摘要
前期苦荞转录组分析显示了一个介导黄酮类物质合成相关的黄酮合成酶基因FtFLS1。为进一步了解FtFLS1基因的结构、功能和基因多样性,本研究通过同源比对和保守序列分析筛选得到苦荞FLS基因家族共104个成员,其根据同源性和结构域分为10个亚族,FtFLS1属于DF8亚族。同时,启动子分析结果显示上游1500 bp启动子序列中有2个MeJA响应元件,据此,本研究分析了FtFLS1在苦荞不同器官中的表达量差异及其在MeJA不同处理时间下苦荞中的表达量差异,结果显示,FtFLS1在茎和叶中的表达相近且均要明显高于其在根中的表达,同时FtFLS1在苦荞中的表达也随着MeJA处理时间的增加而显著提高。为进一步验证FtFLS1的功能,本研究克隆了FtFLS1的CDS序列,以此构建FtFLS1的过表达苦荞毛状根株系并检测了它们的黄酮类物质含量,结果显示,相对于正常诱导的苦荞毛状根,FtFLS1的过表达毛状根明显积累了3类黄酮合成酶的下游产物:山奈酚、槲皮素和芦丁,而黄酮合成酶的底物二氢山奈酚和二氢槲皮素的含量明显降低。此外,本研究还分析了200份不同群体苦荞中FtFLS1基因的多样性,结果显示:北方群体、南方群体和喜马拉雅野生群体均拥有明显不同的FtFLS1基因型分布,其中北方群体和南方群体呈现明显的分化,研究结果为探索FtFLS1介导的黄酮类物质合成以及了解荞麦驯化过程提供了思路和参考。
荞麦属于蓼科(Polygonaceae)荞麦属(Fagopyrum)植物,其栽培种主要包括苦荞(Fagopyrum tataricum(L.)Gaertn.)和甜荞(Fagopyrum esculentum Moench
类黄酮代谢途径属于苯丙烷类代谢途径,它的一个重要分支便是黄酮醇代谢途径,其中黄酮合成酶(FLS,flavonol synthase)是黄酮醇代谢途径的重要节
以芦丁为代表的黄酮醇是评价苦荞黄酮类物质含量的主要成员,其含量的高低直接决定苦荞品质的优
苦荞FLS基因家族的筛选:在tair网站(https://www.arabidopsis.org/servlets/Search?type=general&action=new_search)上搜索FLS,得到7个拟南芥AtFLS家族基因。用Tbtools软件将7个AtFLS蛋白序列在苦荞全CDS序列中进行比对筛选得到138个AtFLS相似的苦荞基因ID(参数:NumofThreads:2,E-value:1e-5)。根据138个苦荞基因ID,用Tbtools软件提取蛋白序列,用MEME网站(https://meme-suite.org/meme/tools/meme,参数number of motifs:10)进行保守基序(motif)分析,去除差异较大的序列ID,筛选得到106个苦荞序列ID。再在Smart网站(https://smart.embl.de/#)中上传106个苦荞蛋白序列,结合Pfam网站(http://pfam-legacy.xfam.org/)进行蛋白结构域(domain)分析,去除蛋白结构域差异较大的序列,筛选得到104个苦荞序列ID为最终的苦荞FLS基因家族序列ID。
基因家族的系统发育和结构分析:将提取得到的苦荞FLS基因家族成员的蛋白序列,与拟南芥的7个AtFLS蛋白序列一起用MEGA-X软件进行聚类分析绘制进化树(Neighbor-joining;boostrap method with 1000 Replications),iTOL网站(https://itol.embl.de/)美化进化树。根据蛋白序列对苦荞FLS基因家族进行motif分析和domain分析,具体步骤和参数同上,同时用Tbtools提取苦荞FLS基因家族的上游1500 bp序列作为启动子序列,将其上传至Plant Care网站(http://bioinformatics.psb.ugent.be/webtools/plantcare/html)分析其启动子元件。最后,将得到的进化树文件、motif文件、domain文件和启动子分析文件一起用Tbtools软件可视化,得到基因家族系统分析进化树和结构分析图。
本研究采用的苦荞品种为由中国农业科学院作物科学研究所荞麦基因资源创新研究组提供的品苦1号。实验室种植条件:品苦1号种子剥去外壳,用10%次氯酸钠溶液浸泡7 min,再用75%的乙醇溶液浸泡5 min,无菌水洗5~6次,将洗干净的种子放在灭菌滤纸上吸干水分后整齐摆放在MS培养瓶中,于光周期16 h/8 h、温度25 ℃、湿度75%的组培间培养。
选取长势良好的14 d左右的苦荞幼苗100 mg,液氮速冻后使用打样机破碎。采用Trizol法提取总RNA,并以此RNA为模板,使用HiScript® III 1st Strand cDNA Synthesis Kit (+gDNA wiper)试剂盒(南京诺唯赞生物科技有限公司)进行反转录合成cDNA。
FtFLS1是由中国农业科学院作物科学研究所荞麦基因资源创新研究组提供的茉莉酸甲酯(MeJA)处理的苦荞转录组数据,通过基因表达量变化筛选得
引物名称 Primer name | 引物序列(5' -3') Primer sequence (5' -3') | 用途 Function |
---|---|---|
T-FtFLS1-F | ATGGAGGTTGAAAGAGTTCAA | 基因克隆 |
T-FtFLS1-R | CTACTGTGGGAGCTTGTTAAT | |
FtFLS1-qPCR-F | TATCCACCATGCCCACAACC | qRT-PCR |
FtFLS1-qPCR-R | CAGCACCTCAATCTGATCTCCA | |
FtH3-qPCR-F | GAAATTCGCAAGTACCAGAAGAG | qRT-PCR内参基因 |
FtH3-qPCR-R | CCAACAAGGTATGCCTCAGC | |
1307-FtFLS1-F | gtatctagaactagtggatccATGGAGGTTGAAAGAGTTCAA | 构建过表达载体 |
1307-FtFLS1-R | gtcgacggtatcgataagcttCTGTGGGAGCTTGTTAATCTT | |
TLF | ctcaagcaatcaagcattctac | p1307通用引物 |
1307-R | tatctgggaactactcacacatta |
大写字母为基因序列,小写字母为载体序列
Uppercase letters are gene sequences and lowercase letters are vector sequences
荧光定量PCR的设计与步骤:以FtH3作为荧光定量PCR的内参基因,采用
基因表达的组织特异性分析:取新鲜的品苦1号嫩苗(12 d)的不同部位(根、茎、叶),依次用天根RNA Easy Fast 植物组织 RNA 快速提取试剂盒(DP452)和诺唯赞cDNA反转试剂盒(HiScriptⅢ All-in-one RT SuperMix Perfect for qPCR)提取RNA并反转录为cDNA,3次生物学重复,于ABI 7500实时荧光定量PCR仪上检测基因表达量,测定结果以根为对照进行数据分析作图。荧光定量PCR条件:使用诺唯赞qPCR试剂盒(Taq Pro Universal SYBR qPCR Master Mix);反应体系为10 μL:2× Taq Pro Universal SYBR qPCR Master Mix 5.0 μL,qPCR正向、反向引物各0.2 μL(10 μmol/L),模板cDNA 0.5 μL,ddH2O 4.1 μL。
MeJA处理的表达差异性分析:无菌培养的品苦1号幼苗生长至真叶期,取3株长势一致的无菌苗放入MS液体培养基中,室温120 r/min摇床上培养1 d。用MeJA(50 μmol/L)处理0 h、1 h、4 h和12
以pCAMBIA1307-myc作为过表达载体,选取BamHI和HindIII酶切位点进行酶切;设计含有相同酶切位点同源臂的引物,以T-FtFLS质粒为模板扩增,随后经过胶回收和同源重组,得到含有酶切黏性末端的FtFLS序列片段,同源重组连接线性化载体和目的片段,转化大肠杆菌并测序后得到过表达载体,命名为1307-FtFLS1。
将1307-FtFLS1载体转化至发根农杆菌A4中,农杆菌侵染毛状根以及转基因毛状根的鉴定参考康珍
将阳性毛状根和对照置于MS液体培养基中两周左右,待长出足够的量后取出毛状根,放置70 ℃烘箱过夜烘干,用研钵研磨粉碎,放入玻璃试管中,以1 g:25 mL的料液比混合粉末和80%甲醇,总黄酮提取条件为50 ℃超声破碎40 min,超声频率为40 KHz。静置10 min后吸取上清2 mL,0.22 μm有机滤膜过滤,使用LC-QQQ液相色谱-三重四级杆质谱联用仪(Aglient1290-6495)测定黄酮类物质含量。色谱条件:固定相为硅胶填料的Agilent SB-C18色谱柱(2.7 μm, 2.1 mm×75 mm),流动相A相为含有0.1%甲酸的超纯水,B相为含有0.1%甲酸的乙腈;洗脱梯度为:0 min B相比例为5%,9 min内B相比例线性增加到95%,并维持1 min,10~11 min时B相比例降为5%,并以5%平衡至14 min;流速为0.35 mL/min,柱温为40℃,进样量为2 μL。质谱条件:采用电喷雾离子化(ESI)方式,载气:氮气(N2);载气温度:300℃;干燥气体流速:8.0 L/min;雾化器压力:35 psi;毛细管电压:3.5 kV;毛细管出口电压:175 V;锥孔电压:65 V;碰撞能量:10 ~50 V;质荷比:50~1000。
根据MeJA处理的苦荞转录组数据,通过基因表达量变

图1 苦荞中FLS基因家族的系统发育分析
Fig.1 Phylogenetic analysis of FLS gene family in F. tataricum

图2 苦荞FLS家族的基因结构分析
Fig.2 Genetic structure analysis of tartary buckwheat FLS family
A:苦荞FLS基因家族的系统发育树和ID,不同亚群分类同图1;B:基因的保守基序(上)和蛋白保守结构域(下)分析;C:基因结构分析;红色标注为FtFLS1
A: Phylogenetic tree and ID of FLS gene family in Tartary buckwheat, and the classification of different subgroups was the same as Fig.1; B: Analysis of conserved motifs (top) and conserved domains of proteins (bottom); C: Analysis of gene structure; FtFLS1 with red spot
在所有苦荞FLS家族成员中仅有DF8亚家族在系统发育分析结果中与两个拟南芥FLS基因(AT5G63595.1和AT5G43935.1)聚为一支,说明DF8亚家族与拟南芥进化关系最近,同源性最高(
提取FtFLS1上游1500 bp的序列,分析其顺式作用元件的类型,去除常见的启动子元件(TATA-Box)、增强子元件(CAAT-Box)及少数功能描述模糊的元件进行作图。结果如

图3 FtFLS1启动子结构
Fig.3 The structure of FtFLS1 promoter
位点名称 Site name | 序列 Sequence | 元件数量 Quantity of element | 位点功能 Function of site |
---|---|---|---|
GT1-motif | GGTTAA | 1 | 光调控元件 |
CCAAT-box | CAACGG | 1 | MYBHv1结合位点 |
ARE | AAACCA | 2 | 厌氧调控元件 |
TGA-element | AACGAC | 1 | 生长素响应元件 |
LTR | CCGAAA | 1 | 参与低温响应调控元件 |
Box 4 | ATTAAT | 2 | 光响应元件的DNA分子结合区域 |
TGACG-motif | TGACG | 1 | MeJA响应调控元件 |
ABRE | CGTACGTGCA | 1 | ABA响应调控元件 |
GCN4-motif | TGAGTCA | 2 | 参与胚乳发育的顺式作用元件 |
CGTCA-motif | CGTCA | 1 | MeJA响应调控元件 |
TC-rich repeats | ATTCTCTAAC | 1 | 参与防御和应激反应调控元件 |

FtFLS1基因在不同的组织中表达量有显著差异,表现出明显的组织特异性。FtFLS1在根中的表达量最低,在茎中的表达量最高且为根中的5.58倍,而叶中的表达量与茎中接近,约为根中的5.28倍(图4)。FtFLS1在茎和叶的特异性表达很有可能与荞麦在茎和叶中大量积累黄酮物质的现象关系密切。
在苦荞FtFLS1过表达毛状根株系的构建中(

图6 过表达FtFLS1苦荞毛状根的获得
Fig.6 Hairy roots of Tartary buckwheat overexpressing FtFLS1 were obtained
A:毛状根侵染,传代和震荡培养示意图;I:苦荞无菌苗;II:外殖体进行A4浸染后MS培养基滤纸培养;III:外殖体转移至MC板;IV:MC板上的外殖体长出可以转移的毛状根;V:MC板上毛状根正常生长15 d左右;VI:毛状根在MS液体培养基中振荡培养; B:毛状根DNA PCR检测的凝胶图;1为1307-FtFLS1质粒;2~3为同批次不含1307-FtFLS1质粒的A4农杆菌侵染的对照组毛状根示例;4~7为FtFLS1过表达毛状根
A: Diagram of hairy root infection, passage and shock culture; I: Sterile tartary buckwheat seedlings; II: Exophytes were incubated on MS medium filter paper for 2 d after A4 dyeing; III: Exonites transfer to MC plate; IV: The exonites on the MC plate grow hairy roots that can be transferred; V: The hairy roots on the MC plate grew normally for about 15 days; VI: Hairy roots oscillated in MS liquid medium; B: The gel map of hairy root DNA PCR detection; 1 is the 1307-FtFLS1 plasmid; 2-3 were hairy roots infected by A4 without 1307-FtFLS1 plasmid in the same batch; 4-7 were hairy roots with FtFLS1 overexpression

图7 毛状根黄酮类物质含量测定及黄酮部分代谢途径
Fig.7 Determination of flavonoids in hairy roots and part of the metabolic pathway of flavonoids
A:黄酮代谢通路(红色方框内为FLS1);B、C和D:毛状根黄酮类物质含量测定
A: The metabolic pathway of flavonoids (FLS1 is indicated in the red box); B, C and D: Determination of flavonoids in hairy roots
为了探究FtFLS1在不同苦荞群体的基因型分布,利用前期对200份苦荞种质资源的简单单核苷酸多态性分析的数

图8 3种苦荞群体的FtFLS1基因型分析
Fig.8 Genotypes of FtFLS1 in three Tartary buckwheat populations
A:FtFLS1基因的SNP位点,橙色方框为FtFLS1的基因序列;B:黄酮类物质含量分析;C:FtFLS1三种基因型在不同苦荞群体中的分布
A: SNP location of FtFLS1 gene, the orange box is the gene sequence of FtFLS1; B: Flavonoid content analysis; C: Distribution of three genotypes of FtFLS1 in different Tartary buckwheat populations, in which HW was the Himalayan wild population, NL was the northern cultivated population and SL was the southern cultivated population,the same as below
基因型编号 Number of haplotype | 基因型类型 Type of haplotype | 种质数量 Quantity of varieties | 群体数量Landraces | ||
---|---|---|---|---|---|
喜马拉雅野生群体 HW | 北方栽培群体 NL | 南方栽培群体 SL | |||
Hap1 | G/G | 130 | 9 | 81 | 40 |
Hap2 | G/A | 54 | 3 | 18 | 33 |
Hap3 | A/A | 16 | 2 | 7 | 7 |
通过对不同群体的FtFLS1基因型分析,本研究发现3种群体的基因型分布明显呈现不同特点。高黄酮基因型Hap1占比最高的是北方群体,为76.42%,其次是喜马拉雅野生群体64.29%、南方群体50%;Hap2占比由高到低依次是南方群体41.25%、喜马拉雅野生群体21.43%和北方群体16.98%;Hap3占比由高到低依次是喜马拉雅野生群体14.29%、南方群体8.75%和北方群体6.60%(
FLS在植物中高度保守且由多拷贝基因编码,不同植物FLS基因的多拷贝序列数量不同,其表达量、催化效率和底物偏爱性与黄酮醇在植物组织中的含量、种类和分布密切相
此外,FLS表达的时空特异性一直是FLS基因功能研究的重点话题之一。柑橘(Citrus unshiu)中CitFLS的表达与发育时期密切相关,在幼嫩时期的表达量显著高于成熟时期,并与黄酮醇的积累量变化趋势一
植物中许多次生代谢产物都能够受到一些外源诱导因素的作用,比如茉莉酸或者脱落
荞麦的种植历史可以追溯到4000多年
本研究初步筛选了104个苦荞FLS基因家族成员,共分为10个亚家族,其中FtFLS1属于DF8亚家族。在FtFLS1的启动子序列分析中,其包含在内的2个MeJA响应元件显示了JA信号通路调控FtFLS1表达的可能性,这一结果在之后的MeJA激素处理实验中得到验证,随着MeJA处理时间的增加,FtFLS1的表达量可以提高至4~9倍,同时,FtFLS1也显示了在根中表达量极低的组织表达特异性。此外,本研究还分析了不同群体苦荞中FtFLS1基因的多样性,结果显示:北方群体、南方群体和喜马拉雅野生群体均拥有明显不同的FtFLS1基因型分布,其中北方群体的高黄酮基因型Hap1占比最高。
参考文献
Zhang K X, He M, Fan Y, Zhao H, Gao B, Yang K L, Li F L, Tang Y, Gao Q, Lin T, Quinet M, Janovská D, Meglič V, Kwiatkowski J, Romanova O, Chrungoo N, Suzuki T, Luthar Z, Germ M, Woo S H, Georgiev M I, Zhou M. Resequencing of global tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits. Genome Biology, 2021, 22(1): 23 [百度学术]
Zou L, Wu D, Ren G, Hu Y, Peng L, Zhao J, Garcia-Perez P, Carpena M, Prieto M A, Cao H, Cheng K W, Wang M, Simal-Gandara J, John O D, Rengasamy K R R, Zhao G, Xiao J. Bioactive compounds, health benefits, and industrial applications of Tartary buckwheat (Fagopyrum tataricum). Critical Reviews in Food Science and Nutrition, 2023, 63(5): 657-667 [百度学术]
Bai C Z, Feng M L, Hao X L, Zhong Q M, Tong L G, Wang Z H. Rutin, quercetin, and free amino acid analysis in buckwheat (Fagopyrum) seeds from different locations. Genetics and Molecular Research, 2015, 14(4): 19040-19048 [百度学术]
黄琼林,蔡春.不同植物黄酮醇合成酶FLS的生物信息学分析.广东农业科学,2014, 41(13): 3, 140-143, 151 [百度学术]
Huang Q L, Cai C. Bioinformatics analysis of flavonol synthase from various plants. Guangdong Agricultural Science, 2014, 41(13): 3, 140-143, 151 [百度学术]
Hagel J M, Facchini P J. Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nature Chemical Biology, 2010, 6(4): 273-275 [百度学术]
Aravind L, Koonin E V. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases. Genome Biology, 2001, 2(3): 7 [百度学术]
孙欣光,张洁,庞旭,陈晓娟,张涛,刘曙晨,余利岩,马百平.天然黄酮苷的代谢途径研究进展.中草药,2020,51(11):3078-3089 [百度学术]
Sun X G, Zhang J, Pang X, Chen X J, Zhang T, Liu S C, Xu L Y, Ma B P. Advances in metabolism of natural flavonoid glycosides. Chinese Traditional and Herbal Drugs, 2020, 51(11): 3078-3089 [百度学术]
甘蓓,杨红玉.拟南芥中类黄酮代谢途径及其调控.安徽农业科学,2008(13):5290-5292, 5304 [百度学术]
Gan B, Yang H Y. Metabolic approach of flavonoids and its regulation in Arabidopsis thaliana. Journal of Anhui Agricultural Sciences, 2008(13): 5290-5292, 5304 [百度学术]
黄启秀,曲延英,倪志勇,姚正培,艾海提,陈全家.海岛棉类黄酮代谢通路相关基因的克隆及序列分析.基因组学与应用生物学,2018,37(10):4414-4422 [百度学术]
Huang Q X, Qu Y Y, Ni Z Y, Yao Z P, Ai H T, Chen Q J. Cloning and sequence analysis of related genes involved in flavonoids metabolism pathway in Gossypium barbadense L. Genomics and Applied Biology, 2018, 37(10): 4414-4422 [百度学术]
Tohge T, Watanabe M, Hoefgen R, Fernie A R. The evolution of phenylpropanoid metabolism in the green lineage. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48(2): 123-152 [百度学术]
Britsch L, Heller W, Grisebach H. Conversion of flavanone to flavone, dihydroflavonol and flavonol with an enzyme system from cell cultures of parsley. Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences, 1981, 36(9-10): 742-750 [百度学术]
Zhou X, Tang L, Xu Y, Zhou G, Wang Z. Towards a better understanding of medicinal uses of Carthamus tinctorius L. in traditional Chinese medicine: A phytochemical and pharmacological review. Journal of Ethnopharmacology, 2014, 151(1): 27-43 [百度学术]
闫瑞霞,龚义勤,殷剑美,韩晓勇,张培通,柳李旺.紫山药黄酮醇合成酶DaFLS1基因的克隆和表达分析.江苏农业学报,2014,30(6):1448-1455 [百度学术]
Yan R X, Gong Y Q, Yin J M, Han X Y, Zhang P T, Liu L W. Cloning and expression analysis of DaFLS1 gene in purple yam(Dioscorea alata L.). Jiangsu Journal of Agricultural Sciences, 2014, 30(6): 1448-1455 [百度学术]
蒋洁,白悦辰,李成磊,陈惠,吴琦.金荞麦黄酮醇合酶基因的克隆及在大肠杆菌中的表达.中草药,2013,44(14):1974-1978 [百度学术]
Jiang J, Bai Y C, Li C L, Chen H, Wu Q. Cloning of flavonol synthase gene from Fagopyum dibotrys and its expression in Escherichia coli. Chinese Traditional and Herbal Drugs, 2013, 44(14): 1974-1978 [百度学术]
Li Y, Chen X, Wang J, Zou G, Wang L, Li X. Two responses to MeJA induction of R2R3-MYB transcription factors regulate flavonoid accumulation in Glycyrrhiza uralensis Fisch. PLoS ONE, 2020, 15(7): e0236565 [百度学术]
Luthar Z, Germ M, Likar M, Golob A, Vogel-Mikuš K, Pongrac P, Kušar A, Pravst I, Kreft I. Breeding buckwheat for increased levels of rutin, quercetin and other bioactive compounds with potential antiviral effects. Plants (Basel), 2020, 9(12): 1638 [百度学术]
Zhao H, He Y, Zhang K, Li S, Chen Y, He M, He F, Gao B, Yang D, Fan Y, Zhu X, Yan M, Giglioli-Guivarc'h N, Hano C, Fernie A R, Georgiev M I, Janovská D, Meglič V, Zhou M. Rewiring of the seed metabolome during Tartary buckwheat domestication. Plant Biotechnology Journal, 2023, 21(1): 150-164 [百度学术]
杨洪兵,孙萍.外源水杨酸和茉莉酸对荞麦幼苗耐盐生理特性的效应.植物生理学报,2012,48(8):767-771 [百度学术]
Yang H B, Sun P. Effects of exogenous salicylic acid and jasmonic acid on physiological traits of salt tolerance in buckwheat (Fagopyrum esculentum Moench) seedlings. Plant Physiology Journal, 2012, 48(8): 767-771 [百度学术]
康珍,杨迪,郝彦蓉,卢翔,周美亮,方正武.苦荞转录因子FtMYB41的克隆及功能分析.植物遗传资源学报,2022,23(3):895-905 [百度学术]
Kang Z, Yang D, Hao Y R, Lu X, Zhou M L, Fang Z W. Molecular cloning and functional analysis of transcription factor FtMYB41 in tartary buckwheat(Fagopyrum Tataricum). Journal of Plant Genetic Resources, 2022, 23(3): 895-905 [百度学术]
郑雪莲,李嘉仪,杨俊,郑国华.枇杷黄酮醇合成酶FLS基因表达与黄酮醇积累的相关性分析.福建农业科技,2019,5:1-6 [百度学术]
Zheng X L, Li J Y, Yang J, Zheng G H. Correlation analysis between flavonol synthetase genetic expression and flavono accumulation in loquat. Fujian Agricultural Science and Technology, 2019, 5: 1-6 [百度学术]
Moriguchi T, Kita M, Ogawa K, Tomono Y, Endo T, Omura M. Flavonol synthase gene expression during citrus fruit development. Physiologia Plantarum , 2002, 114(2): 251-258 [百度学术]
Park S, Kim D H, Yang J H, Lee J Y, Lim S H. Increased flavonol levels in tobacco expressing AcFLS affect flower color and root growth. International Journal of Molecular Sciences, 2020, 21(3): 1011 [百度学术]
Mahajan M, Joshi R, Gulati A, Yadav S K. Increase in flavan-3-ols by silencing flavonol synthase mRNA affects the transcript expression and activity levels of antioxidant enzymes in tobacco. Plant Biology, 2012, 14(5): 725-733 [百度学术]
Martínez-Lüscher J, Sánchez-Díaz M, Delrot S, Aguirreolea J, Pascual I, Gomès E. Ultraviolet-B radiation and water deficit interact to alter flavonol and anthocyanin profiles in grapevine berries through transcriptomic regulation. Plant and Cell Physiology, 2014, 55(11): 1925-1936 [百度学术]
Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant Journal, 2007, 50(4): 660-677 [百度学术]
Zhou M, Memelink J. Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnology Advances, 2016, 34(4): 441-449 [百度学术]
Perez A C, Goossens A. Jasmonate signalling: A copycat of auxin signalling? Plant, Cell and Environment, 2013, 36(12) :2071-2084 [百度学术]
Memelink J, Verpoorte R, Jan W K. ORCAnization of jasmonateresponsive gene expression in alkaloid metabolism. Trends in Plant Science, 2001, 6(5): 212-219 [百度学术]
黄伟,高国应,吴金锋,刘丽莉,张大为,周定港,成洪涛,张凯旋,周美亮,李莓,严明理.芥菜型油菜BjA09.TT8和BjB08.TT8基因调节类黄酮的合成.作物学报,2022,48(5):1169-1180 [百度学术]
Huang W, Gao G Y, Wu J F, Liu L L, Zhang D W, Zhou D G, Cheng H T, Zhang K X, Zhou M L, Li M, Yan M L. Regulation of flavonoid synthesis by BjA09.TT8 and BjB08.TT8 genes in Brassica juncea. Acta Agronomica Sinica, 2022,48(5):1169-1180 [百度学术]
Zhang K, Logacheva M D, Meng Y, Hu J, Wan D, Li L, Janovská D, Wang Z, Georgiev M I, Yu Z, Yang F, Yan M, Zhou M. Jasmonate-responsive MYB factors spatially repress rutin biosynthesis in Fagopyrum tataricum. Journal of Experimental Botany, 2018, 69(8): 1955-1966 [百度学术]
Hunt H V, Shang X, Jones M K. Buckwheat: A crop from outside the major Chinese domestication centres? A review of the archaeobotanical, palynological and genetic evidence. Vegetation History and Archaeobotany, 2018, 27(3): 493-506 [百度学术]
Tomiyoshi M, Yasui Y, Ohsako T, Li C Y, Ohnishi O. Phylogenetic analysis of AGAMOUS sequences reveals the origin of the diploid and tetraploid forms of self-pollinating wild buckwheat, Fagopyrum homotropicum Ohnishi. Breeding Science, 2012,62(3): 241-247 [百度学术]