摘要
大豆是全球重要的豆科作物,是人们食用和饲用主要的蛋白质和油脂来源。大豆蛋白质和脂肪含量受多基因控制且易被环境等因素影响,发掘高蛋白和脂肪基因位点对于定向培育大豆新品种具有重要意义。本研究选用由高产优质品种黑农84与蛋白含量较高品系京河4号杂交构建的880个家系组成的遗传分离群体,利用中豆芯一号SNP标记和SSR分子标记技术鉴定F2群体的基因型,结合蛋白质、脂肪含量表型,通过QTL IciMapping4.2的完备区间作图法(ICIM-ADD)定位获得2个蛋白QTL和2个脂肪QTL。qPro_11_1和qOil_11_1,位于分子标记SSR_11_1087与SSR_11_1090之间,区间大小为126.27 kb,遗传贡献率分别为4.05%和3.23%,共有注释基因5个。qPro_14_1和qOil_14_1,位于SSR_14_0421与SSR_14_0429之间,区间大小为246.09kb,遗传贡献率分别为4.67%和7.13%,共有注释基因15个。本研究定位的稳定的蛋白质含量位点和脂肪含量新位点,为大豆高蛋白和高油分子标记辅助选择育种和基因图位克隆奠定了基础。
大豆[Glycine max (L.) Merr.]是一种重要的经济农作物,是人类膳食中植物蛋白和食用油的主要来源之一, 籽粒蛋白质和脂肪对人类消费和工业应用具有很大价
随着数量遗传学的发展,大豆蛋白质、脂肪含量QTL/基因可采用多种分子标记技术进行鉴定,包括限制性片段长度多态性(RFLP,restriction fragment length polymorphism)、扩增片段长度多态性(AFLP,amplified fragment length polymorphism)和简单重复序列多态性(SSR,simple sequence repeat polymorphism)
蛋白质和脂肪是大豆品质育种的重要目标,国内外已有大量的研究,并有专门的学术共享网站(www.Soybase.com)。Diers
本研究利用黑龙江省高产优质品种黑农84为母本,高蛋白品系京河4号为父本,构建包含880个家系的F2群体,结合SSR分子标记基因型数据和群体的表型数据,采用QTL IciMapping4.2完备区间作图法(ICIM-ADD),定位与蛋白质和脂肪含量相关的QTL位点,为改善大豆品质性状和分子标记辅助育种及基因挖掘提供理论依据。
以黑龙江省农业科学院培育的优质多抗、高产品种黑农84(蛋白质含量43.26%,脂肪含量20.41%)为母本,黑龙江省农业科学院黑河分院培育的高蛋白品系京河4号(蛋白质含量45.21%,脂肪含量19.45%)为父本。黑农84与京河4号杂交,通过单粒传法进行加代,构建包含880个家系的F2遗传分离群体。分别于2019、2020年在黑龙江省农科院试验基地春播种植F2、F2:3群体,均采用3 m行长,行距为0.60 m,株距为0.06 m。全生育期田间管理同一般大田管理,植株成熟后从每行选择正常一致的5株进行收获。
选择表面干净、无裂纹、菌斑、颗粒完整的大豆种子样品约30~50粒,利用德国Bruker公司生产的傅立叶变换近红外光谱
利用Microsoft Excel 2019和Minitab17分析群体最大值、最小值、平均数、标准差、偏度、峰度、变异系数和相关系数,并绘制蛋白质、脂肪含量分布图,利用R语言对区间两端标记基因型与蛋白质、脂肪含量进行差异性分析。
2019年取黑农84与京河4号的F2群体880个家系的三出复叶的等量叶片,采用经典的CTAB
试验所用的中豆芯一号芯片为200K SNP芯片,采用商业试剂盒(天根植物基因组DNA试剂盒,DP305)从大豆幼叶中提取基因组DNA。本研究使用基于Illumin
基于实验室200K芯片QTL定位结果,选择SSR标记进行QTL定位验证及区间缩小。在大豆数据库SoyBase(https://www.soybase.org)网站上选择QTL区间内部及附近的SSR标记,11、14号染色体上共计49对SSR标记(
标记名称 Marker name | 上游引物序列(5′-3′) Upper primer sequence(5′-3′) | 下游引物序列(5′-3′) Lower primer sequence(5′-3′) |
---|---|---|
11_1040 | TGGTTATTTTTGTGGGACATTG | TACTGTTTGAACTTGACTTACTTTTGT |
11_1046 | TTTGTTGACTTCAATGAATTTGCT | TCCACATATTGTGTTTTGAAGAAA |
11_1050 | TGCTACCAGTCCAAGCCTTT | AGGGTGTGAAGGGGAAAAAC |
11_1052 | GATCTCCAAATTAAGCCTTGAAC | TGATGGAAACCTAGCAAGCA |
11_1056 | TGGGAGATGTCCAATTTTCA | CCTTTTGTCATATGCTACACACG |
11_1058 | TTTTCTTCTGCACACGTGATT | TTCACAACCATATCCTATGTCCA |
11_1059 | TTTCAATTTTGCGAGGACAA | TTTAACAAGACAAGAAATGCAAAAA |
11_1061 | ATCCAGGTAACAACATGGCA | CATGCAAAAGCAAGCCCTAT |
11_1063 | GCATCCATTCACATAAAATTGG | CGTAAAAAGTCGTTCAAAACCA |
11_1064 | TTGCGAACAAAATGCAAAAG | TCACAGCGGATTATTTGGTG |
11_1067 | TGTCCAGCCATGCATTTTAC | GGATGTTCAAATTAAAAATTCAGAAA |
11_1068 | CACCATCTCACAACTTGAGCA | GCTGATTCCTTGGCAAACAT |
11_1070 | TCCAATGAAGGATTGGTGTG | GCGGGGGTGAAACAGTAGTA |
11_1071 | CCCAAAGATGGGTCTTCTGA | TGTTACCAAAAGAAAGTCACCTTATG |
11_1072 | TTGGCCCACCTTGATAACTC | TGAAGGTTGAGGATGCATTG |
11_1073 | AAGCTCAATTTGAACACATAAAAATG | CATCTTAGGCTCCCGGATCT |
11_1074 | GTTTTCTCCATCACCTCCCA | CCTTGGACGAACATTGGAGT |
11_1075 | CAAGATACTAATCTCTGCTGAGGC | ATCTTGCCTTGTGCATTGTG |
11_1076 | GCACGAATTGAAAAAGTTTAAGTTG | CGAGCTGCTACCAGTTTTTGT |
11_1077 | GAGGCACCGACAAAGTTGAT | CAGTTGATTCGCGCTTAATTT |
11_1078 | TGAAAGAGTATTTGAAATCGAAGAGA | TCAATGAGGAAGGATCAAGACA |
11_1079 | CCCTCAAACAATTGGATAAAAGA | GTGGACACTTCATTAAAAGTAGGTT |
11_1080 | GCGCGGAAGAAGAAAGTTTA | CAGAACACTACTCAATGTCATCGTT |
11_1081 | CCAACTAAATAAGCTAGATCCCATC | AAAAATGGCAAGGAAAAGTGA |
11_1082 | TTAAGGCTGAGGTCCCCTTT | TCACAGGGTGGTGTTGAAGA |
11_1083 | AATCACGTGTCAAAATTATTATATGC | TCAAATTAAGTCATCAATGGCA |
11_1084 | TCGTGCCTTAATTGTGTTGG | CAAATTGTTTTGCCGCTCTT |
11_1087 | TGGATCGATCTTGGTACGATA | CGACAAATGTGATACGGGAC |
11_1089 | GCTTTTATTAATGCCAGGGG | TTTCCCTTTTCCTTCTCCGT |
11_1090 | AAGTGACTTATTAGCCCGATCA | CAGGCCTGCCTGTAAACAAT |
11_1091 | CCACTTCACAAGTGTGGAAAAA | TGGGTCAAGCAAAAATTTAACA |
14_0409 | TTGCAGAGTCCACAAACTGC | TCACAAGAAGTGGCCAAAAC |
14_0411 | GATTCAACTCCCACAAACACA | CTCTGCGAACATTCAACACC |
14_0413 | GAAGGGAAATGGTTTGGGAT | ACCACTTCCAACGGCACTAC |
14_0415 | GTGTAATAGTTGTCAAAGTTATACCGA | TGCAGCAATTTTACTGGGTG |
14_0417 | CGGGCTATCTTCCTCCTCTC | TGCATGAGGTTGTTGTAGACG |
14_0419 | GAGACGAGAAAAGTGGACGAA | TGAATTGGATTCTGTGTGCAT |
14_0421 | ACATCTTTGCCATCTCAAACC | CGTCTCAACTCATCTCAATGTCA |
14_0422 | ATGGCCACTTGTGAAGTTCC | TGGGTGCTTTTACCGAACTC |
14_0423 | GTGCTATTGGCACTACCCGT | TTTGCATCCCACACAATACAA |
14_0425 | TCACTGTATTAGATCCAATGCTCAA | TGGATTGAAACGCTACAATGAAT |
14_0427 | CAATAATCAAAGTTAGGTATCATGAGC | CGTGCTCCTGAATAGACAAGG |
14_0429 | CAGCCTCAAGAATCCACACA | AGCGCGTGAGAAGTTGTTTC |
14_0431 | TCAATTGCGTTCAAACACTCA | TCCACATCGAAATTTCTTCAAA |
14_0432 | GAAGCTTATTTGCTGGCTGG | AACCTGCATGTTGCACAATC |
14_0433 | TGGACCAACATCGTCACCTA | TTCCAATTTTCCTGTTTCGG |
14_0434 | GTTGGTTACCCCACGGTATG | TACCATTAGCACGCGTTTTG |
14_0435 | TCCGGATGGACTTGACTCAT | TGCATGTCAAGCAAGTTGAG |
14_0436 | GCTTATCATACACGTATAAAGGTTTGC | TCATTGAGAAGGAGTTGTGCT |
14_0437 | GGCTTATTATTCCTTCTTTTGTCA | AAGTGTATCTTCTCAAATTTTGTCCA |
14_0438 | TGCTTGGCACTTGTACATCC | GGGAAAACTGAAAATCCCCA |
14_0439 | CTGAAATGCTTCCCAGTGGT | CTCAAAAGGGGTTCCATCAA |
14_0441 | CGGATGATGTTGAAGTCACG | GAACCTCCGGAAAGTTTCTT |
14_0442 | GCTTGACAAAGGGGGAAAA | CAGGTTTTTAAGAATGAAAACGAAA |
14_0443 | CTATGTTTAGGGACCGCAGC | TCCGTTGTCAACCTGAAAGTC |
14_0444 | GGGTGAGGTCTTCGTTGTTC | ACTAGAACTTGAGGCCACGG |
14_0445 | TGAGCTTTTATCACCCCCAA | CAATTGAAAAGTTTAACAAATTGAGA |
14_0446 | TGAAAGATGACTAACGACGACAA | TGCGTGTGAAGGGAAATAAA |
14_0447 | TGATCAAGATTAATCCCTACCACC | CCCTTCATATTGTGTTTTTCCA |
黑色加粗的标记为筛选的多态性SSR标记
The markers in bold black font are screened polymorphic SSR markers
PCR反应采用10 μL反应体系:2 μL的DNA模板(20 ng/μL),1 μL 10×Easy Taq Buffer(含M
通过6%非变性聚丙烯酰胺凝胶电泳检测F2群体SSR标记的扩增产物,取1 μL 加入6×loading buffer 的PCR产物点样,恒定功率100 W,电泳约1 h,最后进行银染显
结合检测的表型数据与200K芯片和SSR标记鉴定的群体基因型数据。使用QTL IciMapping4.
利用Phytozome v13(https://phytozome-next.jgi.doe.gov)网站,Glycine max Wm82.a4.v1基因组,输入基因号检索基因的功能注释。在大豆数据库SoyBase(https://www.soybase.org)网站,Expression工具栏查询,以Williams82为参考基因组,选择seed 10DAF(DAF,day after flowering)、seed 14DAF、seed 21DAF、seed 25DAF、seed 28DAF、seed 35DAF和seed 42DAF种子发育时期,输入基因号查询基因的表达量,使用R语言进行基因表达量统计作图。
亲本黑农84和京河4号的蛋白质、脂肪含量存在差异,2019年黑农84的蛋白质含量为43.26%,脂肪含量为20.41%,京河4号的蛋白质含量为45.21%,脂肪含量为19.45%。880个家系间的蛋白质和脂肪含量存在较大差异(
性状 Traits | 年份 Year | 黑农84 Heinong84 | 京河4号 Jinghe4 | 分离群体Segregating population | |||
---|---|---|---|---|---|---|---|
平均值±标准差 Mean±SD | 变异系数(%)CV | 峰度 Kurtosis | 偏度 Skewness | ||||
蛋白质含量(%) Protein content | 2019 | 43.26±1.04 | 45.21±1.06 | 44.20±0.07 | 4.54 | -0.02 | 0.08 |
2020 | 41.59±2.09 | 43.49±1.36 | 43.77±0.11 | 5.90 | -0.22 | -0.33 | |
脂肪含量(%) Oil content | 2019 | 20.41±0.93 | 19.45±1.20 | 19.54±0.04 | 6.04 | 3.18 | -0.77 |
2020 | 20.11±0.84 | 19.47±0.53 | 18.65±1.17 | 6.30 | -0.42 | -0.05 |

图1 黑农84×京河4号群体蛋白质、脂肪含量分布直方图
Fig. 1 Histogram of protein and oil content distribution in Heinong 84×Jinghe 4
a、b为F2群体,c、d为F2:3群体
a, b is the F2 population,c, d is the F2:3 population
相关性分析结果显示(
群体 Population | 性状 Traits | F2 | F2:3 | |||
---|---|---|---|---|---|---|
蛋白质含量 Protein content | 脂肪含量 Oil content | 蛋白质含量 Protein content | 脂肪含量 Oil content | |||
F2 | 蛋白质含量 | 1 | ||||
脂肪含量 | -0.09 | 1 | ||||
F2:3 | 蛋白质含量 | 0.32*** | -0.32*** | 1 | ||
脂肪含量 | -0.34*** | 0.34*** | -0.91*** | 1 |
***代表在0.001水平下显著
***represent significance at the 0.001 probability levels
利用F2群体880个单株的基因型,结合蛋白质和脂肪含量表型数据,利用QTL IciMapping4.2完备区间作图法(ICIM-ADD)进行相关QTL定位,未定位到脂肪含量QTL,在第11和14号染色体定位到2个蛋白质含量QTL:qPro_1和qPro_2。其中qPro_1区间大小为75.72 kb,包含2个基因;qPro_2区间大小为411.79 kb,包含26个基因(
QTL名称 QTL name | 染色体 Chr. | 左侧标记 Left marker | 右侧标记 Right marker | LOD值 LOD | 遗传贡献率(%) PVE | 加性效应 Additive effect | 区间大小(kb) Interval | 基因数量 Number of genes |
---|---|---|---|---|---|---|---|---|
qPro_1 | 11 | Gm11_15669676 | Gm11_15593956 | 2.83 | 1.53 | 0.25 | 75.72 | 2 |
qPro_2 | 14 | Gm14_7329914 | Gm14_7741706 | 3.41 | 2.18 | -0.34 | 411.79 | 26 |
-表明加性效应为负值,增效基因来源于京河4号,下同
- indicates that additive effect is negative, synergistic gene from Jinghe 4, the same as below
为进一步分析蛋白质含量位点qPro_1和qPro_2,分别选择两个区间内部及左右两侧共49对SSR引物扩增母本黑农84和父本京河4号的DNA进行引物多态性筛选,在第11、14号染色体各检测到11对多态性SSR标记(

图2 部分SSR标记在黑农84和京河4号多态性筛选结果
Fig. 2 Polymorphism of partial SSR markers between Heinong 84 and Jinghe 4
1:黑农84;2:京河4号
1: Heinong 84;2:Jinghe 4
以筛选出的多态性SSR标记鉴定群体基因型,结合F2与F2:3群体的表型数据,利用QTL IciMapping4.2构建遗传图谱定位QTL位点。结果表明,F2与F2:3两个世代重复定位到蛋白质和脂肪含量QTL各两个,分别为qPro_11_1、qPro_14_1和qOil_11_1、qOil_14_1(

图3 Chr.11和Chr.14蛋白质和脂肪含量QTL定位
Fig. 3 Protein and oil content QTL mapping in Chr.11 and Chr.14
a:蛋白质和脂肪QTL定位遗传图谱,染色体左侧绿色标记为qPro_1和qPro_2两端标记,红色标记为qPro_11_1、qOil_11_1、qPro_14_1和qOil_14_1两端标记;b:qPro_11_1和qOil_11_1定位LOD图;c:qPro_14_1和qOil_14_1定位LOD图
a: Protein and oil content QTL mapping genetic map, qPro_1 and qPro_2 are marked in green on the left side of chromosome, and qPro_11_1, qOil_11_1, qPro_14_1 and qOil_14_1 are marked in red; b: Locate LODs in qPro_11_1 and qOil_11_1; c: Locate LODs in qPro_14_1 and qOil_14_1
QTL名称 QTL name | 左侧标记 Left marker | 右侧标记 Right marker | 物理位置(bp) Position | 区间大小(kb) Interval | LOD | 遗传贡献率(%) PVE | 加性效应 Additive effect | 基因数量 Number of genes |
---|---|---|---|---|---|---|---|---|
qPro_11_1 | 11_1090 | 11_1087 | 15534064~15660330 | 126.27 | 4.51 | 4.05 | 0.74 | 5 |
qOil_11_1 | 11_1090 | 11_1087 | 15534064~15660330 | 126.27 | 3.90 | 3.23 | -0.33 | 5 |
qPro_14_1 | 14_0421 | 14_0429 | 7468386~7714532 | 246.09 | 3.31 | 4.67 | -0.61 | 15 |
qOil_14_1 | 14_0421 | 14_0429 | 7468386~7714532 | 246.09 | 6.78 | 7.13 | 0.39 | 15 |
F2群体中,11_1090标记A基因型(与黑农84同)蛋白质含量为44.36%±2.17%、B基因型(与京河4号同)蛋白质含量为43.74%±2.01%,A相对于B增加了0.62%;A基因型脂肪含量为19.51%±1.25%、B基因型脂肪含量为19.79%±1.15%,A相对于B降低了0.28%。11_1087标记A基因型蛋白质含量为44.42%±2.17%、B基因型蛋白质含量为43.67%±2.02%,A相对于B增加了0.75%;A基因型脂肪含量为19.47%±1.26%、B基因型脂肪含量为19.80%±1.18%,A相对于B降低了0.33%(

图4 Chr.11定位QTL的蛋白质和脂肪含量差异显著性测验
Fig. 4 Test for significance of differences in protein and oil content of QTL on Chr.11
a、b:11_1090标记;c、d:11_1087标记;A: 与黑农84基因型相同; B:与京河4号基因型相同,下同;*、**、***、****分别表示在0.05、0.01、0.001、0.0001水平差异显著
a, b: 11_1090 marker;c, d: 11_1087 marker;A:The same genotype as Heinong84; B:The same genotype as Jinghe4,the same as below;*, **, *** and **** indicated significant differences at 0.05, 0.01, 0.001 and 0.0001 levels respectively
F2:3群体中,11_1090标记A基因型蛋白质含量为44.24%±2.78%、B基因型蛋白质含量为42.84%±2.51%,A相对于B增加了1.40%;A基因型脂肪含量为18.40%±1.31%、B基因型脂肪含量为19.02%±1.07%,A相对于B降低了0.62%。11_1087标记A基因型蛋白质含量为44.34%±2.75%、B基因型蛋白质含量为42.75%±2.54%,A相对于B增加了1.59%;A基因型脂肪含量为18.37%±1.31%、B基因型脂肪含量为19.05%±1.08%,A相对于B降低了0.68%(
结果表明两个世代的两个位点的不同基因型在蛋白质和脂肪含量分布上均具有显著性差异,表明该标记与蛋白质和脂肪含量存在密切关联。
F2群体中,14_0421标记A基因型蛋白质含量为44.10%±2.06%、B基因型蛋白质含量为44.77%±2.07%,A相对于B降低了0.67%;A基因型脂肪含量为19.62%±1.23%、B基因型脂肪含量为19.18%±1.56%,A相对于B增加了0.44%。14_0429标记A基因型蛋白质含量为44.16%±2.01%、B基因型蛋白质含量为44.74%±2.01%,A相对于B降低了0.58%;A基因型脂肪含量为19.62%±1.18%、B基因型脂肪含量为19.17%±1.08%,A相对于B增加了0.45%(

图5 Chr.14定位QTL的蛋白质和脂肪含量差异显著性测验
Fig. 5 Test for significance of differences in protein and oil content of QTL on Chr.14
a、b:14_0421标记; c、d:14_0429标记
a, b: 14_0421 marker; c, d: 14_0429 marker
F2:3群体中,14_0421标记A基因型蛋白质含量为43.50%±2.75%、B基因型蛋白质含量为44.67%±2.19%,A相对于B降低了1.17%;A基因型脂肪含量为18.91%±1.22%、B基因型脂肪含量为18.13%±1.06%,A相对于B增加了0.78%。14_0429标记A基因型蛋白质含量为43.57%±2.66%、B基因型蛋白质含量为44.46%±2.24%,A相对于B降低了0.89%;A基因型脂肪含量为18.83%±1.22%、B基因型脂肪含量为18.24%±1.08%,A相对于B增加了0.59% (
结果表明两个世代的两个位点不同基因型的蛋白质和脂肪含量分布均具有显著性差异,表明该标记与蛋白质和脂肪含量存在密切关联。
通过SoyBase(https://www.soybase.org)数据库查询qPro_11_1和qPro_14_1区间内共20个基因,利用Phytozome v13(https://phytozome-next.jgi.doe.gov)检索其中15个基因具有功能注释(
基因名称 Gene name | 功能注释 Functional annotation | 基因名称 Gene name | 功能注释 Functional annotation |
---|---|---|---|
Glyma.11g164300 | 蛋白磷酸酶2C相关 | Glyma.14g085300 | 未知 |
Glyma.11g164400 | 未知 | Glyma.14g085400 | 富含亮氨酸重复序列受体样蛋白激酶 |
Glyma.11g164500 | [酰基载体蛋白]S-丙二酰转移酶/MCAT | Glyma.14g085500 | WRKY转录因子相关 |
Glyma.11g164600 | 葡萄糖基/葡萄糖醛酸转移 | Glyma.14g085600 | 半胱氨酸蛋白酶家族C1相关 |
Glyma.11g164700 | 肉桂酰辅酶A还原酶样蛋白 | Glyma.14g085700 | EF-钙结合域蛋白 |
Glyma.14g084800 | 蛋白核糖核酸酶P1 | Glyma.14g085800 | 半胱氨酸蛋白酶家族C1相关 |
Glyma.14g084900 | 未知 | Glyma.14g085900 | 甘露糖-对-多糖醇利用缺陷1 LEC35相关 |
Glyma.14g085000 | RAN结合蛋白9相关 | Glyma.14g086000 | F-box蛋白SKIP2 |
Glyma.14g085100 | 丝氨酸棕榈酰转移酶1 | Glyma.14g086100 | 未知 |
Glyma.14g085200 | 驱动蛋白 | Glyma.14g086200 | 未知 |

图6 SoyBase网站候选区间内基因在种子不同发育时期表达量
Fig. 6 Relative expression levels of seeds at the different developmental stages in the candidate interval of SoyBase website
黑龙江省农业科学院利用分子标记辅助育种,通过杂交、回交等方法对多个目标基因进行选择,选育了遗传背景一致且农艺性状优良的品种黑农8
提高大豆种子蛋白质和脂肪含量是大豆育种的主要目标之一,分子标记辅助选择育种为高品质大豆育种提供了一个新的途
目前大豆SoyBase(http://www.soybase.org/)数据库中在第11、14号染色体上定位的蛋白质含量QTL位点各有8个,脂肪含量QTL数量分别为4和19。Gai
根据SoyBase(https://www.soybase.org/)数据库查询的基因注释推测,Glyma.14g085600和Glyma.14g085800作为半胱氨酸蛋白酶参与生物过程,半胱氨酸为含硫氨基酸,是大豆蛋白质所需的必需氨基酸。研究表明,在大豆中表达玉米醇溶蛋白,半胱氨酸和蛋氨酸含量分别提高了2.36%和3.08%,影响大豆种子的蛋白质结
参考文献
Huang J, Ma Q, Cai Z, Xia Q, Li S, Jia J, Chu L, Lian T, Nian H, Cheng Y. Identification and mapping of stable QTLs for seed oil and protein content in soybean [Glycine max (L.) Merr.]. Journal of Agricultural and Food Chemistry, 2020, 68(23): 6448-6460 [百度学术]
Li X, Wang P, Zhang K, Liu S, Qi Z, Fang Y, Wang Y, Tian X, Song J, Wang J, Yang C, Sun X, Tian Z, Li W X, Ning H. Fine mapping QTL and mining genes for protein content in soybean by the combination of linkage and association analysis. Theoretical and Applied Genetics, 2021, 134: 1095-1122 [百度学术]
Patil G, Mian R, Vuong T, Pantalone V, Song Q, Chen P, Shannon G J, Carter T C, Nguyen H T. Molecular mapping and genomics of soybean seed protein: A review and perspective for the future. Theoretical and Applied Genetics, 2017, 130: 1975-1991 [百度学术]
Pathan S M, Vuong T, Clark K, Lee J D, Shannon J G, Roberts C A, Ellersieck M R, Burton J W, Cregan P B, Hyten D L, Nguyen H T, Sleper D A. Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Science, 2013, 53(3): 765-774 [百度学术]
Liu X B, Jin J, Wang G H, Herbert S J. Soybean yield physiology and development of high-yielding practices in Northeast China. Field Crops Research, 2008, 105(3): 157-171 [百度学术]
Kumar S P J, Susmita C, Sripathy K V, Agarwal D K, Pal G, Singh A N, Kumar S, Rai A K, Gandara J S. Molecular characterization and genetic diversity studies of Indian soybean (Glycine max (L.) Merr.) cultivars using SSR markers. Molecular Biology Reports, 2022, 49: 2129-2140 [百度学术]
Xia Z, Tsubokura Y, Hoshi M, Hanawa M, Yano C, Okamura K, Ahmed T A, Anai T, Watanabe S, Hayashi M, Kawai T, Hossain K G, Masaki H, Asai K, Yamanaka N, Kubo N, Kadowaki K, Nagamura Y, Yano M, Sasaki T, Harada K. An integrated high-density linkage map of soybean with RFLP, SSR, STS, and AFLP markers using a single F2 population. DNA Research, 2007, 14(6): 257-269 [百度学术]
Chugh V, Kaur D, Purwar S, Kaushik P, Sharma V, Kumar H, Rai A, Singh C M, Kamaluddin, Dubey R B. Applications of molecular markers for developing abiotic-stress-resilient oilseed crops. Life Science, 2023, 13(1): 88 [百度学术]
Apuya N R, Frazier B L, Keim P, Roth E J, Lark K G. Restriction fragment length polymorphisms as genetic markers in soybean, Glycine max (L.) Merrill. Theoretical and Applied Genetics, 1988, 75: 889-901 [百度学术]
Keim P S, Diers B W, Olson T C, Shoemaker R C. RFLP mapping in soybean: Association between marker loci and variation in quantitative traits. Genetics, 1990, 126: 735-742 [百度学术]
Keim P, Diers B W, Shoemaker R C. Genetic analysis of soybean hard seededness with molecular markers. Theoretical and Applied Genetics, 1990, 79: 465-469 [百度学术]
邱丽娟. 利用RAPD标记鉴定大豆种质. 作物学报, 1997, 23(4): 408-417 [百度学术]
Qiu L J. Identification of soybean germplasm by RAPD markers. Acta Agronomica Sinica, 1997, 23(4): 408-417 [百度学术]
Young W P, Schupp J M, Keim P. DNA methylation and AFLP marker distribution in the soybean genome. Theoretical and Applied Genetics, 1999, 99: 785-792 [百度学术]
Mulato B M, Moller M, Zucchi M I, Quecini V, Pinheiro J B. Genetic diversity in soybean germplasm identified by SSR and EST-SSR markers. Publications of the Astrophysics Branch Ottawa, 2010, 45: 276-283 [百度学术]
Akkaya M S, Bhagwat A A, Cregan P B. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics, 1992, 132(4): 1131-1139 [百度学术]
Cregan P B, Jarvik T, Bush A L, Shoemaker R C, Lark K G, Kahler A L, Kaya N, Vantoai T T, Lohnes D G, Chung J. An integrated genetic linkage map of the soybean genome. Crop Science, 1999, 39(5): 1464-1490 [百度学术]
Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theoretical and Applied Genetics, 2004, 109: 122-128 [百度学术]
Diers B W, Shoemaker R C. Restriction fragment length polymorphism analysis of soybean fatty acid content. Journal of the American Oil Chemists Society, 1992, 69: 1242-1244 [百度学术]
Lee S H, Bailey M A, Mian M A R, Carter T E, Shipe E R, Ashley D A, Parrott W A, Hussey R S, Boerma H R. RFLP loci associated with soybean seed protein and oil content across populations and locations. Theoretical and Applied Genetics, 1996, 93: 649-657 [百度学术]
Sebolt A M, Shoemaker R C, Diers B W. Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Science, 2000, 40(5): 1438-1444 [百度学术]
Jun T H, Van K, Kim M Y, Lee S H, Walker D R. Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica, 2008, 162: 179-191 [百度学术]
Qi Z, Hou M, Han X, Liu Ch Y, Jiang H W, Xin A W, Hu G H, Chen Q S. Identification of quantitative trait loci (QTLs) for seed protein concentration in soybean and analysis for additive effects and epistatic effects of QTLs under multiple environments. Plant Breeding, 2014, 133(4): 499-507 [百度学术]
Yesudas C R, Bashir R, Geisler M B, Lightfoot D A. Identification of germplasm with stacked QTL underlying seed traits in an inbred soybean population from cultivars Essex and Forrest. Molecular Breeding, 2013, 31: 693-703 [百度学术]
Panthee D R, Pantalone V R, West D R, Saxton A M, Sams C E. Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Science, 2005, 45(5): 2015-2022 [百度学术]
Zhu Z Y, Chen S B, Wu X Y, Xing C R, Yuan J. Determination of soybean routine quality parameters using near-infrared spectroscopy. Food Sciences and Nutrition, 2018, 6(4): 1109-1118 [百度学术]
Allen G C, Flores-Vergara M A, Krasynanski S, Thompson W F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nature Protocols, 2006, 1(5): 2320-2325 [百度学术]
Huang L, Deng X H, Li R H, Xia Y S, Bai G H, Siddique K H M, Guo P G. A fast silver staining protocol enabling simple and efficient detection of SSR markers using a non-denaturing polyacrylamide gel. Journal of Visualized Experiments, 2018 (134): e57192 [百度学术]
Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 2015, 3(3): 269-283 [百度学术]
Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138(3): 963-971 [百度学术]
栾晓燕, 刘鑫磊, 薛永国, 马岩松, 王家军, 张必弦, 于佰双, 王广金. 多抗高产大豆新品种黑农84的选育研究. 大豆科学, 2018, 37(6): 839-842 [百度学术]
Luan X Y, Liu X L, Xue Y G, Ma Y S, Wang J J, Zhang B X, Yu B S, Wang G J. Innovating soybean Heinong 84 with high quality and multi-resistance by molecular marker gene polymerization. Soybean Science, 2018, 37(6): 839-842 [百度学术]
Zhang Y H, Liu M F, He J B, Wang Y F, Xing G N, Li Y, Yang S P, Zhao T J, Gai J Y. Marker-assisted breeding for transgressive seed protein content in soybean [Glycine max (L.) Merr.]. Theoretical and Applied Genetics, 2015, 128: 1061-1072 [百度学术]
Kage U, Kumar A, Dhokane D, Karre S, Kushalappa A C. Functional molecular markers for crop improvement. Critical Reviews in Biotechnology, 2016, 36(5): 917-930 [百度学术]
Bevan M W, Uauy C. Genomics reveals new landscapes for crop improvement. Genome Biology, 2013, 14(6): 1-11 [百度学术]
Azizi M M F, Lau H Y, Abu-Bakar N. Integration of advanced technologies for plant variety and cultivar identification. Journal of Biosciences, 2021, 46: 1-20 [百度学术]
Hwang T A E Y, Sayama T, Takahashi M, Takada Y, Nakamoto Y, Funatsuki H, Hisano H, Sasamoto S, Sato S, Tabata S, Kono I, Hoshi M, Hanawa M, Yano C, Xia Z, Harada K, Kitamura K, Ishimoto M. High-density integrated linkage map based on SSR markers in soybean. DNA Research, 2009, 16(4): 213-225 [百度学术]
Sharma M, Gangurde S S, Salgotra R K, Kumar B, Singh A K, Pandey M K. Genetic mapping for grain quality and yield-attributed traits in Basmati rice using SSR-based genetic map. Journal of Biosciences, 2021, 46(3): 50 [百度学术]
Jlassi I, Bnejdi F, Saadoun M, Hajji A, Mansouri D, Ben-Attia M, EI-Gazzah M, EI-Bok S. SSR markers and seed quality traits revealed genetic diversity in durum wheat (Triticum durum Desf.). Molecular Biology Reports, 2021, 48(4): 3185-3193 [百度学术]
Farooqi M Q U, Sa K J, Hong T K, Lee J K. Bulk segregant analysis (BSA) for improving cold stress resistance in maize using SSR markers. Genetics and Molecular Research, 2016, 15(4): 4210-4238 [百度学术]
Chen H D, Xie W B, He H, Yu H H, Chen W, Li J, Yu R B, Yao Y, Zhang W H, He Y Q, Tang X Y, Zhou F S, Deng X W, Zhang Q F. A high-density SNP genotyping array for rice biology and molecular breeding. Molecular Plant, 2014, 7(3): 541-553 [百度学术]
Winfield M O, Allen A M, Burridge A J, Barker G A, Benbow H R, Wilkinson P A, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, King J, West C, Griffiths S, King L, Bentley A R, Edwards K J. High‐density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnology Journal, 2016, 14(5): 1195-1206 [百度学术]
Nsabiyera V, Baranwal D, Qureshi N, Kay P, Forrest K, Valarik M, Dolezel J, Hayden M J, Bariana H S, Bansal U K. Fine mapping of Lr49 using 90K SNP chip array and flow-sorted chromosome sequencing in wheat. Frontiers of Plant Science, 2020, 10: 1787 [百度学术]
Kim S M. Identification of novel recessive gene xa44(t) conferring resistance to bacterial blight races in rice by QTL linkage analysis using an SNP chip. Theoretical and Applied Genetics, 2018, 131: 2733-2743 [百度学术]
Phansak P, Soonsuwon W, Hyten D L, Song Q J, Cregan P B, Graef G L, Specht J E. Multi-population selective genotyping to identify soybean [Glycine max (L.) Merr.] seed protein and oil QTLs. Genes Genomes Genetics, 2016, 6(6): 1635-1648 [百度学术]
Gai J Y, Wang Y J, Wu X L, Chen S Y. A comparative study on segregation analysis and QTL mapping of quantitative traits in plants-with a case in soybean. Frontiers of Agriculture in China, 2007, 1: 1-7 [百度学术]
Akond M, Liu S, Boney M, Kantartzi S K, Kassem M A. Identification of quantitative trait loci (QTL) underlying protein, oil, and five major fatty acids’contents in soybean. American Journal of Plant Sciences, 2014, 5: 158-167 [百度学术]
Diers B W, Keim P, Fehr W R, Shoemaker R C. RFLP analysis of soybean seed protein and oil content. Theoretical and Applied Genetics, 1992, 83: 608-612 [百度学术]
Qi Z M, Wu Q, Han X, Sun Y N, Du X Y, Liu C Y, Jiang H W, Hu G H, Chen Q S. Soybean oil content QTL mapping and integrating with meta-analysis method for mining genes. Euphytica, 2011, 179: 499-514 [百度学术]
武阳春, 郭兵福, 谷勇哲, 栾晓燕, 邱红梅, 刘鑫磊, 李海燕, 邱丽娟. 大豆蛋白含量新位点qPRO-19-1的定位. 植物遗传资源学报, 2021, 22(1): 139-148 [百度学术]
Wu Y C, Guo B F, Gu Y Z, Luan X Y, Qiu H M, Liu X L, Li H Y, Qiu L J. Localization of a new protein content locus qPRO-19-1 in soybean. Journal of Plant Genetic Resources, 2021, 22(1): 139-148 [百度学术]
王婉, 韩德志, 闫洪睿, 栾晓燕, 王俊, 邱丽娟. 大豆高蛋白种质中引1106蛋白质含量的QTL分析. 植物遗传资源学报, 2020, 21(1): 130-138 [百度学术]
Wang W, Han D Z, Yan H R, Luan X Y, Wang J, Qiu L J. QTL analysis of protein content in soybean high-protein germplasm for citation 1106. Journal of Plant Genetic Resources, 2020, 21(1): 130-138 [百度学术]
Kim W S, Krishnan H B. Impact of co-expression of maize 11 and 18 kDa δ-zeins and 27 kDa γ-zein in transgenic soybeans on protein body structure and sulfur amino acid content. Plant Science, 2019, 280: 340-347 [百度学术]
Bai G, Yang D H, Zhao Y, Ha S, Yang F, Ma J, Gao X S, Wang Z M, Zhu J K. Interactions between soybean ABA receptors and type 2C protein phosphatases. Plant Molecular Biology, 2013, 83: 651-664 [百度学术]