohly M A, Mehmedic Z, Treiber E L, Marks M D. Gene duplication and divergence affecting drug content in Cannabis sativa. New Phytologist, 2015, 208(4):1241-1250 [百度学术]
Henry P, Khatodia S, Kapoor K, Gonzales B, Middleton A, Hong K, Hilyard A, Johnson S, Allen D, Chester Z, Jin D, Rodriguez Jule J C, Wilson I, Gangola M, Broome J, Caplan D, Adhikary D, Deyholos M K, Morgan M, Hall O W, Guppy B J, Orser C. A single nucleotide polymorphism assay sheds light on the extent and distribution of genetic diversity, population structure and functional basis of key traits in cultivated North American cannabis. Journal of Cannabis Research, 2020, 2(1): 26 [百度学术]
Page J E, Stout J M. US20190382734A1 Cannabichromenic acid synthase from Cannabis sativa.United States: National Research Council of Canada , 2017 [百度学术]
Vergara D, Huscher E L, Keepers K G, Givens R M, Cizek C G, Torres A, Gaudino R, Kane N C. Gene copy number is associated with phytochemistry in Cannabis sativa. AoB Plants, 2019,11:plz074 [百度学术]
Gülck T, Møller B L. Phytocannabinoids: Origins and biosynthesis. Trends in Plant Science, 2020, 25(10): 985-1004 [百度学术]
Innes P, Vergara D. Genomic description of critical upstream cannabinoid biosynthesis genes.Bio-archive, 2022, DOI:10.1101/2022.12.15.520586 [百度学术]
Fulvio F, Paris R, Montanari M, Citti C, Cilento V, Bassolino L, Moschella A, Alberti I, Pecchioni N, Cannazza G, Mandolino G. Analysis of sequence variability and transcriptional profile of cannabinoid synthase genes in Cannabis sativa L. chemotypes with a focus on cannabichromenic acid synthase. Plants, 2021, 10: 1857 [百度学术]
Welling M T, Liu L, Kretzschmar T, Mauleon R, Ansari O, King G J. An extreme-phenotype genome‐wide association study identifies candidate cannabinoid pathway genes in Cannabis. Scientific Reports, 2020, 10(1): 18643 [百度学术]
Gagne S J, Stout J M, Liu E, Boubakir Z, Clark S, Page J E. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(31): 12811-12816 [百度学术]
Campbell B J, Berrada A F, Hudalla C, Amaducci S, McKay J K. Genotype × environment interactions of industrial hemp cultivars highlight diverse responses to environmental factors. Agrosystems, Geosciences & Environment, 2019, 2:1-11 [百度学术]
Cagirici H B, Andorf C M, Sen T Z. Co-expression pan-network reveals genes involved in complex traits within maize pan-genome. BMC Plant Biology, 2022, 22: 595 [百度学术]
Jin S K, Han Z G, Hu Y, Si Z F, Dai F, Lu H, Cheng Y, Li Y Q, Zhao T, Fang L, Zhang T Z. Structural variation (SV)-based pan-genome and GWAS reveal the impacts of SVs on the speciation and diversification of allotetraploid cottons. Molecular Plant, 2023, 16(4): 678-693 [百度学术]
Weisweiler M, Arlt C, Wu B Y, Inghelandt D V, Hartwig T, Stich B. Structural variants in the barley gene pool: Precision and sensitivity to detect them using short-read sequencing and their association with gene expression and phenotypic variation.Theoretical and Applied Genetics, 2022, 135(10): 3511-3529 [百度学术]
Sukegawa S, Nureki O, Toki S, Saika H. Genome editing in rice mediated by miniature size Cas nuclease SpCas12f. Frontiers in Genome Editing, 2023, DOI: http://dx.doi.org/10.3389/fgeed.2023.1138843 [百度学术]
Tiwari J, Singh A, Behera T. CRISPR/Cas genome editing in tomato improvement: Advances and applications. Frontiers in Plant Science, 2023, 14: 1121209 [百度学术]
Farooq S, Shahzadi A, Razzaq A, Saleem F, Wani S H, Sandhu K. Advances in genome editing for maize improvement. Springer, 2023, DOI:10.1007/978-3-031-21640-4_9 [百度学术]