摘要
炸荚和籽粒硬实性是野生小豆的主要特性,严重制约着野生小豆资源的利用,解析这些性状的遗传机理,对培育优良小豆新品种具有重要意义。本研究基于中红5号和野生小豆(Vigna angularis var. n ipponensis)杂交衍生的重组自交系,开展炸荚和籽粒硬实等驯化相关性状鉴定及SSR标记分析。表型分析显示荚皮卷曲数、炸荚率及籽粒硬实率均不符合典型正态分布。构建了包含111个SSR标记、11个连锁群的小豆遗传连锁图谱,总长3813.5 cM,标记间平均距离为34.35 cM。连锁分析共发掘到与2021年炸荚率和荚皮卷曲数相关QTL 19个,与2022年炸荚率及荚皮卷曲数相关QTL 13个,其中不同年份重复检测到的荚皮卷曲数相关QTL 2个,重复检测到的炸荚率相关QTL 3个。籽粒硬实相关QTL 4个,其中位于LG11的QTL分别与炸荚率及2022年荚皮卷曲数相关QTL重叠。本研究结果为进一步开展小豆驯化相关基因的精细定位及机理解析奠定了基础。
小豆(Vigna angularis)属于豆科(Leguminosae)蝶形花亚科(Papilionaceae)菜豆族(Phaseoleae)豇豆属(Vigna),富含蛋白质、淀粉及功能因子等,是典型的医食两用作物,随着人们对健康饮食意识的提升,其需求量逐步增加。小豆还具有生育期较短、抗旱耐逆、根系能固氮等特性,在填荒救灾、种植业结构调整等方面也有重要作用。然而,炸荚及籽粒硬实严重影响小豆的高产稳产和加工品质。随着现代农业发展,机械化收获是小豆产业提质增效的必然趋势,这就要求品种具备较强的抗炸荚特性,以减少收获时的产量损失。此外,小豆籽粒硬实性比较突出,可高达30%,平均在8%左右,且随着储藏时间硬实率逐渐提
豆类的炸荚与禾谷类的落粒功能相似,益于物种的野外自行繁衍。对作物生产来说,炸荚或落粒则严重影响其产量稳定性。截至目前,炸荚性的报道以大豆居多。大豆炸荚为遗传和环境共同调控的数量性状,即主效+微效多基因,其中抗炸荚为隐
籽粒硬实有助于植物抵御野外各种不良气候条件,延缓种子劣变,是野生资源繁衍生息的典型属性,与种子休眠紧密相关。然而农业生产中,种子硬实严重影响播种质量,降低田间出苗率和整齐度。在豆类食品加工利用过程中,硬实不利于种子的研磨、烘焙、发酵等处理,降低产品质量。目前,有关种子硬实性研究也多集中在大豆。据报道,大豆籽粒硬实为多基因控制的复杂性状,受遗传和环境共同调
我国是小豆原产国,也是主要生产国,种质资源丰
2016年用抗炸荚、籽粒硬实率低的栽培种中红5号与炸荚、籽粒硬实率高的野生小豆(Vigna angularis var. nipponensis)杂交,陆续在北京、三亚通过单粒传法进行繁殖,构建了包含308个家系的稳定遗传研究群体F8,该群体的F2世代曾用于籽粒大小的定
该RIL群体及双亲于2021年和2022年7月种植于广西农业科学院里建基地(108°27' E,23°17' N)。该基地土壤有机质含量为2%~3%,土层深厚,透水性好。种植方式为起垄播种,垄宽85 cm,行长1.5 m,双粒点播,每家系2行,出苗后间苗定苗,重复两次,均按当地大田模式管理。
在2021年和2022年成熟期,分别收获双亲及RIL群体相同成熟度的豆荚。每个家系收3个单株,每个单株收10个豆荚,所有的豆荚收获后置于网袋中,自然干燥10 d。调查每个袋中完全炸开的豆荚数量和荚皮卷曲圈数,计算豆荚炸荚率(PS,ratio of pod shattering)及荚皮卷曲数(NPC,number of pod curling)。炸荚的数量占总豆荚数量的百分数为炸荚率。
取双亲及RIL群体各家系幼嫩无病虫害的叶片,用改良CTAB法提取基因组DN
结果表明,RIL群体各家系炸荚率和荚皮卷曲数变异较丰富(
年份 Year | 性状 Traits | 平均值 Mean | 最大值 Max. | 最小值 Min. | 标准差 SD | 峰度 Kurtosis | 偏度 Skewness | 变异系数(%) CV |
---|---|---|---|---|---|---|---|---|
2021 | 荚皮卷曲数 | 1.40 | 4.75 | 0 | 1.48 | -1.38 | 0.40 | 105.34 |
炸荚率(%) | 41.13 | 100 | 0 | 37.95 | -1.5 | 0.21 | 92.28 | |
2022 | 荚皮卷曲数 | 1.17 | 4.75 | 0 | 1.28 | -1.11 | 0.53 | 109.97 |
炸荚率(%) | 29.88 | 100 | 0 | 38.22 | -0.7 | 0.92 | 127.91 |

图 1 小豆RIL群体荚皮卷曲数分布直方图
Fig. 1 Distribution of number of pod curling within RIL population of adzuki bean

图2 小豆RIL群体炸荚率分布
Fig. 2 Distribution of ratio of pod shattering within RIL population of adzuki bean
浸种12 h时,中红5号种子硬实率为0;野生小豆硬实率在12 h仅有少数完全吸涨种子,硬实率为86.67%,在24~108 h,硬实率基本保持不变(

图3 不同浸泡时间中红5号和野生小豆籽粒硬实率的变化
Fig. 3 The changes of hard seededness percentage for Zhonghong 5 and wild adzuki bean in different soaking time

图4 小豆RIL 群体各家系的硬实率分布图
Fig.4 The distribution of ratio of hard seededness of lines from RIL population of adzuki bean
从552对SSR引物中共筛选出亲本间多态性引物112个(详见https://doi.org/10.13430/j.cnki.jpgr.20230224005,
连锁群 Linkage groups | 标记个数 Number of markers | 长度(cM) Length | 标记平均距离(cM) Interal between maker |
---|---|---|---|
LG1 | 16 | 629.0 | 39.3 |
LG2 | 11 | 497.4 | 45.2 |
LG3 | 7 | 126.3 | 18.0 |
LG4 | 9 | 358.8 | 39.9 |
LG5 | 12 | 374.3 | 31.2 |
LG6 | 8 | 263.0 | 32.9 |
LG7 | 10 | 403.6 | 40.4 |
LG8 | 10 | 240.0 | 24.0 |
LG9 | 16 | 591.1 | 36.9 |
LG10 | 8 | 160.0 | 20.0 |
LG11 | 4 | 170.0 | 42.5 |

图5 小豆SSR遗传连锁图
Fig.5 Linkage groups of adzuki bean based on SSR markers
2021年共检测到与荚皮卷曲数相关QTL 9个, 与炸荚率相关QTL 10个,表型贡献率分别在1.56%~2.41%及1.73%~1.79%之间(
年份 Year | 性状 Traits | QTL名称 QTL name | 连锁群 Linkage group | 区间 Interval | 位置(cM) Positon | LOD值 LOD value | 表型贡献率 (%) Phenotypic variation explained |
---|---|---|---|---|---|---|---|
2021 | 炸荚率 | Qvrps-1.1 | 1 | mb5~mb1 | 34 | 7.18 | 1.79 |
Qvrps-1.2 | 1 | mb3~mb51* | 429 | 5.44 | 1.75 | ||
Qvrps-1.3 | 1 | mb56~mb43* | 577 | 7.63 | 1.79 | ||
Qvrps-1.4 | 3 | mb64~mb14 | 28 | 5.51 | 1.78 | ||
Qvrps-1.5 | 5 | mb23~mb74 | 335 | 6.50 | 1.78 | ||
Qvrps-1.6 | 7 | mb26~mb90* | 28 | 4.37 | 1.73 | ||
Qvrps-1.7 | 7 | mb76~mb93 | 122 | 6.45 | 1.77 | ||
Qvrps-1.8 | 7 | mb87~mb92* | 212 | 7.67 | 1.74 | ||
Qvrps-1.9 | 7 | mb94~mb35* | 367 | 5.62 | 1.76 | ||
Qvrps-1.10 | 11 | mb34~mb46* | 106 | 7.05 | 1.78 | ||
荚皮卷曲数 | Qvnpc-1.1 | 1 | mb56~mb43* | 576 | 7.03 | 1.56 | |
Qvnpc-1.2 | 4 | mb16~mb69 | 116 | 20.92 | 2.40 | ||
Qvnpc-1.3 | 4 | mb17~mb70 | 325 | 26.55 | 2.41 | ||
Qvnpc-1.4 | 6 | mb83~mb25 | 225 | 22.12 | 2.40 | ||
Qvnpc-1.5 | 7 | mb26~mb90* | 31 | 21.91 | 2.40 | ||
Qvnpc-1.6 | 7 | mb87~mb92* | 215 | 21.34 | 2.40 | ||
Qvnpc-1.7 | 7 | mb94~mb35* | 372 | 21.89 | 2.40 | ||
Qvnpc-1.8 | 8 | mb28~mb97 | 201 | 23.52 | 2.40 | ||
Qvnpc-1.9 | 9 | mb39~mb49 | 394 | 21.02 | 2.40 | ||
2022 | 炸荚率 | Qvrps-2.1 | 1 | mb56~mb43* | 567 | 6.68 | 4.70 |
Qvrps-2.2 | 2 | mb13~mb57 | 262 | 7.69 | 4.69 | ||
Qvrps-2.3 | 7 | mb94~mb35* | 366 | 14.07 | 5.45 | ||
Qvrps-2.4 | 9 | mb32~mb29 | 46 | 7.26 | 4.71 | ||
Qvrps-2.5 | 11 | mb34~mb46* | 91 | 8.31 | 4.68 | ||
荚皮卷曲数 | Qvnpc-2.1 | 1 | mb1~mb2 | 98 | 11.15 | 3.43 | |
Qvnpc-2.2 | 1 | mb3~mb51* | 427 | 14.26 | 3.42 | ||
Qvnpc-2.3 | 1 | mb56~mb43* | 576 | 13.13 | 3.43 | ||
Qvnpc-2.4 | 2 | mb59~mb10 | 85 | 11.35 | 3.43 | ||
Qvnpc-2.5 | 7 | mb87~mb92* | 215 | 16.40 | 3.44 | ||
Qvnpc-2.6 | 9 | mb32~mb29* | 48 | 13.55 | 3.43 | ||
Qvnpc-2.7 | 9 | mb102~mb33 | 562 | 12.89 | 3.43 | ||
Qvnpc-2.8 | 10 | mb45~mb44 | 114 | 13.00 | 3.44 | ||
Qvnpc-2.9 | 11 | mb34~mb46* | 83 | 14.87 | 3.44 |
*为不同年份炸荚率及豆荚卷曲数重复检测到的区间。 vrps 即小豆炸荚率,vnpc即小豆豆荚卷曲圈数;下同
* means the interval has been repeatedly detected for vrps and vnpc between years. vrps means ratio of pod shattering in Vigna angularis, vnpc means number of pod curling in V. angularis; The same as below
2022年检测到与荚皮卷曲数相关QTL 9个,与炸荚率相关QTL 5个,贡献率分别在3.42%~3.44%及4.68%~5.45%之间(
不同年份重复检测到的荚皮卷曲数相关QTL一共有2个,分别分布在LG1(mb56~mb43)和LG7(mb87~mb92)。重复检测到的炸荚率相关QTL有3个,分别分布在LG1(mb56~mb43)、LG7(mb94~mb35)和LG11(mb34~mb46)。结果表明,LG1的mb56~mb43为不同环境下重复检测到的炸荚性状有关的QTL。
检测到与小豆硬实率相关的QTL共4个,分布在LG5、8、9、11(
连锁群 Linkage group | QTL名称 QTL name | 位置(cM) Positon | 标记区间 Interval | LOD值 LOD value | 表型贡献率(%) Phenotypic variation explained |
---|---|---|---|---|---|
5 | Qvrhs-1 | 342 | mb23~mb74 | 8.13 | 2.84 |
8 | Qvrhs-2 | 203 | mb28~mb97 | 5.15 | 2.78 |
9 | Qvrhs-3 | 326 | mb109~mb30 | 5.52 | 2.78 |
11 | Qvrhs-4 | 98 | mb34~mb46 | 5.08 | 2.80 |

图6 小豆籽粒硬实率、荚皮卷曲数、炸荚率等不同性状间重合的QTL区间
Fig. 6 QTLs repeatedly detected within hard seededness, ratio of pod shattering and number of curl of pod in adzuki bean
vrhs 即小豆籽粒硬实率;下同
vrhs means ratio of hard seededness in Vigna angularis; The same as below
作为豆科作物的普遍现象,炸荚是受环境和遗传共同调控的复杂性状,其评价方法也不完全一致。其中,大豆一般用炸荚率作为炸荚特性的评价指
炸荚的分子遗传学研究也以大豆研究比较多,包括炸荚的标记开
种子硬实也是遗传和环境共同决定的复杂性状。张太平
参考文献
曹志敏,刘长友,范保杰,张志肖,苏秋竹,王彦,田静.小豆硬实及其相关性研究.河北农业大学学报, 2013,36(6):22-25 [百度学术]
Cao Z M, Liu C Y, Fan B J, Zhang Z X, Su Q Z, Wang Y, Tian J. Correlation study of adzuki bean hard seeds. Journal of Hebei Agricultural University, 2013, 36(6): 22-25 [百度学术]
Funatsuki H, Ishimoto M, Tsuji H. Simple sequence repeat markers linked to a major QTL controlling pod shattering in soybean. Plant Breeding, 2006, 125(2): 195-197 [百度学术]
Bailey M, Mian M, Carter J, Ashley D, Boerma H. Pod dehiscence of soybean: Identification of quantitative trait loci. Journal of Heredity, 1997, 88(2): 152-154 [百度学术]
Suzuki M, Fujino K, Funatsuki H. A major soybean QTL, qPDH1, controls pod dehiscence without marked morphological change. Plant Production Science, 2009, 12(2): 217-223 [百度学术]
Seo J, Kang B, Dhungana S, Oh J, Choi M, Park J, Shin S, Kim K, Jun C, Kim K, Jun T. QTL mapping and candidate gene analysis for pod shattering tolerance in soybean (Glycine max). Plants, 2020, 9(9): 1163 [百度学术]
Parker T, Lo S, Gepts P. Pod shattering in grain legumes: Emerging genetic and environment-related patterns. The Plant Cell, 2021, 33(2): 179-199 [百度学术]
Watcharatpong P, Kaga A, Chen X, Smota P. Narrowing down a major QTL region conferring pod fiber contents in yardlong bean (Vigna unguiculata), a vegetable cowpea. Genes, 2020, 11(4): 363 [百度学术]
Kongjaimun A, Somta P, Tomooka N, Kaga A, Vaughan D A, Srinives P. QTL mapping of pod tenderness and total soluble solid in yardlong bean [Vigna unguiculata (L.) Walp. subsp. unguiculata cv.-gr. sesquipedalis]. Euphytica, 2012, 189(2): 217-223 [百度学术]
Takahashi Y, Kongjaimun A, Muto C, Kobayashi Y, Kumagai M, Sakai H, Naito K. Same locus for non-shattering seed pod in two independently domesticated legumes, Vigna angularis and Vigna unguiculata. Frontiers in Genetics, 2020, 11: 748 [百度学术]
Rau D, Murgia M, Rodriguez M, Bitocchi E, Bellucci E, Fois D, Papa R. Genomic dissection of pod shattering in common bean: Mutations at nonorthologous loci at the basis of convergent phenotypic evolution under domestication of leguminous species. The Plant Journal, 2019, 97(4): 693-714 [百度学术]
Kaga A, Isemura T, Tomooka N, Vaughan D. The genetics of domestication of the azuki bean (Vigna angularis). Genetics, 2008, 178: 1013-1036 [百度学术]
Sakamoto S, Abe J, Kanazawa A, Shimamoto Y. Marker-assisted analysis for soybean hard seededness with isozyme and simple sequence repeat loci. Breeding Science, 2004, 54(2): 133-139 [百度学术]
Liu B, Fujita T, Yan Z H, Sakamoto S, Xu D, Abe J. QTL mapping of domestication-related traits in soybean (Glycine max). Annals of Botany, 2007, 100(5): 1027-1038 [百度学术]
Sun L, Miao Z, Cai C, Zhang D, Zhao M, Wu Y, Zhang X, Stephen A S, Zhou L, Zhang Z, Randall L N, Ma J. GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean. Nature Genetics, 2015, 47(8): 939-943 [百度学术]
Jang S, Sato M, Sato K, Jitsuyama Y, Fujino K, Mori H, Takahashi R, Eduardo R, Liu B, Yamada T, Abe J. A single-nucleotide polymorphism in an endo-1,4-β-glucanase gene controls seed coat permeability in soybean. PLoS ONE, 2015, 10(6): e0128527 [百度学术]
Humphry M, Lambrides C, Chapman S, Aitken E, Imrie B, Lawn R, Mcintyre C, Liu. Relationships between hard‐seededness and seed weight in mungbean (Vigna radiata) assessed by QTL analysis.Plant Breeding, 2005, 124(3): 292-298 [百度学术]
Liu C, Fan B, Cao Z, Su Q, Wang Y, Zhang Z, Tian J. Development of a high-density genetic linkage map and identification of flowering time QTLs in adzuki bean (Vigna angularis). Scientific Reports, 2016, 6(1): 39523 [百度学术]
Wang L, Jie W, Luo G L, Yuan, X X, Gong D, Hu L L, Wang S H, Chen H L, Chen X, Cheng X Z. Construction of a high-density adzuki bean genetic map and evaluation of its utility based on a QTL analysis of seed size. Journal of Integrative Agriculture, 2021, 20(7): 1753-1761 [百度学术]
王丽侠,程须珍,王素华,罗高玲,刘振兴,蔡庆生.我国小豆应用核心种质的生态适应性及评价利用.植物遗传资源学报,2013,14(5):794-799 [百度学术]
Wang L X, Cheng X Z, Wang S H, Luo G L, Liu Z X, Cai Q S. Adaptability and variation of an applied core collection of adzuki bean(Vigna angularis)in China. Journal of Plant Genetic Resources, 2013,14(5):794-799 [百度学术]
王丽侠,程须珍,王素华.小豆种质资源研究与利用概述. 植物遗传资源学报,2013,14(3):440-447 [百度学术]
Wang L X, Cheng X Z, Wang S H. Review on genetic study and application of adzuki bean(Vigna angulairs) germplasm. Journal of Plant Genetic Resources, 2013,14(3):440-447 [百度学术]
陶宛鑫, 濮绍京, 金文林, 赵波, 万平. 野生小豆种质资源植株形态性状多样性分析. 植物遗传资源学报, 2007, 8(2):174-178 [百度学术]
Tao W X, Pu S J,Jin W L, Zhao B, Wan P.The morphological diversity analysis of wild adzuki bean germplasm resources. Journal of Plant Genetic Resources, 2007, 8(2):174-178 [百度学术]
Porebski S, Bailey L G, Baum B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 1997, 15: 8-15 [百度学术]
Chen H, Liu L, Wang L, Wang S, Somta P, Cheng X. Development and validation of EST-SSR markers from the transcriptome of adzuki bean (Vigna angularis). PLoS ONE, 2015, 10(7): e0131939 [百度学术]
公丹,王素华,程须珍,王丽侠.普通豇豆应用核心种质的SSR指纹图谱构建及多样性分析.作物杂志, 2020,197(4):79-83 [百度学术]
Gong D, Wang S H, Cheng X Z, Wang L X. Construction of SSR fingerprints and diversity analysis of a cowpea applied core collection. Crops, 2020, 197(4): 79-83 [百度学术]
Meng L, Li H, Zhang L, Wang J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 2015, 3(3): 269-283 [百度学术]
Seo J, Dhungana S, Kang B, Baek I, Sung J, Ko J, Jung C, Kim K, Jun T. Development and validation of SNP and InDel Markers for pod-shattering tolerance in soybean. International Journal of Molecular Sciences, 2022, 23(4): 2382 [百度学术]
Zhang Z, Wang J, Kuang H, Hou Z, Gong P, Bai M, Zhou S, Yao X, Song S, Yan L, Guan Y. Elimination of an unfavorable allele conferring pod shattering in an elite soybean cultivar by CRISPR/Cas9. aBIOTECH, 2022, 3(2): 110-114 [百度学术]
Seo J H, Kang B K, Dhungana S K, Oh J H, Choi M S, Park J H, Shin S O, Kim H S, Baek I Y, Sung J S, Jung C S, Kim K S, Jun T H. QTL mapping and candidate gene analysis for pod shattering tolerance in soybean (Glycine max). Plants (Basel), 2020,9(9):1163 [百度学术]
杨德旭,刘德军,高连兴.完熟期大豆炸荚力学特性试验.沈阳农业大学学报,2012,43(5):576-580 [百度学术]
Yang D X, Liu D J, Gao L X. Experiments of pod-split mechanical performance in period of soybean full ripe. Journal of Shenyang Agricultural University,2012,43(5): 576-580 [百度学术]
马赛斐,南翠梅,张凤彩,魏艳萍.黄淮流域主栽大豆品种炸荚性研究初报.大豆通报,2006 ( 2): 21-23, 27 [百度学术]
Ma S F, Nan C M, Zhang F C, Wei Y P. Preliminary investigation on pod-shattering of main soybean cultivars in Huanghuai area. Soybean Science & Technology, 2006 (2): 21-23,27 [百度学术]
张太平, Boquet D, Moore S.大豆硬粒种的遗传及其与其它性状的关系.大豆科学,1992(1):88-92 [百度学术]
Zhang T P, Boquet D, Moore S. Inheritance of hard seed and its relationship with other traits in soybean. Soybean Science,1992(1):88-92 [百度学术]
Chandra S, Taak Y, Rathod D, Yadav R, Poonia S, Sreenivase V, Talukdar A. Genetics and mapping of seed coat impermeability in soybean using inter-specific populations. Physiology and Molecular Biology of Plants, 2020, 26: 2291-2299 [百度学术]