摘要
野生种群是重要的种质资源,了解本地野生种群和栽培种群之间的遗传多样性和群体演化有助于野生种群的科学保护和可持续利用。本研究基于北京板栗自然与栽培分布区,采集5个栽培种群和1个野生种群共93份种质的叶片,并采集湖北宜昌1个种群(作为外群)共16份种质的叶片,筛选16对微卫星SSR引物分析板栗种群的遗传多样性和进化历史。结果表明北京板栗种群的遗传多样性相对较高,其中红螺寺野生板栗种群的遗传多样性高于其他种群。板栗各种群之间有明显的遗传分化(Fst=0.232),基因交流频率较低(Nm=0.547)。分子生物学方差分析(AMOVA)分析表明板栗种群内的遗传变异(57.70%)大于群体之间(42.30%)。群体遗传结构分析显示,宜昌板栗种群明显区别于北京板栗种群,北京板栗分为两组,红螺寺野生种群单独为一组,明代板栗园古树种群和其他栽培种群聚为一组,说明北京栽培板栗可能来自于明代板栗园古树种群。非加权组平均法聚类分析(UPGMA)、主坐标分析(PCoA)和主成分分析(PCA)结果均支持群体遗传结构结果。Treemix分析结果显示从宜昌种群到北京种群发生过历史基因交流,说明板栗从华中地区向北迁移的路线。种群历史结果表明,北京种群在大约8.3万年前从宜昌种群种分化出来,北京本地野生种和栽培种的分化时间大约在3.2万年前。本研究结果支持板栗由华中向北迁移的假说,栽培种的驯化降低了北京板栗种质资源的遗传多样性,北京板栗野生种和栽培古树保留了高的遗传多样性,应该优先得到保护。
野生种质资源为品种培育和改良提供重要的遗传材
板栗(Castanea mollissima Blume)为壳斗科(Fagaceae)栗属(Castanea)植物,是我国重要的干果之一,富有“木本粮食”之称。板栗坚果富含淀粉、糖、蛋白质、维生素、氨基酸和脂肪酸等各种营养元
北京板栗主要分布在昌平、怀柔、密云和平谷,因此本研究主要采样地区在北京北部。为了更好地代表北京地区,选取板栗野生种群和栽培种群,并尽可能地选取树龄较大的古树板栗。2020年7-8月采集了这些地区6个代表性的板栗种群(
种群 Populations | 样本量 Sample size | 平均胸径(cm) Average DBH | 平均树高(m) Average tree height | 平均冠幅(m) Average crown width |
---|---|---|---|---|
湖北宜昌YC | 16 | 5~38 | 2~6 | 2~10 |
红螺寺HLS | 16 | 37~57 | 22~38 | 7~30 |
平谷区四座楼SZL | 13 | 11~30 | 4~12 | 1~13 |
密云区黑山寺HSS | 16 | 11~95 | 4~25 | 4.5~19 |
明代板栗园BLY | 16 | 55.5~191 | 6~20 | 6~24 |
怀柔区三个镇JLT | 16 | 34~128 | 5~17 | 4~21 |
昌平区大杨山DYS | 16 | 15.5~89 | 6~24 | 8~20 |
YC:Hubeiyichang;HLS:Hongluosi; SZL:Pingguqusizuolou; HSS:Miyunquheishansi; BLY:Mingdaibanliyuan; JLT:Huairouqusangezhen; DYS:Changpingqudayangshan;The same as below
在实验室取30 mg左右干燥叶片,使用植物总DNA提取试剂盒(天根生物科技股份有限公司,KG202)提取叶片DNA。本研究从文献中筛选38对微卫星SSR引物开展预试验,最后选取16对多态性高且稳定性好的SSR引物开展本次试
引物名称 Primer ame | 正向引物( 5' - 3') Forward primers( 5' - 3') | 反向引物( 5' - 3') Reverse primers( 5' - 3') | 荧光标记 Fluorescent marker |
---|---|---|---|
PD34 | TTCGTAGTGGAAGGAGGTGG | GTTTCTTAAAGACAGAGCCCACAAAGC | FAM |
PD52 | CTTGTCATGGTGCATTGGTG | GTTTCTTCCGCAGTGGTGATCCATTAT | HEX |
PA75 | GTGAAGAACCAAACGGACCA | GTTTCTTACCGAATGTGCTGTCTGGAA | TRAMA |
C41 | AAGTCAGCAACATATGC | CCCACTGTTCATGAGTTTCT | ROX |
PD42 | AAACAACCCAACACTCGGAC | GTTTCTTCAAAAGGTTCTCTCGGCAAG | FAM |
CT15 | TTCTGCGACCTCGAAACCGA | GCTAGGGTTTTCATTTCTAG | HEX |
PD25 | CACGCCGGTGACGAATAATA | GTTTCTTTCTCCAACGGAACCAACAAC | TRAMA |
PD67 | TGGGTATCCCTCAGAATCCA | GTTTCTTCGTTGGAGACCAGAGGAGAG | ROX |
PD26 | TCCTGAACAAGTCAAGGTGC | GTTTCTTTCACACCACTGTGTTGCCTA | FAM |
CT14 | CGAGGTTGTTTGTTCATCATTAC | GATCTCAAGTCAAAAGGTGTC | HEX |
CP2 | GGAGCTGCAATATTGCTG | GTTAGGGAAGCATCTCAC | TRAMA |
Q19 | CATTAGCTTTTACGCAGTGTCG | TCGTCCATCTCCTCCATCTTT | ROX |
PD53 | CTCAATCTTGGGCTCTTTGG | GTTTCTTTCAGCTAGCCTTTGTCTCGG | FAM |
C2 | GAGCCATTCCCTTTTAGAAT | TTGAAAACCGGTATAGTTCG | HEX |
PA83 | TGCTGTTGGGTCTCTCTCCT | GTTTCTTCTTTGTGGAGCGCAGAGTTT | TRAMA |
K009 | GTAGGGAAAAGCACAAGGAT | AGAAAGCAAGCAAGCATAACATAAT | ROX |
将SSR分子标记试验的毛细管电泳检测结果导入Gene-Marker Version 1.91进行等位基因测定,选取GS500作为内标,获取扩增产物的条带数据。利用GenAlEx 6.50
为了估计种群间及种群内的遗传变异, 使用GenALEx 6.503软件包对种群进行分子方差分析(AMOVA),同时对种群间遗传距离和地理距离矩阵的相关性进行Mantel检验,分析地理隔离对种群遗传距离的影响。种群成对地理距离矩阵基于GPS工具(Garmin Oregon 450)记录的采样点经纬度坐标计算。
使用STRUCTURE version 2.3.
使用Treemix软件进行各种群之间的基因流分

图 1 DIYABC分析的5个种群动态历史场景
Fig. 1 Five dynamic historical scenarios for chestnut populations in DIYABC
N1:蓝色,表示北京栽培种群;N2: 绿色,表示北京野生种群; N3: 红色,表示湖北宜昌种群; 3个种群的相对位置表示进化的先后顺序
N1: Blue, Beijing cultivated populations; N2: Green, Beijing wild populations; N3: Red, Yichang populations in Hubei. Positions of the three populations indicate their evolution time
北京板栗种群的遗传多样性较高,等位基因数(Na)、有效等位基因数(Ne)、Shannon’s指数(I)、观测杂合度(Ho)、期望杂合度(He)以及近亲繁殖系数(Fis)平均值分别为3.330、2.064、0.768、0.398、0.404和0.011 (
种群 Populations | 等位基因数 Na | 有效等位基因数 Ne | Shannon’s指数 I | 观测杂合度 Ho | 期望杂合度 He | 近亲繁殖系数 Fis |
---|---|---|---|---|---|---|
湖北宜昌YC | 2.688±0.740 b | 1.656±0.392 b | 0.640±0.168 b | 0.303±0.087 a | 0.332±0.083 a | 0.069±0.097 a |
红螺寺HLS | 5.500±0.890 a | 3.482±0.577 a | 1.208±0.196 a | 0.477±0.091 a | 0.552±0.085 a | 0.137±0.089 a |
平谷区四座楼SZL | 2.875±0.455 b | 1.962±0.332 b | 0.726±0.131 b | 0.447±0.086 a | 0.400±0.065 a | -0.118±0.094 a |
密云区黑山寺HSS | 3.063±0.452 b | 1.766±0.235 b | 0.683±0.110 b | 0.448±0.091 a | 0.386±0.062 a | -0.110±0.111 a |
明代板栗园BLY | 3.188±0.526 b | 1.831±0.272 b | 0.693±0.130 b | 0.408±0.088 a | 0.376±0.068 a | -0.077±0.089 a |
怀柔区三个镇JLT | 2.813±0.421 b | 1.816±0.271 b | 0.677±0.123 b | 0.333±0.072 a | 0.379±0.066 a | 0.092±0.112 a |
昌平区大杨山DYS | 3.188±0.476 b | 1.933±0.298 b | 0.748±0.129 b | 0.369±0.079 a | 0.401±0.066 a | 0.110±0.104 a |
平均Mean | 3.330±0.233 | 2.064±0.142 | 0.768±0.056 | 0.398±0.032 | 0.404±0.027 | 0.011±0.038 |
同一列中不同的小写字母代表方差分析的显著性水平(P 值<0.05)
Different lowercase letters in the same column represent the significance level of ANOVA (P value<0.05); Na:Number of alleles; Ne: Number of effective alleles; I: Shannon’s index; Ho: Observed heterozygosity; He: Expected heterozygosity; Fis: Coefficient of inbreeding
基因流在不同种群间的差异不大,为0.237~1.297,平均为0.547,表明种群间的基因交流程度有限。板栗种群间的遗传分化系数为0.162~0.514,平均为0.232。湖北宜昌(YC)和红螺寺(HLS)种群与其他种群间的遗传分化很大,Fst>0.32(
种群 Population | 湖北宜昌 YC | 红螺寺 HLS | 平谷区四座楼SZL | 密云区黑山寺HSS | 明代板栗园 BLY | 怀柔区三个镇JLT | 昌平区大杨山DYS |
---|---|---|---|---|---|---|---|
湖北宜昌YC | — | 0.284 | 0.248 | 0.239 | 0.237 | 0.243 | 0.260 |
红螺寺HLS | 0.468 | — | 0.513 | 0.474 | 0.489 | 0.472 | 0.509 |
平谷区四座楼SZL | 0.502 | 0.328 | — | 1.142 | 1.297 | 1.028 | 1.255 |
密云区黑山寺HSS | 0.511 | 0.345 | 0.180 | — | 1.028 | 1.045 | 1.123 |
明代板栗园BLY | 0.514 | 0.338 | 0.162 | 0.196 | — | 0.939 | 1.185 |
怀柔区三个乡镇JLT | 0.507 | 0.346 | 0.196 | 0.193 | 0.210 | — | 1.295 |
昌平区大杨山DYS | 0.490 | 0.329 | 0.166 | 0.182 | 0.174 | 0.162 | — |
对角线左下方为遗传分化系数,对角线右上方为基因流;种群缩写同表1
Left below the diagonal is the genetic differentiation coefficient (Fst), and right above the diagonal is the gene flow (Nm). The population name is the same as Table 1
AMOVA结果表明,板栗种群间遗传变异占总变异的42.30%, 种群内遗传变异占总变异的57.70% (P<0.001)(
变异源 Source of variation | 自由度 df | 平方和 Sum of squares | 差异成分 Variance components | 方差百分比 (%) Percentage of variation | 遗传分化指数 Genetic differentiation index | P值 P-values |
---|---|---|---|---|---|---|
群体间Among populations | 6 | 584.017 | 5.751 | 42.30 | 0.4230 | <0.001 |
群体内Within populations | 102 | 800.332 | 7.846 | 57.70 | <0.001 | |
总和Total | 108 | 1384.349 | 13.598 |

图 2 基于板栗种群地理距离和遗传距离的相关性分析
Fig. 2 Correlation analysis between geographical distance and genetic distance for chestnut populations
K-select分析表明K=3时的Delta K值最高(

图 3 板栗种群聚类遗传结构分析
Fig. 3 Cluster analysis and genetic structure analysis of chestnut population
缩写字母参见表1;A:遗传结构K值分析;B:板栗遗传结构分析结果;C:板栗种群聚类树;D:板栗古树照片
Abbreviations refer to Table 1; A: K values of structure analysis; B: Results of genetic structure analysis; C: Cluster tree of chestnut populations; D: Photo of one old chestnut tree
UPGMA树结果与Structure结果一致,宜昌(YC)种群为外类群, 与北京板栗明显分开(

图 4 板栗种群的主成分分析和主坐标分析
Fig. 4 Principal component analysis and principal coordinate analysis of chestnut populations
缩写字母参见表1;A:主成分分析;B:主坐标分析
Abbreviations refer to Table 1; A: Principal component analysis; B: Principal coordinate analysis
为探究北京板栗的起源和进化历史,进行近似贝叶斯计算(DIYABC),根据Structure和UPGMA树结果,把北京栽培种群作为N1类群、红螺寺野生板栗种群作为N2类群、湖北宜昌种群作为N3类群,设置5个历史进化事件。根据模型结果,场景3的后验概率最高,为0.454,因此,将场景3定为最优进化模型(

图 5 基于DIYABC分析的最优进化事件模型
Fig. 5 Optimal evolutionary scenarios in the DIYABC simulation models
后验次数 Number of posterior tests | 事件1 Scenario 1 | 事件2 Scenario 2 | 事件3 Scenario 3 | 事件4 Scenario 4 | 事件5 Scenario 5 |
---|---|---|---|---|---|
75000 | 0.011 | 0.297 | 0.473 | 0.089 | 0.131 |
150000 | 0.009 | 0.295 | 0.467 | 0.092 | 0.138 |
225000 | 0.008 | 0.293 | 0.463 | 0.092 | 0.144 |
300000 | 0.007 | 0.292 | 0.460 | 0.093 | 0.148 |
375000 | 0.007 | 0.294 | 0.455 | 0.094 | 0.151 |
450000 | 0.006 | 0.296 | 0.450 | 0.095 | 0.153 |
525000 | 0.006 | 0.298 | 0.446 | 0.096 | 0.154 |
600000 | 0.006 | 0.299 | 0.443 | 0.097 | 0.155 |
675000 | 0.006 | 0.300 | 0.441 | 0.097 | 0.156 |
750000 | 0.006 | 0.301 | 0.440 | 0.098 | 0.156 |
后验概率Posterior probability | 0.007 | 0.296 | 0.454 | 0.094 | 0.149 |
Treemix分析结果显示种群之间基因流数量为2,并且表明基因流是从南到北,板栗种群间有向北迁移的历史路线 (

图 6 板栗种群历史迁移路线的Treemix分析
Fig. 6 Treemix analysis showed historical migration routes between chestnut populations
缩写字母参见表1。A:显示1条历史基因流线路(红色线);B:显示2条历史基因流线路(红色线)
Abbreviations can be found in Table 1. A: Showing one gene flow event (red line); B: Showing two gene flow events (red lines)
对于板栗物种的地理分布和种群动态历史研究的问题,虽然一直缺乏有力的证据,但是Cheng
北京板栗的野生种群与栽培种群之间的遗传分化明显,红螺寺野生板栗与栽培种分化时间较长,栽培种受到更多驯化的作用,板栗因长期栽培驯化产生更显著的遗传分化,这在其他类群也发现类似的结果,例如油橄榄(Galega vulgar(Lam.)Engl.
北京板栗栽培种群的遗传多样性与我国其他地区相似,例如河北板栗栽培种群(Na=2.12、Ne=1.66、I=0.55、Ho=0.22、He=0.35)和山东板栗栽培种群(Na=2.53、Ne=1.76、I=0.60、Ho=0.20、He= 0.37
此外,研究发现明代板栗园的板栗古树(胸径>50cm)保存了较高的遗传多样性,而且栽培板栗种群里的一些板栗古树也保留更多的遗传位点。其他物种的一些古树也保存了较高的遗传多样性,例如西南地区的杨树(Populus przewalskii Maxim)古
由此可见,亟需重视北京板栗野生种群和栽培种群的保护和利用。相比较于板栗野生种群,人工驯化降低了栽培种群的遗传多样性;而北京板栗古树保留了更高的多样性,是优良的种质资源库。因此,一是要摸清野生板栗种群和古树板栗的本底,明确其分布与数量,采取标牌、安装监控等措施加强就地保护与监管;二是要加强板栗种质资源的迁地保存,构建野生板栗和古树板栗的种质资源圃;三是开展板栗新品种培育,促进板栗种质资源的可持续利用。
参考文献
艾呈祥, 沈广宁, 田寿乐, 许林. 秦巴山区野生板栗居区园艺作物种质资源调查. 植物遗传资源学报, 2011, 12(3): 408-412 [百度学术]
Ai C X, Shen G N, Tian S L, Xu L. Genetic dversity on wild populations of cestnut in Qinba mountain area of west China with AFLP markers. Journal of Plant Genetic Resources, 2011, 12 (3): 408-412 [百度学术]
赵旗峰, 黄丽萍, 王敏, 刘晓婷, 张晓萍, 马小河. 基于SSR标记的100份葡萄资源亲缘关系和群体遗传结构分析. 果树学报, 2021, 38(8): 1217-1230 [百度学术]
Zhao Q F, Huang L P, Wang M, Liu X T, Zhang X P, Ma X H. Genetic relationship and population genetic structure analysis of 100 grape resources based on SSR markers. Journal of Fruit Trees, 2021, 38(8): 1217-1230 [百度学术]
白晓倩, 陈于, 张仕杰, 赵玉强, 王武, 朱灿灿.基于表型性状和SSR标记的板栗品种遗传多样性分析及分子身份证构建. 植物遗传资源学报, 2022, 23(4): 972-984 [百度学术]
Bai X Q, Chen Y, Zhang S J, Zhao Y Q, Wang W, Zhu C C. Genetic diversity analysis and fingerprinting of Chestnut varieties based on phenotypic traits and SSR markers. Journal of Plant Genetic Resources, 2022, 23(4): 972-984 [百度学术]
Babu K, Mathur R K, Venu M V B, Sandip S, Ravichandran G, Anita P, Bhagya H P. Genome-wide association study (GWAS) of major QTLs for bunch and oil yield related traits in Elaeis guineensis L.. Plant Science, 2021, 305: 110810 [百度学术]
Mafakheri M, Kordrostami M, Rahimi M, Matthews P D. Evaluating genetic diversity and structure of a wild hop (Humulus lupulus L.) germplasm using morphological and molecular characteristics. Euphytica, 2020, 216: 1-19 [百度学术]
胡永超,马洁,唐建宁, 朱金忠, 杨涓, 郑蕊, 张磊, 郑国琦. 不同树龄枸杞古树的遗传多样性研究. 植物遗传资源学报, 2022, 23(3): 755-767 [百度学术]
Hu Y C, Ma J, Tang J N, Zhu J Z, Yang J, Zheng R, Zhang L, Zheng G Q. Genetic diversity analysis of ancient trees with different ages of Lycium barbarum L. Journal of Plant Genetic Resources, 2022, 23 (3): 755-767 [百度学术]
李颖, 张树航, 郭燕, 张馨方, 王广鹏. 中国板栗可溶性糖相关性状多样性分析.植物遗传资源学报, 2023, 24(2): 493-504 [百度学术]
Li Y, Zhang S H, Guo Y, Zhang X F, Wang G P. Diversity analysis of soluble sugar related traits in Chinese chestnut, Journal of Plant Genetic Resources, 2023, 24 (2): 493-504 [百度学术]
刘晓书, 刘芳, 张俊. 京津冀地区板栗产业布局及前景分析. 中国果树, 2022(2): 99-102 [百度学术]
Liu X S, Liu F, Zhang J. The layout and prospect analysis of chestnut industry in Beijing-Tianjin-Hebei region. Chinese Fruit Trees, 2022(2): 99-102 [百度学术]
阚黎娜, 李倩, 谢爽爽, 欧阳杰. 我国板栗种质资源分布及营养成分比较. 食品工业科技, 2016, 37(20): 396-400 [百度学术]
Kan L N, Li Q, Xie S S, Ouyang J. Comparison of distribution and nutritional components of chestnut germplasm resources in China. Science and Technology of Food Industry, 2016, 37(20): 396-400 [百度学术]
张艳丽. 北京山区各区县历史文化资源系列调研报告之三 怀柔. 北京历史文化研究, 2007(4): 188-202 [百度学术]
Zhang Y L. Huairou, the third of a series of research reports on the historical and cultural resources of the districts and counties in Beijing's mountainous areas. Beijing History and Culture Research, 2007(4): 188-202 [百度学术]
刘国彬, 曹均, 王金宝, 兰彦平. 明清板栗古树遗传多样性的SSR分析. 林业科学研究, 2016, 29(6): 940-945 [百度学术]
Liu G B, Cao J, Wang J B, Lan Y P. SSR analysis of genetic diversity of ancient Chinese chestnut trees in the Ming and Qing dynasties. Forestry Science Research, 2016, 29 (6): 940-945 [百度学术]
李志朋. 怀柔区板栗黄化皱缩病发生相关因子调查及综合防控示范. 中国植保导刊, 2020, 40(10): 65-70 [百度学术]
Li Z P. Investigation and comprehensive prevention and control demonstration of the related factors of chestnut yellowing and shrinking disease in Huairou District. China Plant Protection Guide, 2020, 40 (10): 65-70 [百度学术]
张瑞, 界春晓. 板栗——门前高喊“灌香糖”. 绿化与生活, 2020(12): 32-35 [百度学术]
Zhang R, Jie C X. Chestnut - shout "sweet sugar" in front of the door. Greening and Living, 2020(12): 32-35 [百度学术]
Cheng L, Huang W, Lan Y, Cao Q C, Su S C, Zhou Z J, Wang J B, Liu J L, Hu G L. The complete chloroplast genome sequence of the wild Chinese chestnut (Castanea mollissima). Conservation Genetics Resources, 2018, 10: 291-294 [百度学术]
Sogo N, Shuan R, Yutaka S, Shingo T, Norio T, Yukie T, Toshihiro S, Eiich I. Genetic evidence that Chinese chestnut cultivars in Japan are derived from two divergent genetic structures that originated in China. PLoS ONE, 2020, 15: e0235354 [百度学术]
张辉, 柳鎏. 板栗群体的遗传多样性及人工选择的影响. 云南植物研究, 1998(1): 81-88 [百度学术]
Zhang H, Liu L. Genetic diversity of Chinese chestnut population and the influence of artificial selection. Yunnan Plant Research, 1998 (1): 81-88 [百度学术]
Li L C, Wu G H. Analysis of genetic diversity among wild Chinese chestnut populations using SSR markers. Acta Horticulturae, 2009, 844: 275-280 [百度学术]
杨阳, 郭燕, 张树航, 李颖, 张馨方, 王广鹏. 中国栗属植物起源、演化和分类研究进展. 河北农业科学, 2017, 21(2): 25-28 [百度学术]
Yang Y, Guo Y, Zhang S H, Li Y, Zhang X F, Wang G P. Advances in the study of the origin, evolution, and classification of Castanea plants in China. Hebei Agricultural Science, 2017, 21 (2): 25-28 [百度学术]
何秀娟, 邱文明, 徐育海. 利用叶片形态学性状和RAPD分子标记检测湖北板栗资源遗传多样性. 中国南方果树, 2014, 43(2):12-16 [百度学术]
He X J, Qiu W M, Xu Y H. Genetic diversity of chestnut resources in Hubei province was detected using leaf morphological traits and RAPD molecular markers. Fruit Trees in Southern China, 2014, 43 (2): 12-16 [百度学术]
程丽莉. 燕山板栗实生居群遗传多样性研究与核心种质初选.北京:北京林业大学, 2005 [百度学术]
Cheng L L. Study on genetic diversity and primary selection of core germplasms of Castanea mollissima in Yanshan. Beijing: Beijing Forestry University, 2005 [百度学术]
兰彦平, 周连第, 姚研武, 王尚德, 刘国彬. 中国板栗种质资源的AFLP分析. 园艺学报, 2010, 37(9):1499-1506 [百度学术]
Lan Y P, Zhou L D, Yao Y W, Wang S D, Liu G B. AFLP analysis of chestnut germplasm resources in China. Journal of Horticulture, 2010, 37 (9): 1499-1506 [百度学术]
聂兴华, 李伊然, 田寿乐, 王雪峰, 苏淑钗, 曹庆芹, 邢宇, 秦岭. 中国板栗品种(系)DNA指纹图谱构建及其遗传多样性分析. 园艺学报, 2022, 49(11):2313-2324 [百度学术]
Nie X H, Li Y R, Tian S L, Wang X F, Su S C, Cao Q Q, Xing Y, Qin L. Construction of DNA fingerprints and genetic diversity analysis of Chinese chestnut varieties (lines). Journal of Horticulture, 2022, 49 (11): 2313-2324 [百度学术]
程丽莉, 胡广隆, 苏淑钗, 黄武刚. 板栗及其近缘种叶绿体SSR遗传多样性分析. 华北农学报, 2015, 30(2): 145-149 [百度学术]
Chen L L, Hu G L, Su S C, Huang W G. Genetic diversity analysis of chloroplast SSR in chestnut and its related species. Journal of North China Agriculture, 2015, 30(2): 145-149 [百度学术]
刘国彬, 曹均, 兰彦平, 王金宝. 明清板栗古树指纹图谱的构建. 江西农业大学学报, 2017, 39(1): 134-139 [百度学术]
Liu G B, Cao J, Lan Y P, Wang J B. Construction of fingerprint of ancient Chinese chestnut trees in the Ming and Qing dynasties. Journal of Jiangxi Agricultural University, 2017, 39 (1): 134-139 [百度学术]
张馨方, 张树航, 李颖, 郭燕, 王广鹏. 基于SSR标记的燕山板栗种质资源遗传多样性分析. 中国农业大学学报, 2020, 25(4): 61-71 [百度学术]
Zhang X F, Zhang S H, Li Y, Guo Y, Wang G P. Genetic diversity analysis of chestnut germplasm resources in Yanshan based on SSR markers. Journal of China Agricultural University, 2020, 25 (4): 61-71 [百度学术]
Peakall R, Smouse P E. GenAlEx 6.5: Genetic analysis in excel. Population genetic software for teaching and research--an update. Bioinformatics, 2012, 28: 2537-2539 [百度学术]
Pritchard J, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959 [百度学术]
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 2005, 14: 2611-2620 [百度学术]
Koichiro T, Glen S, Sudhir K. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 2021, 38: 3022-3027 [百度学术]
Nei M. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, the United States of America, 1973, 70: 3321-3323 [百度学术]
Pickrell J, Pritchard J. Inference of population splits and mixtures from genome-wide allele frequency data. Nature Precedings, 2012, https://doi.org.10.1038/npre.2012.6956.1 [百度学术]
Jean-Marie C, Pierre P, Julien V, Alexandre D G, Mathieu G, Raphaël L, Jean-Michel M, Arnaud E. DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics, 2014, 30: 1187-1189 [百度学术]
Porras-Hurtado L, Ruiz Y, Santos C, Phillips C, Carracedo A, Lareu M V. An overview of STRUCTURE: Applications, parameter settings, and supporting software. Frontiers in Genetics, 2013, 4: 98 [百度学术]
贺维, 陈时. 壳斗科水青冈属谱系地理学研究进展. 现代园艺, 2021, 44(19): 47-50 [百度学术]
He W, Chen S. Progress in the genealogical geography of the Cyclobalanopsis genus (Fagaceae). Modern Gardening, 2021, 44 (19): 47-50 [百度学术]
Zhang X L, Manzaned R D, D'Orangeville L, Rademacher T T, Li J X, Bai X P, Hou M T, Chen Z J, Zou F G, Song F B, Pederson N. Snowmelt and early to mid-growing season water availability augment tree growth during rapid warming in southern Asian boreal forests. Global Change Biology, 2019, 25: 3462-3471 [百度学术]
Tian S, Lei S Q, Hu W, Deng L L, Li B, Meng Q L, Soltis D E, Soltis P S, Fan D M, Zhang Z Y. Repeated range expansions and inter-/postglacial recolonization routes of Sargentodoxa cuneata (Oliv.) Rehd. et Wils. (Lardizabalaceae) in subtropical China revealed by chloroplast phylogeography. Molecular Phylogenetics and Evolution, 2015, 85: 238-246 [百度学术]
Sales H, Šatović Z, Alves M L, Fevereiro P, Nunes J, Patto M C V. Accessing ancestral origin and diversity evolution by net divergence of an ongoing domestication mediterranean olive tree variety. Frontiers in Plant Science, 2021, 12: 688214 [百度学术]
Spengler R N. Origins of the apple: The role of megafaunal mutualism in the domestication of Malus and rosaceous trees. Frontiers in Plant Science, 2019, 10: 617 [百度学术]
Zhai S, Yin G, Yang X. Population genetics of the endangered and wild edible plant Ottelia acuminata in southwestern China using novel SSR markers. Biochemical Genetics, 2018, 56: 235-254 [百度学术]
Bouffartigue C, Debille S, Fabreguettes O, Cabrer A R, Pereira-Lorenzo S, Flutre T, Harvengt L. Two main genetic clusters with high admixture between forest and cultivated chestnut (Castanea sativa Mill.) in France. Annals of Forest Science, 2020, 77: 384-387 [百度学术]
Yang Y Q, Huang B H, Yu Z X, Liao P C. Inferences of demographic history and fine-scale landscape genetics in Cycas panzhihuaensis and implications for its conservation. Tree Genetics & Genomes, 2015, 11: 78 [百度学术]
李祥栋, 石明, 陆秀娟, 潘虹, 魏心元, 陆平. 利用叶绿体基因组SSR标记揭示薏苡属种质资源的遗传多样性. 华北农学报, 2019, 34(S1): 6-14 [百度学术]
Li X D, Shi M, Lu X J, Pan H, Wei X Y, Lu P. The genetic diversity of Coix germplasm resources was revealed by chloroplast genome SSR markers. North China Agricultural Journal, 2019, 34 (S1): 6-14 [百度学术]
孟繁霜. 糜子遗传多样性与栽培起源研究. 吉林:吉林大学, 2018 [百度学术]
Meng F S. Study on genetic diversity and cultural origin of millet. Jilin: Jilin University, 2018 [百度学术]
Han J C, Wang G P, Kong D J, Liu Q X, Zhang X Y. Genetic diversity of Chinese chestnut (Castanea mollissima) in Hebei. Acta Horticulturae, 2007, 760: 573-577 [百度学术]
李颖林. 锥栗野生和栽培群体遗传多样性的SSR分析. 福州:福建农林大学, 2019 [百度学术]
Li Y L. SSR analysis of genetic diversity in wild and cultivated populations of Castanea henryi. Fuzhou: Fujian Agricultural and Forestry University, 2019 [百度学术]
李朝霞. 中国对虾人工选育群体遗传结构分析及遗传连锁图谱的构建. 青岛:中国海洋大学, 2006 [百度学术]
Li C X. Genetic structure analysis and genetic linkage map construction of artificial breeding populations of Penaeus chinensis. Qingdao: China Ocean University, 2006 [百度学术]
江锡兵, 汤丹, 龚榜初, 赖俊声. 基于SSR标记的板栗地方品种遗传多样性与关联分析. 园艺学报, 2015, 42(12):2478-2488 [百度学术]
Jiang X B, Tang D, Gong B C, Lai J S. Genetic diversity and association analysis of local Chinese Chestnut cultivars based on SSR markers. Journal of Horticulture, 2015, 42 (12): 2478-2488 [百度学术]
Sarr A, Bodian A, Gbedevi K M, Ndir K N, Ajewole O O, Gueye B, Foncéka D, Diop E, Diop B M, Cissé N, Diouf D. Genetic diversity and population structure analyses of wild relatives and cultivated cowpea (Vigna unguiculata (L.) Walp.) from senegal using simple sequence repeat markers. Plant Molecular Biology Reporter, 2020, 39: 112-124 [百度学术]
Gao Y, Yin S, Wu L, Dai1 D Q, Wang H B, Liu C, Tang L Z. Genetic diversity and structure of wild and cultivated Amorphophallus paeoniifolius populations in southwestern China as revealed by RAD-seq. Scientific Reports, 2017, 7: 14183 [百度学术]
Qiang Z, Wang Y, Li S, Wang M W, Luo X D, Li X, Feng X L, Li C Y. Efficiency of ISSR marker in assessing the genetic diversity of wild and cultivated Hedysarum polybotrys Hand. Mazz. Caryologia, 2018, 71: 174-181 [百度学术]
纵丹, 周安佩, 张垚, 李旦, 段丽华, 何承忠. 西南地区古杨树遗传多样性的SSR分析. 西北植物学报, 2018, 38(5): 839-849 [百度学术]
Zong D, Zhou A P, Zhang Y, Li D, Duan L H, He C Z. SSR analysis of genetic diversity of ancient poplar in southwest China. Journal of Northwest Botany, 2018, 38 (5): 839-849 [百度学术]
张亮, 王振龙, 高志文, 马晶, 樊明瑞, 韩志校. 山西省旱柳古树资源遗传多样性的SSR分析. 山西林业科技, 2018(1), 47: 6-9 [百度学术]
Zhang L, Wang Z L, Gao Z W, Ma J, Fan M R, Han Z X. SSR analysis of genetic diversity of Salix mandshurica ancient tree resources in Shanxi province. Shanxi Forestry Science and Technology, 2018 (1), 47:6-9 [百度学术]
仲小茹, 柯叮, 黄献峰, 何小三, 王玉娟, 孙荣喜. 基于SSR标记的江西省枫香古树遗传多样性评价. 植物遗传资源学报, 2023, 24(2): 523-531 [百度学术]
Zhong X R, Ke D, Huang X F, He X S, Wang Y J, Sun R X. Genetic diversity in the ancient Liquidambar formosana Hance revealed by simple sequence repeat markers. Journal of Plant Genetic Resources, 2023, 24 (2): 523-531 [百度学术]
Nybom H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology, 2004, 13: 1143-1155 [百度学术]
Deng Y, Liu T, Xie Y, Wei Y, Xie Z, Shi Y, Deng X. High genetic diversity and low differentiation in Michelia shiluensis, an endangered magnolia species in south China. Forests, 2020, 11: 469 [百度学术]