摘要
对具有单性结实和自交不亲和特性的番茄自交系85-6进行了研究。通过花的外观观察、花粉活力测定和胚珠发育观察,发现85-6具有正常的花结构,花粉活力正常,胚珠发育正常,表明85-6不存在雌蕊或雄蕊的败育现象。通过自然自交、人工辅助自交和杂交发现,85-6在正常温度环境下存在自交不亲和的现象,自交后得到无籽果实,而作为母本或父本进行杂交时,均可获得杂交后代。在花期遇到温度胁迫(日平均气温<10 ℃或>35 ℃)后,85-6则可完成正常的授粉受精得到正常的有籽果实,但受精后的果实发育迟缓,果实变小,且得到的种子萌发率只有29.75%。在正常温度和温度胁迫条件下,蕾期去雄后均可获得无籽果实,表明85-6番茄具有单性结实的特性。通过对已报道的单性结实基因的序列比对,发现4个单性结实相关结实基因pat-2、pat-k、pad-1、hydra在85-6和79-1之间不存在基因序列上的差异,推测控制85-6单性结实的基因可能是一个新的基因。85-6番茄材料的发现丰富了番茄单性结实和自交不亲和资源,为番茄的单性结实和自交不亲和育种以及相关机制的研究提供了较好的重要材料。
单性结实是指天然或人工作用下使胚珠不经授粉形成无籽果实的现象。根据其发生条件,一般可分为兼性单性结实和专性单性结实,兼性单性结实是指由遗传基因控制同时又受环境(高温、低温)刺激而形成的单性结实,既可产生无籽果实,也可产生有籽果
番茄是一种喜温蔬菜,其生长发育的最适温度为20~25 ℃,低温(<15 ℃)和高温(>28 ℃)环境均会影响番茄的坐果,导致其落花落果。而单性结实番茄具有在高温、低温等逆境条件下仍能正常坐果的特性,且研究表明,单性结实番茄发育成无籽果实,品质优,口感好,畸形果率降低,商品性好,并能提高果实耐贮
目前,已报道的番茄单性结实基因已有pat、pat2、pat3、pat4、pat4.1、pat4.2、pat5.1、pat9.1、pat-k、pad-1、hydra,均为隐性基因,且常与雄性或雌性不育连
本研究中的单性结实材料樱桃番茄自交系85-6,由粉贝贝自交分离后代经过多代自交后获得。通过蕾期去雄、自交、杂交、逆温处理、花粉活力检测等试验,验证该自交系材料的单性结实及自交不亲和的特性,以期为番茄单性结实及自交不亲和育种丰富育种材料,并为后续相关性状分子机制的研究奠定基础。
单性结实番茄自交系85-6,有限生长类型,粉色圆果樱桃番茄,单果重约25 g;普通非单性结实自交系番茄79-1,无限生长类型,粉色圆果樱桃番茄,单果重约25 g。两份材料均由青岛农业大学园艺学院番茄育种课题组提供。
于2021年秋季和2022年春季种植,种植地点为青岛农业大学科研温室、青岛地平线蔬菜合作社种植基地。两种材料均种植30株,设3次重复,常规田间管理。田间自然自交坐果后,统计其坐果率及种子总数。
对85-6和79-1开花当天的花进行形态观察,主要观察花药的形态及颜色、柱头长短、柱头是否外露、花瓣形态、萼片形态,观察85-6与79-1在花的形态上是否存在明显差异。
对85-6和79-1开花前一天、开花当天、开花后2、4、6、8 d以及红熟期的子房进行观察,观察两份材料子房膨大的情况,以及果实大小的差异。
采用蕾期去雄的方法,去雄35 d后,对去雄花进行坐果率统计。
田间实际种植过程中发现,在夏季塑料大棚连续多日高温和冬季日光温室内连续多日低温的情况下,对于单性结实材料85-6坐果情况和结种子情况均有较大的影响。因此,分别于2022年夏季、2022年冬季进行逆温胁迫鉴定评价。
2022年7月底,青岛地平线蔬菜专业合作社塑料大棚内温度持续高温,连续一周以上日平均气温>35 ℃,对85-6和79-1高温坐果率和结实量进行统计;2022年12月15日开始,青岛鸿得源现代农业科技有限公司日光温室9∶00开始通风,14∶00关闭通风口,16∶00左右覆盖保温被,持续一周,保持日平均气温<10 ℃,尤其夜温<8 ℃,对两份材料的坐果率和结种子数进行统计。
采用Excel软件对检测数据进行统计分析与作图,使用DPS数据处理软件对实验数据进行方差分析与显著性分析。
采用TTC染色法进行花粉生活力的测定。取两份材料当天开放的花的少许花粉放在干净整洁的载玻片上,加1~2滴0.5% TTC溶液,搅匀后盖上盖玻片,静置10~15 min后置于显微镜(10×10)下镜检,凡被染成红色的花粉,其活力强视为可育花粉,淡红色次之,无色为没有活力或不育花粉。花粉活力(%)=(染色花粉粒数/花粉粒总数)×100%。
选取85-6与79-1长势相近的植株,各3株,于开花0 d、6 d和12 d取子房,固定在FAA固定液中,4 ℃保存。参考阮美
对85-6和79-1分别进行人工授粉自交,于授粉后24 h对柱头取样,使用FAA固定液固定24 h以上,参考胡适
采用人工授粉的方式对85-6和79-1分别进行自交和杂交(正反交),并于果实成熟采收后统计坐果率和种子数量。
为了阐明控制85-6番茄单性结实的基因是否与前人报道的一致,对前人已经定位和克隆的控制番茄单性结实的主要基因pat-2、pat-k、pad-1、hydra,在85-6和79-1番茄中进行了基因全长的扩增和序列比对。扩增引物序列见
基因ID Gene ID | 全长(bp) Full length | 染色体位置 Chromosome position | 引物序列(5’-3’) Primer sequences (5’-3’) | 参考文献 References |
---|---|---|---|---|
pat-2 (Solyc04g080490) | 1905 | ch04:62628881~62626977 | F:GCGTGGGTTAGGACTGAACA R:GCGGCATCATGAGTGGTCTA |
[ |
pat-k/SlAGL6 (Solyc01g093960) | 5178 | ch01:77797922~77792745 | F1:TGTTGCAAGAAGAGATATCCAAGA R1:AGAACCAAAAACCCCTTCTCA F2:TGCAGCACTTTACACAAGCAC R2:TGGAAAGTGGAAAAAGACTTAGCA F3:TGTGTTGCAAAATGAAAAACTTGT R3:CCTGTGTTTCTCTTTCACCACA F4:GCCTTGAAATCAGTAAGAGTATTGGT R4:CACCAAGATGACGCTCCTGA F5:GAACAGATGGAGGAGCTTCGT R5:TCGATCCTTTGTTTTGCTCACT |
[ |
pad-1 (Solyc03g120450) | 6384 | ch03:63283055~63276672 |
F1:CTAAGGCACAAAAAGGGAAGGC R1:TGTCACTCCAAACATCATGGGA F2:GATTATGACTGGCCACTGAGCT R2:AGCCCTACCACATTCCTAGTCT F3:GCCGGTGCAAATCAGGTAAAAT R3:AAACATAACGACCGAATCCCCA F4:GGTGTCCTCAATAGTGCTCCAA R4:ACCATCATCATTCGTCCACAGA F5:TGTTAATCCCGGCAATCCATCA R5:AGAGGTGTCATACATGCTGGTT F6:AGTGACTCTTGACACAACCAGA R6:GCTAGTGCCATGTTTCAGTTCA |
[ |
Hydra (Solyc07g063670) | 1310 | ch07:65909866~65911175 | F:AAACACCATAGCTAGCCAGACC R:TTGTTGTTTTCAATCCGTCCCG |
[ |
F表示正向引物,R表示反向引物
F means forward primer,R means reverse primer
从

图1 85-6与79-1番茄花与果实形态
Fig. 1 Morphology of flowers and fruits of tomato lines 85-6 and 79-1
A:两材料花的形态;B:常温下两份材料开花前1d、开花当天、开花后2、4、6、8d的子房;C:两份材料常温下成熟果实形态;Bars=1cm
A: Morphological observation of flowers;B: Ovary development on the day before flowering, the day after flowering and the 2nd, 4th, 6th and 8th days after flowering of the two materials; C: Mature fruit morphology of two materials at normal temperature; Bars=1cm
通过田间调查发现,85-6和79-1在正常温度下,自然自花授粉后坐果率无显著性差异,79-1平均单果种子数为23.7~25.6,而85-6种子数量明显少于79-1,绝大多数果实均为无籽果实,2021年秋季收获的果实中,只有1个果实内有1粒种子,其余36个果实内均未有种子;2022年春季收获218个果实,只得到6粒种子,平均单果种子数仅为0.03(
种植季节 Seasons | 自交系 Inbred lines | 坐果率(%) Fruit setting rate | 果实数 Number of fruits | 种子数 Number of seeds | 单果平均种子数 Average number of seeds per fruit |
---|---|---|---|---|---|
2021年秋季 | 85-6 | 93.32±3.87 | 37 | 1 | 0.027 |
Autumn 2021 | 79-1 | 91.30±4.15 | 36 | 922 | 25.61 |
2022年春季 | 85-6 | 93.32±3.87 | 218 | 6 | 0.028 |
Spring 2022 | 79-1 | 91.30±4.15 | 41 | 973 | 23.73 |
由
自交系 Inbred lines | 坐果率(%) Fruit setting rate | 收获果实数 Number of fruits | 种子数 Number of seeds |
---|---|---|---|
85-6 | 91.26±3.01a | 43 | 0 |
79-1 | 5.10±6.08b | 1 | 0 |
同列数据后不同小写字母表示在P<0.05水平下差异显著;下同
Different letters after the same column data indicate significant differences at the level of P < 0.05;The same as below

图2 蕾期去雄后85-6和79-1的坐果及果实发育情况
Fig. 2 Fruit setting and fruit development of two materials after emasculation in bud stage
A:79-1;B:85-6;A、B图横线上为自然情况下未去雄时成熟果实,横线下所有果实均为去雄后35d的果实;Bars=2cm
A: 85-6; B: 79-1; On the horizontal lines of figures A and B, all the fruits are mature in natural conditions, and all the fruits under the horizontal lines are 35 days after emasculation; Bars=2cm
逆温(>35 ℃的高温和<10 ℃的低温)会导致具有兼性单性结实特性的番茄产生单性结实,为了验证85-6番茄是否为兼性单性结实番茄,对花期持续高温和持续低温环境下,两份材料的坐果和结实情况进行了田间调查分析。结果显示,在夏季塑料大棚日平均气温>35 ℃和冬季日光温室日平均气温<10℃的情况下,对单性结实和非单行结实番茄的坐果和结实均有一定的影响。相比正常温度,连续高温或低温环境下,非单性结实番茄79-1坐果率明显下降,分别为74.85%和80.62%(
自交系 Inbred lines | 正常温度下坐果率(%) Fruit setting rate at normal temperature | 高温胁迫后坐果率(%) Fruit setting rate after high temperature stress | 低温胁迫后坐果率(%) Fruit setting rate after low temperature stress | 单果种子数 Number of seeds per fruit | 种子发芽率(%) Rate of emergence |
---|---|---|---|---|---|
85-6 | 94.78±3.81a | 83.45±8.21a | 94.21±8.45a | 8.3±2.00b | 29.75±2.75b |
79-1 | 92.83±8.54a | 74.85±0.78b | 80.62±4.69b | 19.8±3.01a | 99±0.81a |

图3 温度胁迫对79-1和85-6果实坐果及结实情况的影响
Fig.3 Effects of temperature inversion stress on fruit setting and seed fruiting of 79-1 and 85-6
A:79-1;B:85-6;A、B图从左至右依次为常温、夏季高温、冬季低温的坐果及结实情况;Bars=1 cm
A:79-1;B:85-6;In figures A and B,from left to right,the fruit setting and fruiting conditions are normal temperature,high temperature in summer and low temperature in winter;Bars=1 cm
对染色后的花粉进行镜检后发现,两份材料花粉活力并无显著性差异,85-6的花粉活力为56.33%,79-1的花粉活力为52.67%(
自交系 Inbred lines | 花粉活力(%) Pollen vigor | 花粉数量 Pollen number |
---|---|---|
85-6 | 56.33±2.08 | 72±4.56 |
79-1 | 51.67±1.52 | 79±6.79 |

图4 85-6与79-1花粉活力
Fig.4 Observation on pollen vigor of 85-6 and 79-1
A为10×物镜下85-6花粉活力观察;B为10×物镜下79-1花粉活力观察
A Shows the observation of 85-6 pollen vitality under 10× objective lenses;B Shows the observation of 85-6 pollen vitality under 10×objective lenses
从开花当天子房的石蜡切片中可以看到,85-6与79-1均有正常发育且形态饱满的胚珠,数量从几粒到十几粒不等(

图5 85-6与79-1子房内的胚珠
Fig.5 Observation on ovule development
Bars=200 μm
观察发现单性结实番茄85-6自交授粉24h后,花粉在柱头上能够正常萌发,但是花粉管不能在柱头内正常伸长(

图6 85-6和79-1自交24h后花粉在柱头的萌发情况
Fig.6 Pollen germination on stigma after 24 hours of self-pollination of 85-6 and 79-1
A:85-6自交后花粉萌发情况,上图为荧光下观察,下图为明场下观察;B:79-1自交后花粉萌发和花粉管伸长情况,左图荧光下观察,右图为明场下观察(10×下观察,Bars=250μm)
A: Pollen germination after self-pollination of 85-6, the above figure shows the observation under fluorescence, and the following figure shows the observation under bright field; B: Pollen germination and pollen tube elongation after self-pollination of 79-1,The left figure shows the observation under fluorescence, and the right figure shows the observation under bright field(Observed under 10×, Bars=250μm)
采用去雄后人工辅助授粉进行自交及正反交试验结果显示,85-6人工辅助授粉自交的情况下,能够保持较高的坐果率(94.7%),但果实内大多无种子形成;79-1自交则形成正常的有籽果实;正反交后两者均能保持较高的坐果率,并能形成种子(
处理 Treatments | 坐果率(%) Fruit setting rate | 果实数量 Number of fruits | 种子数 Number of seeds | 单果种子数 Number of seeds per fruit |
---|---|---|---|---|
85-6人工自交 Artificial assisted selfing of 85-6 | 94.7±4.7 | 20 | 1 | 0.05 |
79-1人工自交 Artificial assisted selfing of 79-1 | 92.3±3.5 | 20 | 346 | 17.30 |
85-6×79-1 | 91.67±2.05 | 4* | 42 | 10.50 |
79-1×85-6 | 92.31±5.6 | 12 | 75 | 6.25 |
*杂交果实数为15,但是果实转色后温室爆发青虫,大部分果实被虫子吃掉,最后只统计到了4个果实
* The number of hybrid fruits is actually 15, but due to the outbreak of pests in greenhouse, most of the fruits were eaten by caterpillars, and finally only 4 fruits were counted
Nunome
本研究发现一份新的番茄单性结实材料85-6,该材料与前人报道的单性结实材料所具有的的特性均有所不同。在目前已经被发现的单性结实材料中,pat番茄突变体的雄蕊和胚珠存在部分畸
单性结实番茄在高低温逆境下具有自然结实能力很强、可稳定遗传、品质高、无畸形果、无籽果实等优势,是未来番茄栽培的重要研究方向之一。而自交不亲和性番茄作为母本在杂交制种中可以省去去雄操作,省时省工,是番茄育种中的一个重要的性状。虽然有关番茄单性结实的资源发现得比较早,但对于单性结实的机制仍缺乏更为广泛和深入的研究,且在实际的农业生产中极度缺少可应用的单性结实及自交不亲和的品系。本研究丰富了番茄育种材料资源,为多抗性单性结实新品种的培育奠定了基础,且为相关机制的研究提供了较好的研究材料。
本研究单性结实材料樱桃番茄自交系85-6,由粉贝贝自交分离后代经过多代自交后获得。通过蕾期去雄、自交、杂交、逆温处理、花粉活力检测等试验,结果表明,85-6番茄在常温下存在单性结实的特性,且该性状可以稳定遗传;且85-6番茄花粉能够正常萌发,具有较高的花粉活力,但人工自交授粉却表现为自交不亲和特性;而在持续高温(日平均气温>35℃)或持续低温(日平均气温<10℃)的情况下,能够完成自交授粉受精并形成种子,但果实较小,且转色时间延长,所形成的种子发芽率较低,约为30%。通过与已报道的番茄单性结实基因序列的比对,发现控制该番茄材料单性结实的基因可能是一个新的基因。
参考文献
陈学好,陶俊,曹碚生. 园艺作物单性结实的类型. 生物学通报, 2001, 35(9): 6-7 [百度学术]
Chen X H, Tao J, Cao P S. Types of parthenocarpy in horticultural crops. Bulletin of Biology, 2001, 35(9): 6-7 [百度学术]
南思楠,邹薛,闫道良. 植物单性结实的发生诱因及其机制研究. 安徽林业科技, 2021, 47(5): 11-15, 35 [百度学术]
Nan S N, Zou X, Yan D L. Study on inducements and mechanism for parthenocarpy in plants. Anhui Forestry Science & Technology, 2021, 47(5): 11-15, 35 [百度学术]
凌丹燕,张清杨,刘姗,丁燕倩,吴旭峰,孙莉莉,郭卫东,廖芳蕾. 植物生长素影响单性结实的研究进展. 浙江师范大学学报:自然科学版, 2015, 38(2): 201-205 [百度学术]
Ling D Y, Zhang Q Y, Liu S, Ding Y Q, Wu X F, Sun L L, Guo W D, Liao F L. The progress of parthenocarpy in plant. Journal of Zhejiang Normal University: Natural Science Edition, 2015, 38(2): 201-205 [百度学术]
许楚楚. 利用植物生长物质诱导梨单性结实的研究. 杭州: 浙江大学, 2017 [百度学术]
Xu C C. Study on parthenocarpy induced by plant growth substances in pears. Hangzhou: Zhejiang University, 2017 [百度学术]
Cheng C X, Jiao C, Singer S D, Gao M, Xu X Z, Zhou Y M. Gibberellin-induced changes in the transcriptome of grapevine (Vitis labrusca×V. vinifera) cv. Kyoho flowers. BMC Genomics, 2015,16(1): 2-16 [百度学术]
Serrani J C, Fos M, Atarés A, García-Martínez J L. Effect of gibberellin andauxin on parthenocarpic fruit growth induction in the cv Micro-Tom of tomato. Journal of Plant Growth Regulation, 2007, 26:211-221 [百度学术]
Abad M, Monteiro A A. The use of auxins for the producti n of greenhouse tomatoes in mild-winter conditions: A review. Scientific Horticulture: Amsterdam, 1989, 38: 167-192 [百度学术]
Gustafson F G. Parthenocarpy: Natural and artificial. Botanical Review, 1942, 8: 599-654 [百度学术]
Fos M, Nuez F, García-Martínez J L. The gene pat-2, which induces naturalparthenocarpy, alters the gibberellin content in unpollinated tomato ovaries. Plant Physiology, 2000, 122:471-479 [百度学术]
Molesini B, Pandolfini T, Rotino G L, Dani V, Spena A, Biotecnologie D. Aucsia gene silencing causes parthenocarpic fruit development in tomato. Plant Physiology, 2009, 149(1): 534-548 [百度学术]
Pandolfini T, Rotino G L, Camerini S, Defez R, Spena A. Optimisation of transgene action at the post-transcriptional level: High quality parthenocarpic fruitsin industrial tomatoes. BMC Biotechnology, 2002, 2: 1-11 [百度学术]
de Jong M, Wolters-Arts M, Feron R, Mariani C, Vriezen W H. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant Journal, 2009, 57: 160-170 [百度学术]
Goetz M, Hooper L C, Johnson S D, Rodrigues J C M, Vivian-Smith, Koltunow A M. Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in arabidopsis and tomato. Plant Physiology, 2007, 145: 351-366 [百度学术]
Liu S, Zhang Y, Feng Q, Qin L, Pan C, Lamin-Samu A T, Lu G. Tomato AUXIN RESPONSE FACTOR 5 regulates fruit set and development via the mediation of auxin and gibberellin signaling. Scientific Reports, 2018, 8: 1-16 [百度学术]
Rounis V, Skarmoutsos K, Tsaniklidis G, Nikoloudakis N, Delis C, Karapanos I, Aivalakis G. Seeded and parthenocarpic cherry tomato fruits exhibit similar sucrose, glucose, and fructose levels, despite dissimilarities in UGPase and SPS gene expression and enzyme activity. Journal of Plant Growth Regulation, 2015, 34: 47-56 [百度学术]
王利英,石瑶,刘文明,于海龙. 番茄单性结实遗传效应分析和新材料的选育. 天津农业科学, 2008(2): 38-40 [百度学术]
Wang L Y, Shi Y, Liu W M, Yu H L. Genetic effect of parthenocarpy and new lines selection in tomato. Tianjin Agricultural Science, 2008(2): 38-40 [百度学术]
Mao Z C, Yu Q J, Zhen W, Guo J Y, Hu Y L, Gao Y, Lin Z P. Expression of ipt gene driven by tomato fruit specific promoter and its effects on fruit development of tomato. Chinese Science Bulletin, 2002, 11: 928-933, 969 [百度学术]
Wang L Y, Shi Y, Liu W M, Yu H L. Genetic effect of parthenocarpy and new lines selection in tomato. Tianjin Agricultural Sciences, 2008, 14(2): 38-40 [百度学术]
Takisawa R, Maruyama T, Nakazaki T, Kataoka K,Saito H, Koeda S, Nunome T, Fukuoka H, Kitajima A. Parthenocarpy in the tomato (Solanum lycopersicum L.) cultivar ‘MPK-1’ is controlled by a novel parthenocarpic gene. The Horticulture Journal, 2017, 86(4): 487-492 [百度学术]
Takisawa R, Nakazaki T, Nunome T, Fukuoka H, Kataoka K, Saito H, Habu T, Kitajima A. The parthenocarpic gene Pat-k is generated by a natural mutation of SlAGL6 affecting fruit development in tomato (Solanum lycopersicum L.). BMC Plant Biology, 2018, 18: 1-12 [百度学术]
Matsuo S, Miyatake K, Endo M, Urashimo S, Kawanishi T, Negoro S, Shimakoshi S, Fukuoka H. Loss of function of the Pad-1 aminotransferase gene, which is involved in auxin homeostasis, induces parthenocarpy in Solanaceae plants. PNAS, 2020, 117(23): 12784-12790 [百度学术]
Gracia R P, Roque E, Medina M, Rochina M, Hamza R, Angarita-Díaz M P, Moreno V, Pérez-Martín F, Lozano R, Cañas L, BeltránJ P, Gómez-Mena C. The parthenocarpic hydra mutant reveals a new function for a SPOROCYTELESS-like gene in the control of fruit set in tomato. New Phytologist, 2017, 214(3): 1198-1212 [百度学术]
张祥胜,陈日远,刘厚诚. 蔬菜单性结实研究进展//中国园艺学会第五届青年学术研讨会. 中国园艺学会第五届青年学术讨论会论文集. 广州: 广州出版社, 2002: 396-404 [百度学术]
Zhang X S, Chen R Y, Liu H C. Research progress on parthenocarpy of vegetables//The 5th Youth Symposium of China Horticultural Society. Proceedings of the 5th Youth Symposium of China Horticultural Society. Guangzhou: Guangzhou Publishers, 2002: 396-404 [百度学术]
张少丽,邵景成,胡志峰,魏兵强. 番茄单性结实研究进展. 园艺学报, 2016, 43(1): 183-192 [百度学术]
Zhang S L, Shao J C, Hu Z F, Wei B Q. Research advance in tomato parthenocarpy. Acta Horticulturae Sinica, 2016, 43(1): 183-192 [百度学术]
张映,陈钰辉,连勇,刘富中. 园艺植物单性结实的分子研究进展. 园艺学报, 2018, 45(7): 1402-1414 [百度学术]
Zhang Y, Chen Y H, Lian Y, Liu F Z. Research progress on molecules of parthenocarpy in horticultural plants. Acta Horticulturae Sinica, 2018, 45(7): 1402-1414 [百度学术]
Liu W M, An Z X. The researches about the parthenocarpic tomato and eggplant in Japan. Journal of Changjiang Vegetables, 2006, 4: 38-39 [百度学术]
阮美颖,叶青静,程远,王荣青,李志邈,姚祝平,万红建,周国治,陶佳翠. 单性结实樱桃番茄种质材料研究与抗病新种质创制. 植物遗传资源学报, 2020, 21(5): 1148-1155 [百度学术]
Ruan M Y, Ye Q J, Cheng Y, Wang R Q, Li Z M, Yao Z P, Wan J H, Zhou Z G, Tao J C. Study on germplasm materials of parthenocarpic cherry tomato and creation of new germplasm with disease resistance. Journal of Plant Genetic Resources, 2020, 21(5): 1148-1155 [百度学术]
胡适宜. 植物胚胎学实验方法(五)检查花粉在柱头上萌发和花粉管在花柱中生长的制片法.植物学通报, 1994, 11(2): 58-60 [百度学术]
Hu S Y. Experimental methods of plant embryology (Ⅴ) A slice method for checking pollen germination on stigma and pollen tube growth in style. Chinese Bulletin of Botany, 1994, 11(2): 58-60 [百度学术]
Nunome T I, Honda A, Ohyama H, Fukuoka H, Yamaguchi, K Miyatake. Parthenocarpy regulation gene and use thereof. Patent WO: EP2883955(A1)、2015-06-17 [百度学术]