摘要
花青素和甜菜色素同为植物水溶性天然色素,在植物中分布和功能相似。前者为苯丙氨酸衍生色素,后者为酪氨酸衍生色素,含有生色团甜菜醛氨酸。花青素在植物中分布广泛,但在石竹目植物中,甜菜色素已经取代了花青素。值得注意的是,从未在同一植物中同时发现花青素和甜菜色素,这种互斥现象可能是由进化中的偶然导致,也可能是因为两种色素共存会对植物的生存造成问题,这一问题一直未解。本文综述了花青素和甜菜色素的概况、生物合成途径及其调控、人工诱导两种色素共存的案例,以及两者互斥的可能原因等研究进展。此外,还讨论了两种色素互斥的可能机制、未来可以开展的研究方向以及在分子育种等各方面的潜在应用价值。本文旨在通过对前人研究的综述及展望,更好地理解花青素和甜菜色素之间的关系,揭示它们存在互斥的原因,并为相关领域的研究和应用提供新的思路和方法。
花色是观赏植物中重要的性状之一。植物花色主要受类黄酮、类胡萝卜素和甜菜色素3种色素的影响。花青素是类黄酮中最主要的显色物质,也是高等植物中广泛存在的一种水溶性天然色素。植物中常见的花青素有6种,包括天竺葵素、矢车菊素、飞燕草素、芍药花素、矮牵牛素和锦葵

图1 花青素和甜菜色素结构式
Fig.1 Displayed formula of anthocyanins and betalains
甜菜色素是一种L-酪氨酸(Tyr)衍生的水溶性含氮生物碱类色素,因最早在甜菜根中被发现而得名。甜菜色素包括甜菜红素和甜菜黄素两
花青素和甜菜色素同为水溶性色素,在植物着色、发育、组织分布和功能上相似。有不少研究表明两者呈互斥状态,至今尚未发现一种植物同时天然含有花青素和甜菜色素(
植物 Plants | 花青素Anthocyanins | 甜菜色素 Betalains | 参考文献 References | 植物 Plants | 花青素Anthocyanins | 甜菜色素 Betalains | 参考文献 References |
---|---|---|---|---|---|---|---|
拟南芥 Arabidopsis thaliana | + |
[ | 三角梅 Bougainvillea glabra | + |
[ | ||
烟草 Nicotiana tabacum | + |
[ | 紫茉莉 Mirablis jalapa | + |
[ | ||
菊花 Dendranthema grandiflora | + |
[ | 鸡冠花 Celosia cristata L. | + |
[ | ||
矮牵牛 Petunia hybrida | + |
[ | 千日红 Gomphrena globosa | + |
[ | ||
月季 Rosa chinensis | + |
[ | 甜菜 Beta vulgaris | + |
[ | ||
葡萄 Vitis vinifera L. | + |
[ | 梨果仙人掌 Opuntia ficus-indica | + |
[ | ||
康乃馨 Dianthus caryophyllus | + |
[ | 仙人掌 Opuntia dillenii | + |
[ | ||
迪奥卡蝇子草 Silene dioica | + |
[ | 盐地碱蓬 Suaeda salsa | + |
[ | ||
粟米草科 Molluginaceae | + |
[ | 苋 Amaranthus mangostanus | + |
[ | ||
垂序商陆 Phytolacca americana | + |
[ | 火龙果 Stenocereus pruinosus | + |
[ |
+:代表植物中存在对应色素
+:Represents the presence of corresponding pigments in plants
植物的花、叶、茎和果实等组织器官由于含有的色素种类和含量不同而呈现出不同的颜色,花青素和甜菜色素均为水溶性天然色素,在细胞质中合成,储存在液泡中。两种色素在植物中的功能也较为相似,均在植物花色形成、种子传播、花粉萌发以及在不同生物和非生物胁迫防御等过程中发挥着十分重要的作
在植物中花青素多以花青素苷的形式存在,花青素苷在营养器官中的合成和积累对植物适应和抵抗恶劣的环境条件至关重要。花青素可以增强植物对不同生物胁迫和非生物胁迫的抵抗能力,比如提高植物耐旱、耐盐和耐低温等非生物胁迫的能力以及提高植物对病害的抗性
甜菜色素和花青素在生物和非生物胁迫防御中具有类似功能。研究发现,盐胁迫下甜菜色素积累增加,与绿叶相比,天然红叶和多巴诱导的红叶在白光或绿光下产生的H2O2更少,有效降低了光损害,这可能有助于植物在光暴露和盐碱环境中存
甜菜色素和花青素在植物中具有类似的功能,此现象有助于理解两种色素在植物进化中的相互作用,两种色素以相互排斥的方式分布在植物中是合理的,如果甜菜色素不能代替花青素在植物着色、吸引授粉、抵抗生物胁迫或非生物胁迫和抗病等过程中的作用,就不可能取代石竹目中花青素的存在。因此,两种色素在植物组织分布和功能上的相似性也是推动两者向互斥方向进化的原因之一。
花青素的生物合成途径是类黄酮合成的一个重要分支,主要分为以下3个阶段。第一阶段,苯丙氨酸氨解酶(PAL,phenylalanine ammonialyase)、肉桂酸4-羟化酶(C4H,cinnamate 4-hydroxylase)和4-香豆酸- CoA连接酶(4CL,4-coumarate-CoA ligase)依次催化苯丙氨酸(Phe,phenylalanine)反应合成4-香豆酰CoA(4-coumaroyl-CoA)。第二阶段,4-香豆酰CoA和丙二酰辅酶A(Malonyl-CoA)在查尔酮合成酶(CHS,chalcone synthase)、查尔酮异构酶(CHI,chalcone isomerase)和黄烷酮3-羟化酶(F3H,flavanone 3-hydroxylase)催化作用下合成二氢黄酮醇(DHK,dihydrokaempferol)。第三阶段,将花青素前体修饰成各种不同花青素苷。该阶段由二氢黄酮醇-4-还原酶(DFR,dihydroflavonol-4-reductase)、花青素合成酶/无色花青素双加氧酶(ANS/LDOX,anthocyanidin synthase/leucoanthocyanidin dioxygenase),将无色的二氢黄酮醇转化为有色花青素,然后由类黄酮3-O-葡萄糖基转移酶(UFGT,flavonoid 3-O-glucosyltransferase)催化有色花青素结合糖苷,经糖基化、甲基化或酰基化修饰后生成稳定的有色花青素苷(

图2 花青素和甜菜色素生物合成途径
Fig.2 Anthocyanins and betalains biosynthesis pathway
A:花青素生物合成途
A: Anthocyanins biosynthesis pathwa
花青素的生物合成主要受结构基因和调节基因共同调控。结构基因编码生物合成途径中所需的酶,包括PAL、C4H、4CL、CHS、CHI、F3H、F3'H(Flavanone 3' hydroxylase)、F3'5'H(Flavonoid 3'5' hydroxylase)、DFR、ANS和UFGT
甜菜色素是一种次级代谢产物,由芳香族氨基酸酪氨酸(Tyr,tyrosine)通过莽草酸途径合成。其合成途径比较简单,首先Tyr在羟化作用下形成L-DOPA,然后再在酪氨酸酶的氧化作用下生成多巴醌(o-DOPA-quinone),接着自发形成环状多巴(Cyclo-DOPA)。另一个合成途径是L-DOPA通过4,5-多巴双加氧酶(DODA,4,5-L-DOPA dioxygenase)作用生成开环多巴(4,5-Seco-DOPA),继而自发反应生成甜菜醛氨酸;甜菜醛氨酸和环状多巴自发缩合形成甜菜红素,甜菜红素再在UDP-葡糖基转移酶(5-GT/6-GT,UDP-glucose 5-O-/6-O-glucosyltransferases)的作用下连接糖基,形成甜菜红苷(Betanin),最后在液泡中积累。同时,甜菜醛氨酸和氨基酸或者胺也能自发结合形成甜菜黄
甜菜色素的合成主要依赖于CYP(Cytochrome P450)、DODA和GT(Glucosyltransferase)等关键
甜菜色素和花青素是植物常见的水溶性色素,颜色相似,是形成植物红、紫等颜色的主要色素,但是从合成途径上两者是来源和结构均不相同的物质。植物在长期进化过程中甜菜色素合成途径和花青素合成途径分离的机理尚不清楚,但从花青素和甜菜色素合成的前体物质来看,二者之间也存在某种联系。花青素合成的前体物质是Phe,而甜菜色素合成的前体物质是Tyr,Phe和Tyr属于芳香族氨基酸,是由莽草酸途径的最终产物分支酸(Chorismate)产生的。其合成始于磷酸烯醇式丙酮酸(PRP,phosphoenolpyruvate)和4-磷酸赤藓糖(E4P,erythrose 4-phosphate),两者通过莽草酸途径转化为分支酸,分支酸在分支酸变位酶(CM,chorismate mutase)作用下形成预苯酸(Prephenate),然后预苯酸在预苯酸脱水酶(PDT,prephenate dehydratase)/阿罗酸脱水酶(ADT,arogenate dehydratase)、预苯酸脱氢酶(PDH,prephenate dehydrogenase)/阿罗酸脱氢酶(ADH,arogenate dehydrogenase)催化下脱水/脱羧生成Phe或脱氢/脱羧生成Tyr,该途径在植物中高度保守,其中催化最后一步反应的PDT/ADT和PDH/ADH被认为是Phe和Tyr合成途径中关键酶,且活性通常受到产物Phe和Tyr的反馈抑
综上所述,两种色素的前体物质之间存在一定程度的同源性,并可能存在底物竞争关系。在大多数植物中,Phe衍生的花青素途径和Tyr衍生的甜菜色素途径均来自并竞争共同的底物阿罗酸(Arogenate
此外,Yang
虽然花青素和甜菜色素的积累在同一植物中是天然互斥的,但前期研究发现在同一物种中两种代谢途径所涉及的酶或调控因子并不完全互斥,具有共存现象或同源
花青素与甜菜色素不共存现象是植物色素形成机理中的未解之谜。前人已经研究了花青素合成植物中甜菜色素合成相关酶基因,以及甜菜色素合成植物中花青素合成相关酶基因,发现虽然存在互斥色素合成相关酶基因,但其不表达或者表达缺陷导致无法在同一植株中检测到两种色素的存在(

图3 花青素和甜菜色素合成调控
Fig.3 Regulation of anthocyanin and betalains biosynthesis
最近研究表明,花青素和甜菜色素不共存现象的发生,不仅与合成途径中相关酶基因的表达有关,也可能与同一类型转录因子的调控相关,MBW复合体包含花青素合成的MYB、bHLH和WDR转录因子,也可能参与甜菜色素生物合成的调
自然界中,尚未发现天然的同时存在甜菜色素和花青素的植物。但研究发现,一些花青素合成植物中存在甜菜色素合成酶基因,并且,在甜菜色素合成植物中也存在花青素合成酶基因(
早期的研究表明,在植物中异源生产甜菜色素也依赖于底物供应。在非石竹目植物蚕豆(Vicia Faba)和豌豆(Pisum Sativum)中,通过直接向植株幼苗添加甜菜醛氨酸,生成了甜菜黄素,并为甜菜醛氨酸与胺的自发缩合反应提供了证
综上所述,虽然自然条件下花青素与甜菜色素在同一植物中不共存,但可以通过合成生物学技术,将甜菜色素的生物合成途径引入产花青素植物中,从而人工合成两类色素共存的植株。此外,异源生产甜菜色素有望实现基本食品的生物强化、增强植物的抗逆性、开发新的观赏品种、增加商业甜菜色素生产的创新来源,以及在作物保护中利用这些色素。
花青素和甜菜色素是天然色素,在食品、制药、化妆品和保健品等行业生产中有广泛应用。两者在植物着色中赋予植物五彩缤纷的艳丽色彩。但两种色素不共存的现象限制了我们对异色多彩植物的想象。因此,对于两者互斥机理的研究一直未间断。
根据前人研究的结果,本文主要将两种色素不共存的可能原因归结为以下3个方面:(1)可能存在底物竞争或底物合成受抑,如Phe和Tyr合成途径关键酶ADH和ADT在两者互斥中发挥关键作用导致不平衡;(2)两者生物合成途径中关键酶基因表达受抑或丢失,如花青素合成关键基因ANS或甜菜色素合成关键基因DODA等的功能丧失;(3)合成途径中关键调控因子MBW复合体的调控,如R2R3-MYB基因BvMYB1与花青素合成相关bHLH相互作用残基的缺失。
虽然前人对两者进行了大量研究,但对其为何不共存的机理仍不清楚。当前,现代生物技术和多组学的共同发展为解释其互斥机理提供了非常便利的工具和平台。
在后续研究中,可以从以下几个方面开展相关研究:(1)鉴定石竹目中ADH酶基因在花青素植物和甜菜色素植物中的表达是否正常,是否存在缺失或缺陷;(2)研究较为简单的甜菜色素合成途径中关键基因DODA在花青素植物中有无功能,并揭示调控其功能的关键位点差异,对其关键位点进行回复突变后,观察其对植物生长发育的影响;(3)鉴定植物中是否存在同一或同源性极高关键转录因子,如MYB1是否可在花青素和甜菜色素合成中同样起到调控作用;(4)两色素合成途径中,是否由于不同转录因子MBW复合体分别调控使两者产生不同的生物合成策略,从而逐渐向互斥方向进化。
这些研究进展将为解释两色素互斥机制、培育花青素和甜菜色素共存的全新花色品种及开发植物来源天然色素提供理论依据。最终,将促进天然色素在工业应用中的发展和推广。
参考文献
Fu Z Z, Shang H Q, Jiang H, Gao J, Dong X Y, Wang H J, Li Y M, Wang L M, Zhang J, Shu Q Y, Chao Y C, Xu M L, Wang R, Wang L S, Zhang H C. Systematic identification of the light-quality responding anthocyanin synthesis-related transcripts in petunia petals. Horticultural Plant Journal, 2020, 6 (6):428-438 [百度学术]
Xu L, Tian Z Z, Chen H, Zhao Y M, Yang Y. Anthocyanins, anthocyanin-rich berries, and cardiovascular risks: Systematic review and meta-analysis of 44 randomized controlled trials and 15 prospective cohort studies. Frontiers in Nutrition, 2021, 8:747884 [百度学术]
Swathi S, Rukaiah F B, Ankul S S, Chitra V. Anthocyanin as a therapeutic in Alzheimer’s disease: A systematic review of preclinical evidences. Ageing Research Reviews, 2022, 76:101595 [百度学术]
赵昶灵, 郭华春. 植物花色苷生物合成酶类的亚细胞组织研究进展. 西北植物学报, 2007, 27 (8):1695-1701 [百度学术]
Zhao C L, Guo H C. Research advances in the subcellular organization of the enzymes catalyzing anthocyanins bioynthesis in higher plants. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27 (8):1695-1701 [百度学术]
张磊, 曹德美, 胡建军. 植物叶色形成调控机制研究进展.植物遗传资源学报, 2021, 22 (2):293-303 [百度学术]
Zhang L, Cao D M, Hu J J. Advance of the regulation mechanism of leaf color formation in plants. Journal of Plant Genetic Resources, 2021, 22 (2):293-303 [百度学术]
Rodriguez-Amaya D B. Update on natural food pigments-A mini-review on carotenoids, anthocyanins, and betalain. Food Research International, 2019, 124:200-205 [百度学术]
于思礼, 刘雪, 张昭宇, 於洪建, 赵广荣. 甜菜色素的生物合成及其代谢调控进展. 中国生物工程杂志, 2018, 38 (8):84-91 [百度学术]
Yu S L, Liu X, Zhang Z Y, Yu H J, Zhao G R. Advances in the biosynthesis and metabolic regulation of betalains. China Biotechnology, 2018, 38 (8):84-91 [百度学术]
Imamura T, Koga H, Higashimura Y, Isozumi N, Matsumoto K, Ohki S, Mori M. Red-beet betalain pigments inhibit amyloid-β aggregation and toxicity in amyloid-β expressing caenorhabditis elegans. Plant Foods for Human Nutrition, 2022, 77 (1):90-97 [百度学术]
Brockington S F, Walker R H, Glover B J, Soltis P S, Soltis D E. Complex pigment evolution in the Caryophyllales. New Phytologist, 2011, 190 (4):854-864 [百度学术]
Timoneda A, Feng T, Sheehan H. The evolution of betalain biosynthesis in Caryophyllales. New Phytologist, 2019, 224 (1):71-85 [百度学术]
Carreón-Hidalgo J P, Franco-Vásquez D C, Gómez-Linton D R, Pérez-Flores L J. Betalain plant sources, biosynthesis, extraction, stability enhancement methods, bioactivity, and applications. Food Research International, 2022, 151:110821 [百度学术]
Yonekura-Sakakibara K, Fukushima A, Nakabayashi R, Hanada K, Matsuda F, Sugawara S, Inoue E, Kuromori T, Ito T, Shinozaki K, Wangwattana B, Yamazaki M, Saito K. Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana. Plant Journal, 2012, 69 (1):154-167 [百度学术]
孙翊, 李慧, 王亮生, 戴思兰. 一种快速有效分析烟草花冠中花青素苷的方法. 植物学报, 2011, 46 (2):189-196 [百度学术]
Sun Y, Li H, Wang L S, Dai S L. Rapid, effective method for anthocyanin analysis in tobacco corolla. Bulletin of Botany, 2011, 46 (2):189-196 [百度学术]
Nakayama M, Koshioka M, Shibata M, Hiradate S, Yamaguchi M A. Identification of cyanidin 3-o-(3'',6''-o-dimalonyl-beta-glucopyranoside) as a flower pigment of chrysanthemum (Dendranthema grandiflorum). Bioscience Biotechnology and Biochemistry, 1997, 61 (9):1607-1608 [百度学术]
Aerts J. Isolation of vacuoles from the upper epidermis of Petunia hybrida petals. i. a comparison of isolation procedures. Zeitschrift für Naturforschung C, 1985, 40 (3-4):189-195 [百度学术]
Rathod P I, D'Mello P M. Evaluation of antioxidant activity of anthocyanins. Indian Drugs, 2006, 43 (8):660-664 [百度学术]
Baldi A, Romani A, Mulinacci N, Vincieri F F, Casetta B. HPLC/MS application to anthocyanins of Vitis vinifera L.. Journal of Agricultural and Food Chemistry, 1995, 43 (8):2104-2109 [百度学术]
Yamaguchi M A, Terahara N, Kakehi M, Shizukuishi K I. Identification and distribution of a new anthocyanin in purplish-red flowers of carnation, Dianthus caryophyllus L.. Engei Gakkai zasshi, 1988, 57 (1):91-100 [百度学术]
Kamsteeg J, Brederode J V, Kuppers F, Nigtevecht G V. Anthocyanins isolated from petals of various genotypes of the red campion (Silene dioica (l.) clairv.). Zeitschrift für Naturforschung C, 1978, 33 (7):475-483 [百度学术]
Gandia-Herrero F, Garcia-Carmona F. Biosynthesis of betalains: Yellow and violet plant pigments. Trends in Plant Science, 2013,18 (6):334-343 [百度学术]
Jerz G, Skotzki T, Fiege K, Winterhalter P, Wybraniec S. Separation of betalains from berries of Phytolacca americana by ion-pair high-speed counter-current chromatography. Journal of Chromatography A, 2008, 1190 (1-2):63-73 [百度学术]
钟晓缘, 刘姗, 孙蓉, 张颖. 三角梅苞叶色彩参数和色素含量分析及蓝色转基因受体的筛选. 西北植物学报, 2022, 42 (4):0646-0655 [百度学术]
Zhong X Y, Liu S, Sun R, Zhang Y. Screening of blue transgenic receptor varieties in Bougainvillea spectabilis based on the analysis of color parameters and pigment content. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42 (4):0646-0655 [百度学术]
Gandía-Herrero F, García-Carmona F, Escribano J. Fluorescent pigments: New perspectives in betalain research and applications. Food Research International, 2005, 38 (8-9):879-884 [百度学术]
Lystvan K, Kumorkiewicz A, Szneler E, Wybraniec S. Study on betalains in Celosia cristata Linn. callus culture and identification of new malonylated amaranthins. Journal of Agricultural and Food Chemistry, 2018, 66 (15):3870-3879 [百度学术]
Roriz C L, Heleno S A, Carocho M, Rodrigues P, Pinela J, Dias M I, Fernandes I P, Barreiro M F, Morales P, Barros L, Ferreira I C F R. Betacyanins from Gomphrena globosa L. flowers: Incorporation in cookies as natural colouring agents. Food Chemistry, 2020, 329:127178 [百度学术]
Skalicky M, Kubes J, Shokoofeh H, Tahjib-Ul-Arif M, Vachova P, Hejnak V. Betacyanins and betaxanthins in cultivated varieties of Beta vulgaris L. compared to weed beets. Molecules, 2020, 25 (22):5395 [百度学术]
Tutone M, Virzì A, Almerico A M. Reverse screening on indicaxanthin from Opuntia ficus-indica as natural chemoactive and chemopreventive agent. Journal of Theoretical Biology, 2018, 455:147-160 [百度学术]
Betancourt C, Cejudo-Bastante M J, Heredia F J, Hurtado N. Pigment composition and antioxidant capacity of betacyanins and betaxanthins fractions of Opuntia dillenii (Ker Gawl) Haw cactus fruit. Food Research International, 2017,101:173-179 [百度学术]
Wang C Q, Zhao J Q, Chen M, Wang B S. Identification of betacyanin and effects of environmental factors on its accumulation in halophyte Suaeda salsa. Journal of Plant Physiology and Molecular Biology, 2006, 32 (2):195-201 [百度学术]
Cao S, Liu T, Jiang Y, He S, Harrison D K, Joyce D C. The effects of host defence elicitors on betacyanin accumulation in Amaranthus mangostanus seedlings. Food Chemistry, 2012, 134 (4):1715-1718 [百度学术]
García-Cruz L, Valle-Guadarrama S, Soto-Hernández R M, Guerra-Ramírez D, Zuleta-Prada H, Martínez-Damián M T, Ramírez-Valencia Y D. Separation of pitaya (Stenocereus pruinosus) betaxanthins, betacyanins, and soluble phenols through multistage aqueous two-phase systems. Food and Bioprocess Technology, 2021, 14:1791-1804 [百度学术]
Jain G, Gould K S. Are betalain pigments the functional homologues of anthocyanins in plants? Environmental and Experimental Botany, 2015, 119:48-53 [百度学术]
Naing A H, Kim C K. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses. Physiologia Plantarum, 2021, 172 (3):1711-1723 [百度学术]
Hanumappa M, Choi G, Ryu S, Choi G. Modulation of flower colour by rationally designed dominant-negative chalcone synthase. Journal of Experimental Botany, 2007, 58 (10):2471-2478 [百度学术]
Henarejos E P, Guadarrama F B, Guerrero R M, Gómez-Pando L R, García C F, Gandía-Herrero F. Development of betalain producing callus lines from colored quinoa varieties (Chenopodium quinoa Willd). Journal of Agricultural and Food Chemistry, 2018, 66 (2):467-474 [百度学术]
Cirillo V, D'Amelia V, Esposito M, Amitrano C, Carillo P, Carputo D, Maggio A. Anthocyanins are key regulators of drought stress tolerance in tobacco. Biology, 2021, 10 (2):139 [百度学术]
Kim J, Lee W J, Vu T T, Jeong C Y, Hong S W, Lee H. High accumulation of anthocyanins via the ectopic expression of AtDFR confers significant salt stress tolerance in Brassica napus L.. Plant Cell Reports, 2017, 36:1215-1224 [百度学术]
Li X, Ouyang X, Zhang Z, He L, Wang Y, Li Y, Zhao J, Chen Z, Wang C, Ding L, Pei Y, Xiao Y. Over-expression of the red plant gene R1 enhances anthocyanin production and resistance to bollworm and spider mite in cotton. Molecular Genetics and Genomics, 2019, 294 (2):469-478 [百度学术]
Jain G, Schwinn K E, Gould K S. Betalain induction by L-DOPA application confers photoprotection to saline-exposed leaves of Disphyma australe. New Phytologist, 2015, 207 (4):1075-1083 [百度学术]
Jain G, Gould K S. Functional significance of betalain biosynthesis in leaves of Disphyma australe under salinity stress. Environmental and Experimental Botany, 2015, 109:131-140 [百度学术]
Zhang Y, Butelli E, De S R, Schoonbeek H J, Magusin A, Pagliarani C, Wellner N, Hill L, Orzaez D, Granell A, Jones J D G, Martin C. Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold. Current Biology, 2013, 23 (12):1094-1100 [百度学术]
Polturak G, Grossman N, Vela-Corcia D, Dong Y H, Nudel A, Pliner M, Levy M, Rogachev I, Aharoni A. Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114 (34):9062-9067 [百度学术]
Ma Y Y, Ma X, Gao X, Wu W L, Zhou B. Light induced regulation pathway of anthocyanin biosynthesis in plants. International Journal of Molecular Sciences, 2021, 22 (20):11116 [百度学术]
Feng X, Gao G, Yu C, Zhu A, Chen J, Chen K, Wang X, Abubakar A S, Chen P. Transcriptome and metabolome analysis reveals anthocyanin biosynthesis pathway associated with ramie (Boehmeria nivea (L.) Gaud.) leaf color formation. BMC Genomics, 2021, 22 (1):684 [百度学术]
刘菊, 张会灵, 张中华, 赵亚男, 张菊平. 乙烯响应因子(ERFs)在植物花青素合成中的调控作用. 植物遗传资源学报, 2023, 24 (3):615-623 [百度学术]
Liu J, Zhang H L, Zhang Z H, Zhao Y N, Zhang J P. The regulation of ethylene responsive factors (ERFs) in plant anthocyanin synthesis. Journal of Plant Genetic Resources, 2023, 24 (3):615-623 [百度学术]
武小娟, 谢锐, 吴娟, 王沛捷, 胡蒙, 姜超, 孟涛, 于佳乐, 郑子凡, 马艳红. 彩色马铃薯花青素生物合成相关microRNAs及其靶基因表达分析. 植物遗传资源学报, 2022, 23 (6):1856-1866 [百度学术]
Wu X J, Xie R, Wu J, Wang P J, Hu M, Jiang C, Meng T, Yu J L, Zheng Z F, Ma Y H. Expression analysis of anthocyanin biosynthesis related micrornas and their target genes in potato. Journal of Plant Genetic Resources, 2022, 23 (6): 1856-1866 [百度学术]
Gonzalez A, Zhao M, Leavitt J M, Lloyd A. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal, 2008, 53 (5):814-827 [百度学术]
Lin R C, Rausher M D. R2R3-MYB genes control petal pigmentation patterning in Clarkia gracilis ssp. sonomensis (Onagraceae). New Phytologist, 2021, 229:1147-1162 [百度学术]
Jiu S T, Guan L, Leng X P, Zhang K K, Haider M S, Yu X, Zhu X D, Zheng T, Ge M Q, Wang C, Jia H F, Shangguan L F, Zhang C X, Tang X P, Abdullah M, Javed H U, Han J, Dong Z G, Fang J G. The role of VvMYBA2r and VvMYBA2w alleles of the MYBA2 locus in the regulation of anthocyanin biosynthesis for molecular breeding of grape (Vitis spp.) skin coloration. Plant Biotechnology Journal, 2021, 19 (6):1216-1239 [百度学术]
Flores P C, Yoon J S, Kim D Y, Seo Y W. Transcriptome analysis of MYB genes and patterns of anthocyanin accumulation during seed development in wheat. Evolutionary Bioinformatics, 2022, 18:1-12 [百度学术]
Kim J, Kim D H, Lee J Y, Lim S H. The R3-Type MYB transcription factor BrMYBL2.1 negatively regulates anthocyanin biosynthesis in Chinese cabbage (Brassica rapa L.) by repressing MYB-bHLH-WD40 complex activity. International Journal of Molecular Sciences, 2022, 23:3382 [百度学术]
Liu X K, Duan J J, Huo D, Li Q Q, Wang Q Y, Zhang Y L, Niu L X, Luo J R. The Paeonia qiui R2R3-MYB transcription factor PqMYB113 positively regulates anthocyanin accumulation in Arabidopsis thaliana and tobacco. Frontiers in Plant Science, 2022, 12:810990 [百度学术]
Fan Z Y, Zhai Y L, Wang Y, Zhang L, Song M Y, Flaishman M A, Ma H Q. Genome-wide analysis of anthocyanin biosynthesis regulatory WD40 gene FcTTG1 and related family in Ficus carica L.. Frontiers in Plant Science, 2022, 13:948084 [百度学术]
Rajput R, Naik J, Stracke R, Pandey A. Interplay between R2R3 MYB-type activators and repressors regulates proanthocyanidin biosynthesis in banana (Musa acuminate). New Phytologist, 2022, 236 (3):1108-1127 [百度学术]
Zhang L L, Yan L, Zhang C, Kong X, Zheng Y Q, Dong L. Glucose supply induces PsMYB2-mediated anthocyanin accumulation in Paeonia suffruticosa 'Tai Yang' cut flower. Frontiers in Plant Science, 2022, 13:874526 [百度学术]
Chaves-Silva S, Santos A L D, Chalfun-Júnior A, Zhao J, Peres L E P, Benedito V A. Understanding the genetic regulation of anthocyanin biosynthesis in plants-tools for breeding purple varieties of fruits and vegetables. Phytochemistry, 2018, 153:11-27 [百度学术]
Wang M M, Lopez-Nieves S, Goldman I L, Maeda H A. Limited tyrosine utilization explains lower betalain contents in yellow than red table beet genotypes. Journal of Agricultural and Food Chemistry, 2017, 65 (21):4305-4313 [百度学术]
Galili G, Amir R, Fernie A R. The regulation of essential amino acid synthesis and accumulation in plants. Annual Review of Plant Biology, 2016, 67:153-178 [百度学术]
Khan M I, Giridhar P. Plant betalains: Chemistry and biochemistry. Phytochemistry, 2015, 117:267-295 [百度学术]
Bean A, Sunnadeniya R, Akhavan N, Campbell A, Brown M, Lloyd A. Gain-of-function mutations in beet DODA2 identify key residues for betalain pigment evolution. New Phytologist, 2018, 29 (1):287-296 [百度学术]
Qin Y H. A genome-wide identification study reveals that HmoCYP76AD1, HmoDODAα1 and HmocDOPA5GT involved in betalain biosynthesis in hylocereus. Genes, 2021, 12 (12):1858 [百度学术]
Cheng M N, Huang Z J, Hua Q Z, Shan W, Kuang J F, Lu W J, Qin Y H, Chen J Y. The WRKY transcription factor HpWRKY44 regulates CytP450-like1 expression in red pitaya fruit (Hylocereus polyrhizus). Horticulture Research, 2017, 4 (1):192-200 [百度学术]
Hatlestad G J, Akhavan N A, Sunnadeniya R M, Elam L, Cargile S, Hembd A, Gonzalez A, McGrath J M, Lloyd A M. The beet Y locus encodes an anthocyanin MYB-like protein that activates the betalain red pigment pathway. Nature Genetics, 2015, 47 (1):92-96 [百度学术]
Zhang L L, Chen C B, Xie F F, Hua Q Z, Zhang Z K, Zhang R, Chen J Y, Zhao J T, Hu G B, Qin Y H. A novel WRKY transcription factor HmoWRKY40 associated with betalain biosynthesis in Pitaya (Hylocereus monacanthus) through regulating HmoCYP76AD1. International Journal of Molecular Sciences, 2021, 22 (4):2171 [百度学术]
谢礼洋, 刘生财, 白玉, 柳燕, 林觅, 蔡顺亮, 郑学立, 谢晓清, 冯新, 程春振, 陈裕坤, 赖钟雄. 苋菜甜菜红素合成相关基因AmMYB1的克隆及表达分析. 西北植物学报, 2016, 36 (6):1080-1090 [百度学术]
Xie L Y, Liu S C, Bai Y, Liu Y, Lin M, Cai S L, Zheng X L, Xie X Q, Feng X, Cheng C Z, Chen Y K, Lai Z X. Cloning and expression analysis of betalain-related transcription factor gene AmMYB1 in Amaranthus tricolor L.. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36 (6):1080-1090 [百度学术]
彭丽云, 王云, 孙雪丽, 王晓, 赵春丽, 王丛巧, 项蕾蕾, 陈家兰, 赖钟雄, 刘生财. 苋菜中甜菜红素代谢相关基因AmMYB2的表达与功能分析. 园艺学报, 2019, 46 (3):473-485 [百度学术]
Peng L Y, Wang Y, Sun X L, Wang X, Zhao C L, Wang C Q, Xiang L L, Chen J L, Lai Z X, Liu S C. Expression and functional analysis of AmMYB2 related to betalain metabolism of Amaranthus tricolor. Acta Horticulturae Sinica, 2019, 46 (3):473-485 [百度学术]
巴良杰, 罗冬兰, 戴卫军, 王瑞. 红肉火龙果HpERF1/2/3转录因子的特性及对HpCytP450-like1的调控. 保鲜与加工, 2018, 18 (1):32-40 [百度学术]
Ba L J, Luo D L, Dai W J, Wang R. Molecular characterization of Hylocereus polyrhizus transcription factors HpERF1/2/3 and their regulation on HpCytP450-like 1. Storage and Process, 2018, 18 (1):32-40 [百度学术]
Maeda H, Shasany A K, Schnepp J, Orlova I, Taguchi G, Cooper B R, Rhodes D, Pichersky E, Dudareva N. RNAi suppression of arogenate dehydratase1 reveals that phenylalanine is synthesized predominantly via the arogenate pathway in petunia petals. The Plant Cell, 2010, 22 (3):832-849 [百度学术]
Maeda H, Dudareva N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annual Review of Plant Biology, 2012, 63 (1):73-105 [百度学术]
Chen Q B, Man C, Li D N. Arogenate dehydratase isoforms differentially regulate anthocyanin biosynthesis in Arabidopsis thalian. Molecular Plant, 2016, 9 (12):1609-1619 [百度学术]
Galili G, Amir R, Fernie A R. The regulation of essential amino acid synthesis and accumulation in plants. Annual Review of Plant Biology, 2016, 67:153-178 [百度学术]
Nair P M, Vining L C. Phenylalanine hydroxylase from spinach leaves. Phytochemistry, 1965, 4 (3):401-411 [百度学术]
Pribat A, Noiriel A, Morse A M, Davis J M, Fouquet R, Loizeau K, Ravanel S, Frank W, Haas R, Reski R, Bedair M, Sumner L W, Hanson A D. Nonflowering plants possess a unique folate-dependent phenylalanine hydroxylase that is localized in chloroplasts. The Plant Cell, 2010, 22 (10):3410-3422 [百度学术]
Rippert P, Matringe M. Purification and kinetic analysis of the two recombinant arogenate dehydrogenase isoforms of Arabidopsis thaliana. European Journal of Biochemistry, 2002, 269 (19):4753-4761 [百度学术]
Legrand P, Dumas R, Seux M, Rippert P, Ravelli R, Ferrer J L, Matringe M. Biochemical characterization and crystal structure of synechocystis arogenate dehydrogenase provide insights into catalytic reaction. Structure, 2006, 14 (4):767-776 [百度学术]
Lopez-Nieves S, Yang Y, Timoneda A, Wang M M, Feng T, Smith S A, Brockington S F, Maed H A. Relaxation of tyrosine pathway regulation underlies the evolution of betalain pigmentation in Caryophyllales. New Phytologist, 2017, 217 (2):896-908 [百度学术]
Yang W H, Peng T, Li T G, Cen J R, Wang J. Tyramine and tyrosine decarboxylase gene contributes to the formation of cyanic blotches in the petals of pansy (Viola×wittrockiana). Plant Physiology and Biochemistry, 2018, 127:269-275 [百度学术]
Shimada S, Inoue Y T, Sakuta M. Anthocyanidin synthase in non-anthocyanin-producing Caryophyllales species. Plant Journal for Cell and Molecular Biology, 2005, 44 (6):950-959 [百度学术]
Xu S X, Huang Q Y, Lin C S, Lin L X, Zhou Q, Lin F C, He E M. Transcriptome comparison reveals candidate genes responsible for the betalain-/anthocyanidin-production in bougainvilleas. Functional Plant Biology, 2016, 43 (3):278-286 [百度学术]
李霆格. 三色堇(Viola×wittrockiana)中4,5-多巴雌二醇双加氧酶基因的克隆及表达分析. 海口:海南大学, 2017 [百度学术]
Li T G. Cloning and expression analysis of DOPA 4,5-dioxygenase extradiol in Viola×wittrockiana Gams. Haikou:Hainan University, 2017 [百度学术]
Shimada S, Takahashi K, Sato Y, Sakuta M. Dihydroflavonol 4-reductase cDNA from non-anthocyanin-producing species in the Caryophyllales. Plant Cell Physiology, 2004, 45 (9):1290-1298 [百度学术]
Shimada S, Otsuki H, Sakuta M. Transcriptional control of anthocyanin biosynthetic genes in the Caryophyllales. Journal of Experimental Botany, 2007, 58 (5):957-967 [百度学术]
Polturak G, Heinig U, Grossman N, Battat M, Leshkowitz D, Malitsky S, Rogachev I, Aharoni A. Transcriptome and metabolic profiling provides insights into betalain biosynthesis and evolution in Mirabilis jalapa. Molecular Plant, 2018, 11 (1):189-204 [百度学术]
Brockington S F, Yang Y, Gandia-Herrero F, Covshoff S, Hibberd J M, Sage R F, Wong G K, Moore M J, Smith S A. Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales. New Phytologist, 2015, 207 (4):1170-1180 [百度学术]
Sakuta M, Tanaka A, Iwase K, Miyasaka M, Ichiki S, Hatai M, Inoue Y T, Yamagami A, Nakano T, Yoshida K, Shimada S. Anthocyanin synthesis potential in betalain-producing Caryophyllales plants. Journal of Plant Research, 2021, 134:1335-1349 [百度学术]
Schliemann W, Strack K D. The decisive step in betaxanthin biosynthesis is a spontaneous reaction. Plant Physiology, 1999, 119 (4):1217-1232 [百度学术]
Harris N N, Javellana J, Davies K M, Lewis D H, Jameson P E, Deroles S C, Calcott K E, Gould K S, Schwinn K E. Betalain production is possible in anthocyanin-producing plant species given the presence of DOPA-dioxygenase and L-DOPA. BMC Plant Biology, 2012, 12 (1):34 [百度学术]
Nakatsuka T, Yamada E, Takahashi H, Imamura T, Suzuki M, Ozeki Y, Tsujimura I, Saito M, Sakamoto Y, Sasaki N, Nishihara M. Genetic engineering of yellow betalain pigments beyond the species barrier. Scientific Reports, 2013, 3:1970 [百度学术]
Sunnadeniya R, Bean A, Brown M, Akhavan N, Hatlestad G, Gonzalez A, Symonds V V, Lloyd A. Tyrosine hydroxylation in betalain pigment biosynthesis is performed by Cytochrome P450 enzymes in beets (Beta vulgaris). PLoS ONE, 2016, 11 (2):e0149417 [百度学术]
Polturak G, Breitel D, Grossman N, Sarrion-Perdigones A, Weithorn E, Pliner M, Orzaez D, Granell A, Rogachev I, Aharoni A. Elucidation of the first committed step in betalain biosynthesis enables the heterologous engineering of betalain pigments in plants. New Phytologist, 2016, 210:269-283 [百度学术]
He Y B, Zhang T, Sun H, Zhan H D, Zhao Y D. A reporter for noninvasively monitoring gene expression and plant transformation. Horticulture Research, 2020, 7 (1):802-805 [百度学术]
Sho O, Rikako M, Motoaki D. Post-transcriptional gene silencing of CYP76AD controls betalain biosynthesis in bracts of bougainvillea. Journal of Experimental Botany, 2021, 72 (20):6949-6962 [百度学术]