摘要
蒙古栎(Quercus mongolica Fisch.)原产于东亚地区的温带,是珍贵的用材树种,具备很高的应用价值和经济价值。Trihelix转录因子主要与植物光响应、生长发育和响应非生物胁迫等方面相关。为了研究蒙古栎Trihelix转录因子在不同遮阴处理和水分胁迫下的表现,本研究运用生物信息学分析,从蒙古栎基因组中鉴定出34个Trihelix转录因子基因,依次命名为:QmTH01~QmTH34。与拟南芥中鉴定到的29个Trihelix转录因子进行聚类分析,可将其分为GT-1、GT-2、GTγ、SH4、SIP1五个亚族,34个QmTHs分别定位到蒙古栎的10条染色体上,翻译蛋白范围为189~897个氨基酸,等电点为4.58~9.78。QmTHs启动子区域共鉴定出14种不同的与光响应、非生物胁迫、激素以及生长发育响应调控相关的顺式作用元件,其中茉莉酸甲酯响应元件、脱落酸响应元件和光响应元件数量占据主要地位。根据不同遮阴处理和水分胁迫下基因表达分析,鉴定到QmTH01、QmTH14、QmTH22、QmTH24、QmTH33在高光强下表达量相对较高,并随光照强度减弱显著下调表达,表明这5个基因参与蒙古栎响应高光照下的生长生理。鉴定到QmTH06、QmTH17、QmTH24在5次(4、5、6、7、8月)浇水的水分胁迫处理中显著上调表达,表明这3个基因介导蒙古栎响应水分胁迫。
蒙古栎(Quercus mongolica Fisch.)也称柞树,是原产东亚温带地区的白橡树种,属壳斗科(Fagaceae)栎属(Quercus)的落叶乔
Trihelix转录因子家族因其特有的3个串联的螺旋结构(螺旋-环-螺旋-环-螺旋)而得名,该结构域高度保守,可以特异性地结合基因上的光应答GT元件,GT元件是在植物基因启动子区串联重复出现的DNA序
由figshare(https://figshare.com/)获得蒙古栎基因组序列(2022年Ai
利用MEGA 7对处理过的蒙古栎与拟南芥的Trihelix转录因子家族成员的蛋白序列文件同时进行Clustal W比对,并将比对结果导出,利用Neighbor-Joining法建立进化树,Bootstrap method设定重复值为1000,完成后将蒙古栎与拟南芥的Trihelix家族成员种间进化关系结果导出,利用Evolview2.0进行种间进化树的可视化及修饰。
利用MEME分析结果文件,提供蛋白序列的motif结构信息,结合蒙古栎Trihelix家族成员的进化树信息和GFF文件,利用TBtools生成进化树、motif结构、基因结构三合一图像。
提取蒙古栎Trihelix转录因子上游1500 bp的序列,利用Plant CARE(PlantCARE, a database of plant promoters and their cis-acting regulatory elements (ugent.be))提取顺式作用元件,对生成的文件进行筛选,将相同作用的顺式作用元件归类,利用GSDS(Gene Structure Display Server 2.0 (gao-lab.org))绘图。统计不同类型顺式作用元件数量,并绘制顺式作用元件数量的柱状图。
利用蒙古栎基因组信息,整理出34个QmTHs所在染色体的名称、长度信息,以及染色体上基因所在位置的起止信息。将配置文件利用Mapchart生成34个QmTHs的染色体定位图并进行修饰。利用TBtools One step MCScanX进行蒙古栎的种内比对,将整理好的数据导入相应配置文件并输入TBtools生成circos图。
根据鉴定到的蒙古栎Trihelix转录因子的基因和染色体注释文件,利用TBtools对蒙古栎Trihelix转录因子进行共线性分析。利用同样的方法对拟南芥进行Trihelix转录因子的共线性分析,再利用TBtools进行种间共线性分析。
在河北省洪崖山国有林场管理局七里亭示范场设立试验田,蒙古栎种源来自河南省三门峡市灵宝市小秦岭,选取生长健壮、无病虫害、播种繁殖的3年生蒙古栎实生苗进行遮阴处理和水分胁迫(于2021年进行),实生苗基径为18.74±3.91 mm,苗高为93.08±11.58 cm,种植密度为1 m×1 m。遮阴处理设立遮阴棚,采用三针遮阴网,随机选取3块条件相同的样地设置3组处理:GCK为无遮阴的对照组(100%照度)、GA为设一层遮阴网(40%照度)、GB为设两层遮阴网(20%照度),设置3次重复,每组10株生长一致的幼苗。水分胁迫处理于4月开展,处理为:SA为不浇水的对照组、SC为浇水2次(4、5月)、SF为浇水5次(4、5、6、7、8月),每月单次浇水量为选取试验地田间持水量的85%,水分胁迫处理期间未排除自然降水的影响,试验地选择条件一致的3块样地,每块面积75
得到34条具有典型Myb_DNA-bind_4结构域的序列,分别命名为QmTH01~QmTH34。同时根据蒙古栎的基因组信息,将蒙古栎的12条染色体分别命名为Chr01~Chr12。根据序列信息进行基因ID、亚族、染色体定位、亚细胞定位、理论等电点等分析(
名称 Name | 基因ID Gene ID | 亚族 Sub- family | 染色体定位 Chromosome localization | 氨基酸(aa) Amino acid | 蛋白分子量(kDa) Molecular weight of protein | 等电点 pI | 亚细胞定位 Subcellular localization | ||
---|---|---|---|---|---|---|---|---|---|
染色体 Chr. | 起始(bp) Start | 终止(bp) End | |||||||
QmTH01 | Qm026922.1 | GTγ | Chr01 | 5385034 | 5386392 | 452 | 51.21 | 5.43 | 细胞核 |
QmTH02 | Qm001387.1 | GT-2 | Chr02 | 26073302 | 26075523 | 549 | 62.17 | 5.73 | 细胞核 |
QmTH03 | Qm001388.1 | GT-2 | Chr02 | 26087402 | 26090623 | 610 | 67.96 | 5.59 | 细胞核 |
QmTH04 | Qm001389.1 | GTγ | Chr02 | 26103813 | 26109275 | 473 | 54.20 | 6.25 | 细胞核 |
QmTH05 | Qm001521.1 | GT-2 | Chr02 | 29122713 | 29127353 | 785 | 84.55 | 5.31 | 细胞核 |
QmTH06 | Qm003842.1 | SIP1 | Chr02 | 81721328 | 81724164 | 388 | 44.79 | 4.58 | 细胞核 |
QmTH07 | Qm011711.1 | GT-2 | Chr03 | 18083058 | 18085368 | 632 | 71.94 | 5.95 | 细胞核 |
QmTH08 | Qm012253.1 | SH4 | Chr03 | 32602074 | 32605460 | 299 | 34.32 | 8.87 | 细胞核 |
QmTH09 | Qm012559.1 | SH4 | Chr03 | 41804442 | 41807458 | 334 | 36.66 | 5.21 | 细胞核 |
QmTH10 | Qm012796.1 | GT-1 | Chr03 | 47721110 | 47728842 | 397 | 45.29 | 6.03 | 叶绿体,细胞核,过氧化物酶体 |
QmTH11 | Qm005417.1 | SIP1 | Chr04 | 14711365 | 14722811 | 326 | 36.22 | 9.76 | 细胞核 |
QmTH12 | Qm006071.1 | SIP1 | Chr04 | 34189486 | 34194146 | 484 | 52.27 | 8.44 | 叶绿体 |
QmTH13 | Qm006093.1 | GT-2 | Chr04 | 34895506 | 34897878 | 543 | 62.51 | 5.89 | 细胞核 |
QmTH14 | Qm007917.1 | SIP1 | Chr05 | 2646400 | 2650896 | 447 | 48.46 | 9.78 | 细胞核 |
QmTH15 | Qm008633.1 | SIP1 | Chr05 | 22688784 | 22690674 | 472 | 54.52 | 4.84 | 细胞核 |
QmTH16 | Qm008639.1 | SIP1 | Chr05 | 22793645 | 22795535 | 472 | 54.60 | 4.84 | 细胞核 |
QmTH17 | Qm009337.1 | SIP1 | Chr05 | 42322164 | 42323525 | 352 | 39.84 | 5.41 | 细胞核 |
QmTH18 | Qm009926.1 | SH4 | Chr05 | 56870770 | 56872441 | 361 | 39.96 | 8.24 | 细胞核 |
QmTH19 | Qm010121.1 | GT-2 | Chr05 | 61620797 | 61622794 | 392 | 44.40 | 5.16 | 细胞核 |
QmTH20 | Qm026443.1 | GT-2 | Chr06 | 51482470 | 51484558 | 537 | 61.25 | 5.24 | 细胞核 |
QmTH21 | Qm026455.1 | GT-2 | Chr06 | 51704735 | 51706822 | 537 | 61.24 | 5.24 | 细胞核 |
QmTH22 | Qm030355.1 | GT-1 | Chr07 | 34356112 | 34357760 | 288 | 34.27 | 7.79 | 细胞核 |
QmTH23 | Qm030694.1 | GT-2 | Chr07 | 40433079 | 40435601 | 568 | 65.10 | 6.19 | 细胞核 |
QmTH24 | Qm030733.1 | SIP1 | Chr07 | 40986647 | 40993859 | 551 | 59.97 | 6.00 | 叶绿体 |
QmTH25 | Qm030735.1 | GTγ | Chr07 | 41022223 | 41034061 | 549 | 62.52 | 6.19 | 细胞核 |
QmTH26 | Qm030744.1 | SIP1 | Chr07 | 41184480 | 41191801 | 551 | 59.94 | 6.00 | 叶绿体 |
QmTH27 | Qm030746.1 | GTγ | Chr07 | 41245054 | 41251014 | 517 | 59.00 | 5.90 | 细胞核 |
QmTH28 | Qm015323.1 | SIP1 | Chr08 | 40367868 | 40372180 | 341 | 38.49 | 9.05 | 细胞核 |
QmTH29 | Qm016523.1 | SIP1 | Chr08 | 64189328 | 64190897 | 259 | 29.72 | 7.63 | 细胞核 |
QmTH30 | Qm021587.1 | SH4 | Chr10 | 281880 | 283985 | 328 | 37.28 | 5.41 | 细胞核 |
QmTH31 | Qm021769.1 | GT-1 | Chr10 | 3926907 | 3928399 | 189 | 21.24 | 7.77 | 细胞核 |
QmTH32 | Qm021818.1 | GT-1 | Chr10 | 5028427 | 5041222 | 897 | 99.51 | 8.83 | 细胞核 |
QmTH33 | Qm031613.1 | SIP1 | Chr12 | 7258142 | 7264198 | 382 | 43.00 | 9.75 | 叶绿体,细胞核 |
QmTH34 | Qm032461.1 | SH4 | Chr12 | 24795352 | 24798986 | 336 | 38.74 | 5.91 | 细胞核 |
将蒙古栎和拟南芥构建种间系统进化树进行Trihelix转录因子的进化关系研究(

图1 蒙古栎与拟南芥的Trihelix家族成员种间系统进化树分析
Fig.1 Phylogenetic tree analysis of the Trihelix family members of Quercus mongolica and Arabidopsis Thaliana
根据基因结构分析结果显示(

图2 蒙古栎Trihelix转录因子家族系统进化树、保守基序和基因结构
Fig.2 Phylogenetic tree of transcription factor family of Quercus mongolica Trihelix,conserved motif and gene structure
根据结果分析(

图3 蒙古栎Trihelix转录因子启动子顺式作用元件分析
Fig.3 Analysis of cis-acting elements of transcription factor promoter of Quercus mongolica Trihelix
式元件(包括TGA-element、AuxRR-core、TGA-box)、厌氧诱导顺式元件(ARE)、水杨酸响应顺式元件(TCA-element)、脱落酸响应顺式元件(ABRE)、干旱诱导顺式元件(MBS)、茉莉酸甲酯响应顺式元件(TGACG-motif、CGTCA-motif)、分生组织表达顺式元件(CAT-box)、赤霉素响应顺式元件(P-box、GARE-motif、TATC-box)、伤口反应顺式元件(WUN-motif)、参与栅栏组织叶肉细胞分化的顺式元件(HD-Zip1)、缺氧特异性诱导相关增强子顺式元件(GC-motif)。启动子区域顺式作用元件数量(

图4 蒙古栎Trihelix转录因子启动子顺式作用元件数量
Fig.4 Number of cis-acting elements in the transcription factor promoter of Quercus mongolica Trihelix
本研究利用MapChart软件绘制了34个QmTHs在染色体上的位置,结果显示,34个QmTHs分布在蒙古栎的12条染色体中的10条上,其中Chr09、Chr11两条染色体没有分布(

图5 蒙古栎Trihelix转录因子的染色体定位
Fig.5 Chromosome localization of transcription factors of Quercus mongolica Trihelix

图6 蒙古栎Trihelix转录因子的共线性分析
Fig.6 Collinearity analysis of transcription factors of Quercus mongolica Trihelix
图中的灰色线为蒙古栎染色体上基因间的共线性关系,红色线是蒙古栎Trihelix基因家族成员间的共线性关系,蓝色线是蒙古栎Trihelix基因家族的串联重复基因
The gray line in the figure is the collinear relationship between genes on the chromosomes of Quercus mongolica, and the red line is the collinear relationship between members of the Trihelix gene family of Quercus mongolica, The blue line is a tandem repeating gene in the Trihelix gene family of Quercus mongolica
利用TBtools软件对模式植物拟南芥和蒙古栎进行种间的Trihelix转录因子共线性分析,结果显示(

图7 蒙古栎与拟南芥的种间Trihelix转录因子共线性分析
Fig.7 Collinearity analysis of interspecific Trihelix transcription factors of Quercus mongolica and Arabidopsis Thaliana
Qm_Chr1~Qm_Chr12代表蒙古栎的12条染色体,Ath_1~Ath_5代表拟南芥的5条染色体,Ath_Pt代表拟南芥叶绿体基因组,Ath_Mt代表拟南芥线粒体基因组
Qm_Chr1-Qm_Chr12 represents 12 chromosomes of Quercus mongolica, Ath_1-Ath_5 represents 5 chromosomes of Arabidopsis thaliana, Ath_Pt represents chloroplast genome of Arabidopsis thaliana, Ath_Mt represents mitochondrial genome of Arabidopsis thaliana
由

图8 蒙古栎Trihelix转录因子在不同遮阴处理下的表达分析
Fig.8 Expression analysis of transcription factors of Quercus mongolica Trihelix under different shading treatments
GCK:全光照;GA:一层遮阴网(40%照度);GB:两层遮阴网(20%照度); 1, 2, 3为3次生物学重复,下同
GCK: Full light; GA: A shade net (40% illumination); GB: Two layers of shading net (20% illumination); 1, 2, 3 is three biological repeats, the same as below
QmTH02、QmTH03、QmTH04、QmTH05、QmTH07、QmTH09、QmTH10、QmTH12、QmTH13、QmTH15、QmTH16、QmTH17、QmTH26、QmTH28、QmTH29、QmTH30、QmTH31、QmTH34共18个基因的表达量随光照强度减弱呈现了显著的上调趋势,因此推测这些基因的功能均与蒙古栎在弱光照条件下的光响应生理密切相关,这与前面11个基因的鉴定结果互补,且这29个Trihelix基因的启动子区域均预测到了大量的光响应元件,进一步印证了Trihelix转录因子家族成员普遍参与调控植物的光响应生理。
由相关性分析结果(

图9 遮阴处理下蒙古栎Trihelix转录因子表达量的相关性分析
Fig.9 Correlation analysis of transcription factor expression levels of Quercus mongolica Trihelix under shading
由

图10 蒙古栎Trihelix转录因子在水分胁迫下的表达分析
Fig.10 Expression analysis of transcription factors of Quercus mongolica Trihelix under water stress
SA:不浇水;SC:浇水2次(4、5月);SF:浇水5次(4、5、6、7、8月)
SA:No watering; SC: Water twice ( April and May); SF: Water 5 times (April, May, June, July, August)

图11 水分胁迫下蒙古栎Trihelix转录因子表达量的相关性分析
Fig.11 Correlation analysis of transcription factor expression of Quercus mongolica Trihelix under water stress
Trihelix转录因子因其结合光响应的GT元件和特有的三螺旋结构而受到重视,对调控植物响应干旱、低温和盐碱等非生物胁迫具有重要作
分布在植物Trihelix转录因子启动子区域的不同类型顺式作用元件调控相应的响应非生物胁迫功能基因表
蒙古栎幼苗对光照强度变化尤为敏感,遮阴是影响蒙古栎幼苗生长发育以及光合作用的重要因子,适当的遮阴处理可以促进蒙古栎幼苗叶片的生长发育,反之,高光强下蒙古栎幼苗表现出显著的光抑制,主要体现在最大净光合速率的下
此外,蒙古栎并不耐潮湿和水
综上所述,蒙古栎Trihelix基因在介导光响应生理中起到重要作用,同时还介导高光强下蒙古栎的光适应生理和水分胁迫下蒙古栎植株的抗逆生理。本研究基于生物信息学分析,共筛选鉴定出34个蒙古栎Trihelix基因,但是各基因在蒙古栎中的光响应、强光和水分胁迫下的具体作用机制还需进一步研究。
参考文献
孙媛姣,陆秀君,曾莞棋,雷鸣雷,李东升,万项成,解昀霏,张晓林.施肥对蒙古栎幼林生长及养分含量的影响.沈阳农业大学学报,2021,52(4): 409-418 [百度学术]
Sun Y J, Lu X J, Zeng W Q, Lei M L, Li D S, Wan X C, Xie Y F, Zhang X L. Effects of fertilization on growth and nutrient content of young Quercus mongolica forest. Journal of Shenyang Agricultural University,2021, 52 (4): 409-418 [百度学术]
马金山.辽西蒙古栎林的群落结构及自然演替分析.绿色科技,2017(7): 14-15 [百度学术]
Ma J S. Community structure and natural succession of Quercus mongolicus forest in western Liaoning. Green Technology,2017(7): 14-15 [百度学术]
王国宝,王勇,秦利.蒙古栎叶片的转录组测序及基因功能注释.蚕业科学,2020,46(5): 560-565 [百度学术]
Wang G B, Wang Y, Qin L. Transcriptome sequencing and gene function annotation of Quercus mongolica leaves. Science of Sericulture,2020,46(5): 560-565 [百度学术]
Ai W F, Liu Y Q, Mei M, Zhang X L, Tan E G, Liu H Z, Han X Y, Zhan H, Lu X J.A chromosome-scale genome assembly of the Mongolian oak (Quercus mongolica).Molecular Ecology Resources,2022,22(6): 2396-2410 [百度学术]
任俊杰,原阳晨,周苗苗,庞久帅,许晨阳,赵津,李迎超.不同遮阴处理对蒙古栎幼苗生长的影响.安徽农业科学,2022,50(7): 107-109 [百度学术]
Ren J J, Yuan Y C, Zhou M M, Pang J S, Xu C Y, Zhao J, Li Y C. Effects of different shading treatments on seedling growth of Quercus mongolica. Anhui Agricultural Sciences,2022, 50 (7): 107-109 [百度学术]
薛思雷,王庆成,孙欣欣,张命军.遮荫对水曲柳和蒙古栎光合、生长和生物量分配的影响.植物研究,2012,32(3): 354-359 [百度学术]
Xue S L, Wang Q C, Sun X X, Zhang M J. Effects of shading on photosynthesis, growth and biomass allocation of Manchuria Fraxinus and Quercus mongolica . Plant Research,2012, 32 (3): 354-359 [百度学术]
陈婕.光照条件对蒙古栎幼苗光合生理特性和生长特性的影响.哈尔滨:东北林业大学,2008 [百度学术]
Chen J. Effects of light conditions on photosynthetic physiological characteristics and growth characteristics of Quercus mongolica seedlings. Harbin: Northeast Forestry University,2008 [百度学术]
Jiang M, Li X M, Yuan Y C, Zhang G W, Pang J S, Ren J J, Wang J M, Yang M S. Integrated physiological and transcriptomic analyses reveal the molecular mechanism behind the response to cultivation in Quercus mongolica . Frontiers in Plant Science, 2022, 13 : 947696-947696 [百度学术]
罗军玲, 赵娜, 卢长明.植物Trihelix转录因子家族研究进展.遗传, 2012, 34(12):1551-1560 [百度学术]
Luo J L, Zhao N, Lu C M. Advances in the transcription factors family of plant Trihelix. Heredity,2012,34(12): 1551-1560 [百度学术]
于冰,陈孟迪,王宇光.植物三螺旋Trihelix转录因子家族与环境相互作用的研究进展.植物遗传资源学报,2019,20(5):1134-1140 [百度学术]
Yu B, Chen M D, Wang Y G. Research progress on the interaction between the transcription factor family of plant Trihelix and environment. Journal of Plant Genetic Resources,2019, 20 (5): 1134-1140 [百度学术]
李纷芬. Trihelix转录因子SlPTL调控番茄生长发育和非生物胁迫的功能鉴定.重庆:重庆大学,2018 [百度学术]
Li F F. Function identification of Trihelix transcription factor SlPTL in regulating growth and development and abiotic stress in tomato. Chongqing: Chongqing University,2018 [百度学术]
肖杰.小麦Trihelix基因家族鉴定、表达分析及TaGT-75基因的功能研究.武汉:华中科技大学,2020 [百度学术]
Xiao J. Identification, expression analysis of Trihelix gene family and functional study of TaGT-75 gene in wheat. Wuhan: Huazhong University of Science and Technology,2020 [百度学术]
Yang W Z, Hu J Y, Jyoti R B, Aruna K, Yuan Y P, Zhai Y H, Xu Y F, Xie L H, Zhang Y L, Zhang Q Y, Niu L X. A tree peony trihelix transcription factor PrASIL1 represses seed oil accumulation. Frontiers in Plant Science,2021,12: 796181 [百度学术]
O'Brien M, Kaplan L, Quon T, Sappl P G, Smyth D R. PETAL LOSS, a trihelix transcription factor that represses growth in Arabidopsis thaliana, binds the energy-sensing SnRK1 kinase AKIN10.Journal of Experimental Botany,2015,66(9): 2475-2485 [百度学术]
Kaplan-Levy R N, Brewer P B, Quon, T, Smyth D R. The trihelix family of transcription factors-light, stress and development. Trends in Plant Science,2012,17(3): 163-171 [百度学术]
向小雪,娄红梅,杨庆玲.Trihelix转录因子家族研究进展.安徽农业科学,2022,50(6):7-11 [百度学术]
Xiang X X, Lou H M, Yang Q L. Research progress of Trihelix transcription factor family. Journal of Anhui Agricultural Sciences,2022, 50 (6): 7-11 [百度学术]
王萍,卢世雄,梁国平,马宗桓,李文芳,毛娟,陈佰鸿.苹果Trihelix转录因子家族生物信息学鉴定与基因表达分析.园艺学报,2019,46(11): 2082-2098 [百度学术]
Wang P, Lu S X, Liang G P, Ma Z H, Li W F, Mao J, Chen B H. Bioinformatics identification and gene expression analysis of apple Trihelix transcription factor family. Journal of Horticulture, 2019, 46 (11): 2082-2098 [百度学术]
李栋成,李魁印,韦兴启,段丽丽,莫泽君,刘仁祥.烟草Trihelix转录因子家族鉴定及表达分析.亚热带植物科学,2022,51(1): 1-12 [百度学术]
Li D C, Li K Y, Wei X Q, Duan L L, Mo Z J, Liu R X. Identification and expression analysis of tobacco Trihelix transcription factor family. Subtropical Plant Science, 2022, 51 (1): 1-12 [百度学术]
韩文龙,朱振,李君茹,陈天哲,李国辉,苏雪强,金青,程曦,蔡永萍.梨Trihelix转录因子家族成员鉴定及表达分析.园艺学报,2021,48(3): 439-455 [百度学术]
Han W L, Zhu Z, Li J R, Chen T Z, Li G H, Su X Q, Jin Q, Cheng X, Cai Y P. Identification and expression analysis of pear Trihelix transcription factor family members. Journal of Horticulture, 2021, 48 (3): 439-455 [百度学术]
Liu W, Zhang Y, Li W, Lin Y H, Wang C J, Xu R, Zhang L F. Genome-wide characterization and expression analysis of soybean trihelix gene family. Peer J, 2020, 8:e8753 [百度学术]
郭晋艳,郑晓瑜,邹翠霞,李秋莉.植物非生物胁迫诱导启动子顺式元件及转录因子研究进展.生物技术通报,2011(4): 16-20,30 [百度学术]
Guo J Y, Zheng X Y, Zou C X, Li Q L. Research progress in cis elements and transcription factors of plant abiotic stress-induced promoters. Biotechnology Bulletin, 2011 (4): 16-20, 30 [百度学术]
Li K Y, Duan L L, Zhang Y B, Shi M X, Chen S S, Yang M F, Ding Y Q, Peng Y S, Dong Y B, Yang H, Li Z H, Zhang L Y, Fan Y, Ren M J. Genome-wide identification and expression profile analysis of trihelix transcription factor family genes in response to abiotic stress in sorghum [Sorghum bicolor (L.) Moench].BMC Genomics,2021,22: 1-17 [百度学术]
卢世雄. 葡萄Trihelix转录因子家族鉴定及VvTrihelix5响应盐胁迫功能研究.兰州:甘肃农业大学,2021 [百度学术]
Lu S X. Identification of grape Trihelix transcription factor family and study on VvTrihelix5 response to salt stress. Lanzhou: Gansu Agricultural University, 2021 [百度学术]
Tong Y , Huang H , Wang Y H. Genome-wide analysis of the Trihelix gene family and their response to cold stress in Dendrobium officinale. Sustainability, 2021, 13(5): 2826-2826 [百度学术]
郑玲,李梦丹.甜瓜Trihelix转录因子的鉴定与生物信息学分析.江苏农业科学,2022,50(16):44-49 [百度学术]
Zheng L, Li M D. Identification and bioinformatics analysis of melon Trihelix transcription factor. Jiangsu Agricultural Science, 2022, 50 (16): 44-49 [百度学术]
Li K, Fan Y, Zhou G, Liu X J, Chen S S, Chang X C, Wu W Q, Duan L L, Yao M X, Wang R, Wang Z L, Yang M F, Ding Y Q, Ren M J, Fan Y, Zhang L Y. Genome-wide identification, phylogenetic analysis, and expression profiles of trihelix transcription factor family genes in quinoa (Chenopodium quinoa Willd.) under abiotic stress conditions. BMC Genomics,2022,23(1): 1-19 [百度学术]
Nagano Y, Inaba T, Furuhashi H, Sasaki Y. Trihelix DNA-binding protein with specificities for two distinct cis-elements: Both important for light down-regulated and dark-inducible gene expression in higher plants. Journal of Biological Chemistry, 2001, 276(25):22238-22243 [百度学术]
卢世雄,王萍,何红红,梁国平,马宗桓,乔亚丽,吴玉霞,陈佰鸿,毛娟.葡萄Trihelix转录因子家族生物信息及其基因表达分析.园艺学报,2019,46(7): 1257-1269 [百度学术]
Lu S X, Wang P, He H H, Liang G P, Ma Z H, Qiao Y L, Wu Y X, Chen B H, Mao J. Bioinformation and gene expression analysis of grape Trihelix transcription factor family. Journal of Horticulture, 2019, 46 (7): 1257-1269 [百度学术]
Wang Z C, Liu Q G, Wang H Z, Zhang H Z, Xu X M, Li C H, Yang C P. Comprehensive analysis of trihelix genes and their expression under biotic and abiotic stresses in Populus trichocarpa. Scientific Reports,2016,6: 36274 [百度学术]
徐红云.拟南芥Trihelix转录因子AST1调控植物抗旱、耐盐的机制研究.哈尔滨:东北林业大学,2017 [百度学术]
Xu H Y. Study on the mechanism of Arabidopsis Trihelix transcription factor AST1 regulating plant drought resistance and salt tolerance. Harbin: Northeast Forestry University, 2017 [百度学术]
李东胜,白庆红,李永杰,许中旗,于海涛.光照条件对蒙古栎幼苗生长特性和光合特征的影响.生态学杂志,2017,36(10): 2744-2750 [百度学术]
Li D S, Bai Q H, Li Y J, Xu Z Q, Yu H T. Effects of light conditions on growth characteristics and photosynthetic characteristics of Quercus mongolica seedlings. Journal of Ecology, 2017, 36 (10): 2744-2750 [百度学术]
Beon M S, Bartsch N. Early seedling growth of pine (Pinus densiflora) and oaks (Quercus serrata, Q. mongolica, Q. variabilis) in response to light intensity and soil moisture.Vegetatio,2003,167: 97-105 [百度学术]
许中旗,黄选瑞,徐成立,许晴,纪晓林.光照条件对蒙古栎幼苗生长及形态特征的影响.生态学报,2009,29(3): 1121-1128 [百度学术]
Xu Z Q, Huang X R, Xu C L, Xu Q, Ji X L. Effects of light conditions on the growth and morphological characteristics of Quercus mongolica seedlings. Journal of Ecology, 2009, 29 (3): 1121-1128 [百度学术]
龚磊.维管束植物气孔对脱落酸和光环境的响应.兰州:兰州大学,2021 [百度学术]
Gong L. Response of vascular plant stomata to abscisic acid and light environment. Lanzhou: Lanzhou University, 2021 [百度学术]
Lyu S N, Wang X C, Zhang Y D, Li Z S. Different responses of Korean pine (Pinus koraiensis) and Mongolia oak (Quercus mongolica) growth to recent climate warming in northeast China. Dendrochronologia,2017,45(1): 113-122 [百度学术]
李彦杰,杨俊年,刘仁华,周大祥,甘丽萍,吴应梅.水淹胁迫下三峡库区消落带适生狗牙根转录因子的转录组分析.西南农业学报,2018,31(2): 265-269 [百度学术]
Li Y J, Yang J N, Liu R H, Zhou D X, Gan L P, Wu Y M. Transcriptome analysis of the transcription factors of bermudagrass suitable for growth in the fluctuating zone of the Three Gorges reservoir area under flooding stress. Southwest Agricultural Journal, 2018, 31 (2): 265-269 [百度学术]