摘要
锂
关键词
作物诱发突变技术是利用X射线、γ射线、航天诱变和EMS等诱变因素诱发植物遗传物质产生突变,以创制新种质、选育新品种的有效技
本研究利用彗星电泳实验和转录组测序技术分
本研究选用北京市审定的小麦品种航麦501(HM501)为材料,使
将经
将生长7 d的小麦幼苗用刀片切碎后浸入5 mL新鲜制备的酶溶液中(包括1.5%(w/v)纤维素酶RS、0.75%(w/v)离析酶R10、0.6 mol/L甘露醇、10 mmol/L MES(pH=5.5)、10 mmol/L CaCl2、0.1% BSA、5 mmol/L β-巯基乙醇和50 mg/mL羧苄青霉素),酶解3 h制备原生质体。使用彗星测定试剂盒(Trevigen,美国)制作载玻片,用1∶10000稀释的SYBR Green I染色剂(Sigma)对载玻片进行染色后,使用荧光显微镜对小麦DNA进行拍照。使用CASP彗星分析软件(http://www.casp.of.pl/)定量评估每个彗尾尾部DNA百分含量(Tail DNA%),每次处理分析3张图片,每张图片包含20个彗星细胞。
分别取对照
使用GO(http://www.geneontology.org/)和KEGG(http://www.genome.jp/kegg/)对差异表达基因进行富集分析;采用K-means 聚类共表达分析和转录因子分析方法对差异表达基因进行数据分析,所有转录组数据分析均在百迈客转录组分析平台(www.biocloud.net)完成。
随机选取8个差异表达基因进行荧光定量PCR(RT-qPCR)验证,检验RNA-seq数据的可靠性,引物序列见
引物名称 Primer name | 正向引物(5′-3′) Forward primer(5′-3′) | 反向引物(5′-3′) Reverse primer(5′-3′) |
---|---|---|
TraesCS1A03G0253000 | GGGCACTGGGCTAGAGACTGC | CTGATTGCATTTGCTGCACAGG |
TraesCS4D03G0025500 | ATCACGCCGCAGTGCCCCAA | CAGTTGTTGGCCGCCGACCCG |
TraesCS4A03G0749800 | ATCACGCCGCAGTGCCCCAG | GCAGTTGTTGGCCGCCGACCCT |
TraesCS2B03G0698400 | GTTGCTATTAAACCTCTGGAG | GATCTGAATTTTGTCACCCA |
TraesCS2A03G0395300 | AGTTCCAGTTCCAGTACTCG | TGTAGAGGTGCTGTGGCACG |
TraesCS2B03G0852800 | TCTGAGGAGCTGCTCGAACGT | ACAGCAGCTATATGGTCCGA |
TraesCS2D03G1091000 | ACATGTCGCACGAGCTCGAG | GCGCTCTCTTGCTCCTGCGCTG |
TraesCS2B03G0179300 | TGATCCGCTCCAAGTGGGTA | TGAAGCTGACGCATTGCACT |
Actin | ATGGAAGCTGCTGGAATCCAT | CCTTGCTCATACGGTCAGCAATAC |
幼苗生长7 d后

图1
Fig.1 The damage effects of
A
A: The seedling photographs of 7-day-seedlings germinate
彗星电泳结果显示,不同剂量

图2 不同剂
Fig.2 Comet assay images of nuclei of wheat seedling from different doses of

图 3
Fig.3 Results of the comet assay analysis on wheat seedling from
为了解

图4 样品间表达量相关性热图
Fig.4 Correlation heatmap between samples
1、2、3表示不同处理的3次生物学重复
1, 2, 3 are three biological replicates in different treatments

图5
Fig.5 Summary of the DEGs under
A
A: A summary of the numbers of up- and down-regulated DEGs under
为了进一步解析差异表达基因的功能,进行了GO和KEGG富集分析。GO分析结果显示

图6 差异表达基因的GO富集
Fig.6 GO enrichment analysis of the DEGs
A
A: GO enrichment analysis of the DEGs under
KEGG通路富集结果表明

图7 差异表达基因的KEGG富集
Fig.7 KEGG enrichment analysis of the DEGs
A
A: KEGG enrichment analysis of the DEGs unde

图8
Fig.8 Clustering analysis of DEGs under
A:差异表达基因的6个聚类(C1 ~ C6),名称后数字代表该聚类包含差异表达基因数目;B:不同聚类的差异表达基因的KEGG富集通路
A: The six clusters (C1 to C6) for DEGs, the number after the name represents the number of differentially expressed genes in the cluster;B: Enrichment pathways of the DEGs in different clusters, referring to the KEGG database
将上述6个聚类模式包含的基因进行KEGG分析,结果表明,聚类模式C1、C2和C6包含的基因主要涉及淀粉和蔗糖代谢(Starch and sucrose metabolism)、昼夜节律-植物(Circadian rhythm-plant)、光合生物固碳(Carbon fixation in photosynthetic organisms)、磷脂酰肌醇信号系统(Phosphatidylinositol signaling system)、光合作用-天线蛋白(Photosynthesis - antenna proteins)和光合作用(Photosynthesis)等通路。聚类模式C4和C5包含的基因则主要涉及二萜生物合成(Diterpenoid biosynthesis)、丙氨酸,天冬氨酸和谷氨酸代谢(Alanine, aspartate and glutamate metabolism)、糖酵解/糖异生(Glycolysis/Gluconeogenesis)、ABC转运蛋白(ABC transporters)和过氧化物酶体(Peroxisome)等通路。而聚类模式C3包含的基因主要涉及昼夜节律-植物(Circadian rhythm - plant)、甘油磷脂代谢(Glycerophospholipid metabolism)、植物病原相互作用(Plant-pathogen interaction)、植物激素信号转导(Plant hormone signal transduction)、MAPK信号通路-植物(MAPK signaling pathway-plant)(
7Li离子束辐照诱导15个转录因子(TF)家族中的48个TF编码基因,γ射线辐照诱导39个TF家族中的392个TF编码基因(

图9
Fig.9 Distributions of TF genes among the
A
A: Number and classification of TF genes among the
为了验证转录组数据的可靠性,随机选取RNA-seq结果中8个具有不同表达水平基因进行RT-qPCR的验证。结果表明,RNA-seq与RT-qPCR基因表达趋势一致(

图10 转录组测序数据的RT-qPCR验证
Fig.10 RNA sequencing data accuracy was verified by RT-qPCR
高能重离子束与传统诱变剂γ射线辐照诱导具有不同的突变
电离辐射可以直接和间接影响植物细胞活
近年来,转录组数据分析成为解析植物响应胁迫的基因调控网络的有效方
在受到非生物胁迫时植物会激活复杂的生物反应调节,而这些反应需要许多重要的调节因子参与,如转录因
本研究解析
参考文献
赵林姝, 刘录祥. 农作物辐射诱变育种研究进展. 激光生物学报, 2017,26 ( 6) : 481- 489 [百度学术]
Zhao L S, Liu L X. Research progresses in irradiarion-induced mutation breeding in crops. Acta Laser Biology Sinica, 2017, 26(6): 481-489 [百度学术]
杨震, 彭选明, 彭伟正. 作物诱变育种研究进展. 激光生物学报, 2016,25 (4): 302-308 [百度学术]
Yang Z, Peng X M, Peng W Z. Progress of study on crop mutation breeding. Acta Laser Biology Sinica, 2016, 25(4): 302-308 [百度学术]
Singh B, Datta P S. Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat. Radiation Physics and Chemistry, 2009, 79(2): 139-143 [百度学术]
Belfield E J, Gan X C, Mithani A, Brown C, Jiang C F, Franklin K, Alvey E, Wibowo A, Jung M, Bailey K, Kalwani S, Ragoussis J, Mott R, Harberd N P. Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana. Genome Research, 2012, 22(7): 1306-1315 [百度学术]
Lemay M A, Torkamaneh D, Rigaill G,Boyle B, Stec A O, Stupar R M, Belzile F. Screening populations for copy number variation using genotyping-by-sequencing: A proof of concept using soybean fast neutron mutants. BMC Genomics, 2019, 20(1): 1-16 [百度学术]
刘瑞媛, 金文杰, 曲颖, 周利斌, 董喜存, 李文建. 重离子束辐射诱变技术在植物育种中的应用. 广西科学, 2020,27 (1): 20- 26 [百度学术]
Liu R Y, Jin W J, Qu Y, Zhou L B, Dong X C, Li W J. Application of heavy ion beam irradiation mutagenesis technology in plant breeding. Guangxi Sciences, 2020, 27(1): 20-26 [百度学术]
Atsushi T, Naoya S, Yoshihiro H. Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. Journal of Radiation Research, 2010, 51(3): 223-233 [百度学术]
Yang G L, Luo W L, Zhang J, Yan X C, Du Y, Zhou L B, Li W J, Wang H, Chen Z Q, Guo T. Genome-wide comparisons of mutations induced by carbon-ion beam and gamma-rays irradiation in rice via resequencing multiple mutants. Frontiers in Plant Science, 2019, 10: 1514 [百度学术]
Thilo E, Michael S. Cluster effects within the local effect model. Radiation Research, 2007, 167(3): 319-329 [百度学术]
卢明. 低能重离
Lu M. Biological effects of low energy io
Li F, Shimizu A, Nishio T, Tsutsumi N, Kato H. Comparison and characterization of mutations induced by gamma-ray and carbon-ion irradiation in rice ( Oryza sativa L.) using whole-genome resequencing. G3: Genes, Genomes, Genetics, 2019, 9(11): 3743-3751 [百度学术]
Ling A P K, Ung Y C, Hussein S, Harun A R, Tanaka A, Yoshihiro H. Morphological and biochemical responses of Oryza sativa L. (cultivar MR219) to ion beam irradiation. Journal of Zhejiang University-Science B, 2013, 14(12): 1132-1143 [百度学术]
辛庆国, 刘录祥, 郭会君, 赵林姝, 于元杰, 赵葵, 隋丽, 孔福全, 赵世荣.
Xin Q G, Liu L X, Guo H J, Zhao L S, Yu Y J, Zhao K, Sui L, Kong F Q, Zhao S R. SSR analysis of M1 variation of dry seeds implanted by
Li B, Zhao L S, Zhang S, Cai H Y, Xu L, An B Z, Wang R, Liu G, He Y G, Jiao C H, Liu L X, Xu Y H. The mutational, epigenetic, and transcriptional effects between mixed high-energy particle field (CR) and
Xiong H C, Guo H J, Xie Y D, Gu J Y, Zhao L S, Zhao S R, Ding Y P, Kong F Q, Sui L, Liu L X. Comparative transcriptome analysis of two common wheat varieties induced by
Hagiwara Y, Oike T, Niimi A, Yamauchi M, Sato H, Limsirichaikul S, Held K D, Nakano T, Shibata A. Clustered DNA double-strand break formation and the repair pathway following heavy-ion irradiation. Journal of Radiation Research, 2018, 60(1): 69-79 [百度学术]
Shu Q Y, Forster B P, Nakagawa H. Plant mutation breeding and biotechnology. Wallingford, UK: Centre Agriculture Bioscience International Pubishing, 2012: 301-326 [百度学术]
林敏, 杨俊诚, 刘录祥, 郑兴耘, 郑企成, 白希祥, 赵文荣.
Lin M, Yang J C, Liu L X, Zheng X Y, Zheng Q C, Bai X X, Zhao W R. Damage effect of
Stoilov L, Georgieva M, Manova V, Liu L X, Gecheff K. Karyotype reconstruction modulates the sensitivity of barley genome to radiation-induced DNA and chromosomal damage. Mutagenesis, 2013, 28(2): 153-160 [百度学术]
韩冰,古佳玉,赵林姝,郭会君,谢永盾,赵世荣,孙云云,宋希云,刘录祥.不同小麦基因型对γ射线辐照敏感性的分子解析.植物遗传资源学报,2014,15(6):1342-1347 [百度学术]
Han B, Gu J Y, Zhao L S, Guo H J, Xie Y D, Zhao S R, Sun Y Y, Song X Y, Liu L X. Molecular characterization of radiation sensitivity of different wheat genotypes irradiated by γ rays. Journal of Plant Genetic Resources, 2014,15 (6): 1342-1347 [百度学术]
Kim D, Langmead B, Salzberg S L. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 2015, 12(4): 357-360 [百度学术]
Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 2015, 33(3): 290-295 [百度学术]
Love M I,Huber W,Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014, 15(12):550 [百度学术]
Wang W J, Li K, Yang Z, Hou Q C, Zhao W W, Sun Q W. RNase H1C collaborates with ssDNA binding proteins WHY1/3 and recombinase RecA1 to fulfill the DNA damage repair in Arabidopsis chloroplasts. Nucleic Acids Research, 2021, 49(12): 6771-6787 [百度学术]
Radziejwoski A, Vlieghe K, Lammens T, Berckmans B, Maes S, Jansen M A K, Knappe C, Albert A, Seidlitz H K, Bahnweg G, Inzé D, De V L. Atypical E2F activity coordinates PHR1 photolyase gene transcription with endoreduplication onset. The EMBO Journal, 2011, 30(2): 355-363 [百度学术]
曲颖, 李文建, 周利斌, 王转子, 董喜存, 余丽霞, 刘青芳, 何金玉. 重离子辐射植物的诱变效应研究及应用. 原子核物理评论, 2007 (4): 294- 298 [百度学术]
Qu Y, Li W J, Zhou L B, Wang Z Z, Dong X C, Yu L X, Liu Q F, He J Y. Research and application of mutagenic effect in plants irradiated by heavy ion beams. Nuclear Physics Review, 2007 (4): 294-298 [百度学术]
Lee Y M, Jo Y D, Lee H J, Kim Y S, Kim D S, Kim J B, Kang S Y, Kim S H. DNA damage and oxidative stress induced by proton beam in Cymbidium hybrid. Horticulture, Environment, and Biotechnology, 2015, 56(2): 240-260 [百度学术]
Lin W, Ruonan M, Yue Y, Zhen J. Antioxidant response of Arabidopsis thaliana seedlings to oxidative stress induced by carbon ion beams irradiation. Journal of Environmental Radioactivity, 2018, 195: 1-8 [百度学术]
Badia B, Pierre C, Darel H, Michael A. H, Léon S. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science, 2000, 287(5458): 1658-1660 [百度学术]
赵健. 重离子束辐射对拟南芥DNA双链断裂修复缺陷突变体AtLig
Zhao J.The mutagenic effects of heavy ion beam irradiation on DNA double-strand break repair deficient mutant AtLig
Yuichiro Y, Shinya Y, Yoshihiro H, Naoya S, Issay N, Atsushi T, Masayoshi I. Initial yields of DNA double-strand breaks and DNA fragmentation patterns depend on linear energy transfer in tobacco BY-2 protoplasts irradiated with helium, carbon and neon ions. Radiation Research, 2007, 167(1): 94-101 [百度学术]
Koenig D, Jiménez-Gómez J M, Kimura S, Fulop D, Chitwood D H, Headland L R, Kumar R, Covington M F, Devisetty U K, Tat A V, Tohge T, Bolger A, Schneeberger K, Ossowski S, Lanz C, Xiong G Y, Taylor-Teeples M, Brady S M, Pauly M, Weigel D, Usadel B, Fernie A R, Peng J, Sinha N R, Maloof J N. Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(28): 2655-2662 [百度学术]
张保才, 周奕华. 植物细胞壁形成机制的新进展. 中国科学:生命科学, 2015,45 (6): 544-556 [百度学术]
Zhang B C, Zhou Y H. Plant cell wall formation and regulation. Scientia Sinica(Vitae), 2015, 45(6): 544-556 [百度学术]
Zhang G H, Xu Q, Zhu X D, Qian Q, Xue H W. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. The Plant Cell, 2009, 21(3): 719-735 [百度学术]
张立新, 彭连伟, 林荣呈, 卢从明, 匡廷云. 光合作用研究进展与前景. 中国基础科学, 2016,18 (1): 13-20 [百度学术]
Zhang L X, Peng L W, Lin R C, Lu C M, Kuang T Y. Advances and prospects of photosynthesis research. China Basic Science, 2016, 18(1): 13-20 [百度学术]
Mei C, Sasmita M, Scott A H, Jonathan M F, Charles K. Proteomic analysis of Arabidopsis thaliana leaves in response to acute boron deficiency and toxicity reveals effects on photosynthesis, carbohydrate metabolism, and protein synthesis. Journal of Plant Physiology, 2014, 171(3-4): 235-242 [百度学术]
Donald T K, George F K, Abha U, Roman M M. UV-B response of cucumber seedlings grown under metal halide and high pressure sodium/deluxe lamps. Physiologia Plantarum, 1993, 88(2): 350-358 [百度学术]
陈文玲, 张晴晴, 唐韶华, 龚伟, 洪月云. 甘油-3-磷酸酰基转移酶在植物脂质代谢、生长及逆境反应中的作用. 植物生理学报, 2018, 54(5): 725-735 [百度学术]
Chen W L, Zhang Q Q, Tang S H, Gong W, Hong Y Y. Glycerol-3-phosphate acyltransferase in lipid metabolism, growth and response to stresses in plants. Plant Physiology Journal, 2018, 54 (5): 725-735 [百度学术]
原静静, 孙晓琛, 栗锦鹏, 杜弢, 王惠珍. 基于LC-MS的干旱胁迫下党参代谢组学分析. 中国实验方剂学杂志, 2021,27(23): 145-152 [百度学术]
Yuan J J, Sun X C, Li J P, Du T, Wang H Z. Metabolomics analysis of codonopsis pilosula under drouht stress based on LC-MS. Chinese Journal of Experimental Traditional, 2021, 27 (23): 145-152 [百度学术]
Li J, Yin J, Rong C, Li K E, Wu J X, Huang L Q, Zeng H Y, Sahu S K, Yao N. Orosomucoid proteins interact with the small subunit of serine palmitoyltransferase and contribute to sphingolipid homeostasis and stress responses in Arabidopsis. The Plant Cell, 2016,28(12): 3038-3051 [百度学术]
李君霞, 樊永强, 代书桃, 秦娜, 宋迎辉, 朱灿灿, 王春义, 翁鸿燕. bHLH转录因子在植物抗非生物胁迫基因工程中的应用进展. 江苏农业科学, 2022, 50(12):1- 9 [百度学术]
Li J X, Fan Y Q, Dai S T, Qin N, Song Y H, Zhu C C, Wang C Y, Weng H Y. Application progress of bHLH transcription factor in genetic engineering of plants against abiotic stress. Jiangsu Agricultural Sciences, 2022, 50 (12): 1-9 [百度学术]
张丹, 马玉花. NAC转录因子在植物响应非生物胁迫中的作用.生物技术通报, 2019, 35(12): 144- 151 [百度学术]
Zhang D, Ma Y H. The role of NAC transcription factor in plant response to abiotic stress. Biotechnology Bulletin, 2019, 35 (12): 144-151 [百度学术]
邱文怡, 王诗雨, 李晓芳, 徐恒, 张华, 朱英, 王良超. MYB转录因子参与植物非生物胁迫响应与植物激素应答的研究进展. 浙江农业学报, 2020, 32(7): 1317- 1328 [百度学术]
Qiu W Y, Wang S Y, Li X F, Xu H, Zhang H, Zhu Y, Wang L C. Functions of plant MYB transcription factors in response to abiotic stress and plant hormones. Acta Agriculturae Zhejiangensis, 2020, 32 (7): 1317-1328 [百度学术]
Xia H, Liu X L, Lin Z Y, Zhang X F, Wu M J, Wang Tong, Deng H H, Wang J, Lin L J, Deng Q X, Lv X L, Xu K F, Liang D. Genome-wide identification of MYB transcription factors and screening of members involved in stress response in Actinidia. International Journal of Molecular Sciences, 2022, 23(4): 2323-2323 [百度学术]
Wu Y Q, Zhang S S, Huang X, Lyu L F, Li W L, Wu W L. Genome-wide identification of WRKY gene family members in black raspberry and their response to abiotic stresses. Scientia Horticulturae, 2022, 304(2022): 111338 [百度学术]
Wang L Z, Xiang L J, Hong J, Xie Z H, Li B B. Genome-wide analysis of bHLH transcription factor family reveals their involvement in biotic and abiotic stress responses in wheat ( Triticum aestivum L.). 3 Biotech, 2019, 9(6): 236 [百度学术]
Sadhana S, Hiroyuki K, Kaushal K. B, Anshu A. The biotechnological importance of the plant-specific NAC transcription factor family in crop improvement. Journal of Plant Research, 2021, 134(3): 1-21 [百度学术]
Li J J, Liu H, Yang C, Wang J, Yan G J, Si P, Bai Q J, Lu Z Y, Zhou W J, Xu L. Genome-wide identification of MYB genes and expression analysis under different biotic and abiotic stresses in Helianthus annuus L.. Industrial Crops & Products, 2020, 143(C): 111924-111924 [百度学术]
Wei W, Zhang Y X, Han L, Guan Z Q, Chai T Y. A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco. Plant Cell Reports, 2008, 27(4): 795-803 [百度学术]
Hwang J E, Hwang S G, Kim S H, Lee K J, Jang C S, Kim J B, Kim S H, Ha B K, Ahn J W, Kang S Y, Kim D S. Transcriptome profiling in response to different types of ionizing radiation and identification of multiple radio marker genes in rice. Physiologia Plantarum,2014, 150(4): 604-619 [百度学术]
Kang R, Seo E, Park A, Kim W J, Kang B H, Lee J H, Kim S H, Kang S Y, Ha B K. A comparison of the transcriptomes of cowpeas in response to two different ionizing radiations. Plants,2021,10(3): 567-567 [百度学术]
Mélanie N, Rana M A, Sergio O, Richard D. T. The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. Plant Science, 2013, 209: 32-45 [百度学术]
任永康, 牛瑜琦, 逯成芳, 唐朝晖. 小麦Dof转录因子家族全基因组鉴定和表达分析. 河南农业科学, 2020, 49(9): 11- 19 [百度学术]
Ren Y K, Niu Y Q, Lu C F, Tang Z H. Genome-wide identification and expression of wheat Dof transcription factors. Journal of Henan Agricultural Sciences, 2020, 49 (9): 11-19 [百度学术]
Kang H G, Singh K B. Characterization of salicylic acid-responsive, arabidopsis Dof domain proteins: overexpression of OBP3 leads to growth defects. The Plant Journal: For Cell and Molecular Biology, 2000, 21(4): 329-339 [百度学术]
Víctor A S C, 12, Samantha R R, Jorge M V R. Non-canonical functions of the E2F/DP pathway with emphasis in plants. Phyton (Buenos Aires), 2021, 90(2): 307-330 [百度学术]
Maréchal A, Parent J, Véronneau-Lafortune F, Joyeux A, Lang B F, Brisson N. Whirly proteins maintain plastid genome stability in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(34): 14693-14698 [百度学术]