摘要
地方品种资源是小麦新品种选育的重要亲本来源,充分应用其优异性状对于育种实践具有重要意义。本研究利用分子标记检测甘肃省种质库地方品种春化(Vrn-A1、Vrn-B1、VrnD1和Vrn-B3)和光周期(Ppd-D1)基因的等位变异。结果表明:(1)445份地方品种共携带6种春化基因显性等位变异,分布频率差异较大,分别为Vrn-A1a (2.5%)、Vrn-B1a (11.0%)、Vrn-B1b (1.6%)、Vrn-B1c (0.5%)、Vrn-D1 (67.4%)和Vrn-B3(0.5%);在检测材料中光周期非敏感等位变异Ppd-D1a分布频率为17.8%。(2)除Vrn-B1a+Vrn-D1外,其余显性春化基因等位变异组合的材料全部分布在春麦区;从春麦区到冬麦区,春化基因显性等位变异分布频率呈降低趋势,而隐性等位变异频率呈升高趋势;Ppd-D1a在甘肃省不同麦区均有分布,且冬麦区分布频率远高于春麦区。陇东旱塬冬麦区分布频率最高(35.6%),洮岷高寒春麦区分布频率最低(5.1%)。(3)比较基于资源目录记载的冬春性和春化基因显性等位变异推断的冬春性的一致性,发现春性和弱冬性品种的一致性较高,冬性和强冬性品种的一致性较低,从甘肃省春麦区到冬麦区,一致性逐渐降低。(4)筛选出83、119和82份地方品种,可分别在春麦区(甘肃省中西部及洮岷高寒春麦区等)、冬季较为温暖的秋播冬麦区(陇南嘉陵江上游、天水南部渭河上游等)及较为寒冷的冬麦区(如平凉、庆阳的泾河流域及天水、定西的北部等)的育种中广泛应用。研究结果为现代小麦育种中发掘利用优异地方种质资源提供参考。
小麦是我国主要粮食作物,随着气候和环境的变化,小麦品种需不断更新换代。优异种质资源是选育丰产、广适、优良品种的物质基础。现代育种的种质资源极度狭窄,亟需从近缘种和地方品种中挖掘优异种质,以拓展育种亲本基因种类,为丰产抗病广适新品种培育奠定基础。提高产量始终是国内小麦育种的重要目标。除产量潜力外,产量及其稳定性还受适应性、抗病性及抗寒性等影响。微调适应性相关基因对提升小麦产量潜力至关重
甘肃省地域狭长,气候类型复杂多变,西北部和东南部适宜种植品种的冬春性差异较大。河西灌溉春麦区、中部干旱春麦区、洮岷高寒春麦区及嘉陵江上游冬麦区、渭河上游冬麦区、陇东旱塬冬麦区的种质资源,从春性向冬性过
从甘肃省农作物种质资源库获取小麦地方品种445份,其中,河西灌溉区春小麦117份,中部旱地春小麦47份,洮岷高寒区春小麦39份,渭河上游冬小麦46份,陇东旱塬冬小麦45份,嘉陵江上游冬小麦50份,另外101份未标注种植区域。以上地方品种于2021年10月统一秋播于甘肃省农业科学院清水试验站,每份材料种植1行,行长2.0 m,行距20 cm,在腊熟期去杂去劣,取长相一致,相似度达到95%以上植株的籽粒进行春化和光周期基因检测。
采用Yan
基因名称 Gene name | 标记名称 Marker name | 引物序列(5′-3′) Primer sequence (5'-3') | 等位变异(显/隐性) Allelic variation (dominant/recessive) | 扩增片段(bp) Amplified fragment | 参考文献 Reference |
---|---|---|---|---|---|
Vrn-A1 | Vrn1-AF | GAAAGGAAAAATTCTGCTCG | Vrn-A1a (显性) | 965+876 |
[ |
Vrn1-Int1R | GCAGGAAATCGAAATCGAAG | Vrn-A1b (显性) | 714 | ||
Vrn-A1c (显性) | 734 | ||||
vrn-A1 (隐性) | 734 | ||||
Intr1-A-F2 | AGCCTCCACGGTTTGAAAGTAA | Vrn-A1c (显性) | 1170 |
[ | |
Intr1-A-R3 | AAGTAAGACAACACGAATGTGAGA | ||||
Intr1-C-F | GCACTCCTAACCCACTAACC | vrn-A1 (隐性) | 1068 |
[ | |
Intr1-AB-R | TCATCCATCATCAAGGCAAA | ||||
Vrn-D1 | Intr1-D-F | GTTGTCTGCCTCATCAAATCC |
[ | ||
Intr1-D-R3 | GGTCACTGGTGGTCTGTGC | Vrn-D1 (显性) | 1671 | ||
Intr1-D-R4 | AAATGAAAAGGAACGAGAGCG | vrn-D1 (隐性) | 997 | ||
Vrn-B3 | Vrn4-B-INS-F | CATAATGCCAAGCCGGTGAGTAC | Vrn-B3 (显性) | 1200 |
[ |
Vrn4-B-INS-R | ATGTCTGCCAATTAGCTAGC | ||||
Vrn4-BNOINS-F | ATGCTTTCGCTTGCCATCC | vrn-B3 (隐性) | 1140 |
[ | |
Vrn4-BNOINS-R | CTATCCCTACCGGCCATTAG | ||||
Vrn-B1 | Intr1-B-F | CAAGTGGAACGGTTAGGACA | Vrn-B1a (显性) | 709 +1235 |
[ |
Ex1-B-F3 | GAAGCGGATCGAGAACAAGA | Vrn-B1b (显性) | 673+1199 |
[ | |
Intr1-B-R3 | CTCATGCCAAAAATTGAAGATGA | Vrn-B1c (显性) | 849 |
[ | |
Intr1-B-R4 | CAAATGAAAAGGAATGAGAGCA | vrn-B1 (隐性) | 1149 |
[ | |
Ppd-D1 | TaPpd-D1-F1 | ACGCCTCCCACTACACTG |
[ | ||
TaPpd-D1-R1 | TGTTGGTTCAAACAGAGAGC | Ppd-D1b (光周期敏感) | 414 |
[ | |
TaPpd-D1-R2 | CACTGGTGGTAGCTGAGATT | Ppd-D1a (光周期不敏感) | 288 |
基于春化基因等位变异的显隐性推测小麦的冬春性,Vrn-1的3个基因中有1个(Vrn-A1和Vrn-D1位点)或1个以上为显性等位变异时,表现为春
用引物Vrn1-AF和Vrn1-Int1R检测Vrn-A1位点的等位变异,445份地方品种2份扩增失败,11份扩增出965 bp和876 bp条带,说明这11份品种携带显性等位变异Vrn-A1a,432份扩增出734 bp带型。扩增出734 bp带型品种的Vrn-A1位点可能是显性Vrn-A1c或隐性vrn-A1等位变异,结合引物对Intr1-A-F2+Intr1-A-R3及Intr1-C-F+Intr1-AB-R,仅扩增到1086 bp的带型,说明这432份品种携带vrn-A1隐性等位变异。
用引物Intr1-B-F+Ex1-B-F3和Intr1-B-R3+Intr1-B-R4进行多重PCR检测Vrn-B1位点的等位变异,445份品种中11份扩增失败;49份扩增出709 bp和1235 bp的带型,说明这些材料携带显性等位变异Vrn-B1a;7份扩增出673 bp和1199 bp的带型,携带等位变异Vrn-B1b;2份扩增出849 bp带型,携带Vrn-B1c等位变异;376份扩增出1149 bp带型,携带隐性等位变异vrn-B1。显性等位变异Vrn-B1a、Vrn-B1b和Vrn-B1c分布频率分别为11.0%、1.6%和0.5%,隐性等位变异vrn-B1分布频率为84.5%。
以引物对Intr1-D-F、Intr1-D-R3和Intr1-D-R4进行多重PCR检测Vrn-D1位点的等位变异,38份扩增失败,300份扩增出1671 bp的带型,107份扩增出997 bp特异带型,表明67.4%的品种携带显性等位变异Vrn-D1,24.0%的品种携带隐性等位变异vrn-D1。
用引物Vrn4-B-INS-F和Vrn4-B-INS-R检测Vrn-B3位点等位变异,445份地方品种中2份扩增出1200 bp的特异带型,表明这2份携带显性等位变异Vrn-B3(无芒大白麦,白金塔);用互补引物Vrn4-BNOINS-F和Vrn4-BNOINS-R扩增其余材料,均扩增出1140 bp的特异带型,说明除2份携带显性等位变异Vrn-B3外,其余均携带vrn-B3隐性等位变异。
用引物对TaPpd-D1-F1、TaPpd-D1-R1和TaPpd-D1-R2进行多重PCR检测Ppd-D1位点等位变异,46份扩增失败,79份扩增出288 bp的带型,为光周期非敏感等位变异Ppd-D1a(17.8%),320份材料扩增出414 bp的带型,为光周期敏感等位变异Ppd-D1b(71.9%)。
445份地方品种中发现6种春化基因显性等位变异Vrn-A1a、Vrn-B1a、Vrn-B1b、Vrn-B1c、Vrn-D1和Vrn-B3的频率分别为2.5%、11.0%、1.6%、0.5%、67.4%和0.5%(
基因类型 Gene type | 品种数 No. of variety | 总频率(%) Total frequency | 品种数/频率 (%) No. of variety/ Frequency | ||||||
---|---|---|---|---|---|---|---|---|---|
河西 灌溉 春麦区 HISWR | 中部 旱地 春麦区CDSWR | 洮岷高寒春麦区 HCTSWR | 渭河上游 冬麦区 UWRWWR | 陇东旱塬 冬麦区 LDDTWWR | 嘉陵江 上游冬麦 UJRWWR | 未标明种植 麦区PANM | |||
Vrn-A1a | 11 | 2.5 | 1/0.9 | 1/2.1 | 4/10.3 | 1/2.0 | 4/4.0 | ||
Vrn-B1a | 49 | 11.0 | 25/21.4 | 2/4.3 | 2/5.1 | 3/6.7 | 2/4.0 | 14/10.9 | |
Vrn-B1b | 7 | 1.6 | 6/5.1 | 1/1.0 | |||||
Vrn-B1c | 2 | 0.5 | 1/0.9 | 1/2.0 | |||||
Vrn-D1 | 300 | 67.4 | 90/76.9 | 39/83.0 | 28/71.8 | 21/45.7 | 15/33.3 | 26/52.0 | 81/80.2 |
Vrn-B3 | 2 | 0.5 | 1/0.9 | 1/1.0 | |||||
Ppd-D1a | 79 | 17.8 | 11/9.4 | 6/12.8 | 2/5.1 | 9/19.6 | 16/35.6 | 17/34.0 | 18/17.8 |
Vrn-A1a+Vrn-B1a | 4 | 0.9 | 4/4.0 | ||||||
Vrn-A1a+Vrn-D1 | 2 | 0.5 | 1/0.9 | 1/2.6 | |||||
Vrn-B1a+Vrn-D1 | 40 | 9.0 | 23/19.7 | 1/2.1 | 2/5.1 | 1/2.2 | 2/2.0 | 5/10.0 | 6/5.9 |
Vrn-B1b+Vrn-D1 | 3 | 0.7 | 3/2.6 | ||||||
Vrn-B1a+Vrn-D1+Vrn-B3 | 1 | 0.2 | 1/1.0 | ||||||
Vrn-B1a+Vrn-B3 | 1 | 0.2 | 1/0.9 | ||||||
vrn-A1+vrn-B1+vrn-D1+vrn-B3 | 87 | 19.6 | 9/7.7 | 2/4.3 | 3/7.7 | 21/45.7 | 25/55.6 | 21/42.0 | 6/5.9 |
(vrn-A1+vrn-B1+vrn-D1+vrn-B3)/Ppd-D1a | 30 | 6.7 | 1/0.9 | 2/4.3 | 0/0 | 3/6.5 | 15/33.3 | 4/8.0 | 5/5.0 |
(vrn-A1+vrn-B1+vrn-D1+vrn-B3)/Ppd-D1b | 57 | 12.8 | 8/6.8 | 3/7.7 | 18/39.1 | 10/22.2 | 17/34.0 | 1/1.0 |
频率为检测到材料占不同来源地材料数的比例
The frequency is the proportion of detected materials to the number of varieties originate region;HISWR: Hexi irrigation spring wheat region; CDSWR: Central dry spring wheat region; HCTSWR: High and cold Taomin spring wheat area; UWRWWR: Winter wheat region of upper Wei River; LDDTWWR: Winter wheat area on the drought tableland of Longdong; UJRWWR: Upper Jialing River winter wheat region; PANM: Planting area not marked
春化基因等位变异及其组合在不同麦区内分布频率差异较大(
河西灌溉春麦区、中部旱地春麦区和洮岷高寒春麦区,显性等位变异Vrn-D1分布频率均较高,其次是显性等位变异Vrn-B1a,Vrn-A1a、Vrn-B1b、Vrn-B1c和Vrn-B3分布频率均较低;渭河上游冬麦区、陇东旱塬冬麦区和嘉陵江上游冬麦区,同样是Vrn-D1分布频率最高,其次是Vrn-B1a,其余显性等位变异无分布或分布频率极低。
光周期基因非敏感等位变异Ppd-D1a的分布频率为17.8%(79份),在不同麦区均有分布,陇东旱塬冬麦区的分布频率(16份,35.6%)高于嘉陵江上游冬麦区(17份,34.0%),渭河上游冬麦区(9份,19.6%)高于中部旱地春麦区(6份,12.8%),河西灌溉春麦区(11份,9.4%)和洮岷高寒春麦区(2份,5.1%)较低。携带(vrn-A1+vrn-B1+vrn-D1+vrn-B3)/Ppd-D1a的材料30份,除洮岷高寒春麦区外,其余5个麦区均有分布,且陇东旱塬冬麦区分布频率(15份,33.3%)最高,河西灌溉春麦区(1份,0.9%)最低。携带(vrn-A1+vrn-B1+vrn-D1+vrn-B3)/Ppd-D1b组合的材料57份,除中部旱地春麦区外,其余5个麦区均有分布,且渭河上游冬麦区分布频率最高(18份,39.1%),河西灌溉春麦区(8份,6.8%)最低。3个春麦区中,中部旱地春麦区Ppd-D1a的分布频率(12.8%)高于河西灌溉春麦区(9.4%)和洮岷高寒春麦区(5.1%);3个冬麦区中,Ppd-D1a在陇东旱塬冬麦区(35.6%)和嘉陵江上游冬麦区的分布频率(34.0%)较高,渭河上游冬麦区的分布频率(19.6%)低。
按照甘肃省地方品种资源目录记载的冬春性,445份材料中83份为春性,占比18.7%;175份为弱冬性,占比39.3%;63份为冬性,占比14.2%;42份为强冬性,占比18.4%;82份未记载冬春性,占比18.4%(
类型 Type | 材料数Number | 频率(%) Frequency | Vrn-A1a | Vrn-B1a | Vrn-B1b | Vrn-B1c | ||||
---|---|---|---|---|---|---|---|---|---|---|
材料数Number | 频率(%) Frequency | 材料数 Number | 频率(%) Frequency | 材料数 Number | 频率(%) Frequency | 材料数 Number | 频率(%) Frequency | |||
春性Spring | 83 | 18.7 | 3 | 3.6 | 13 | 15.7 | 0 | 0 | 0 | 0 |
弱冬性Weak winter | 175 | 39.3 | 5 | 2.9 | 23 | 13.1 | 6 | 3.4 | 2 | 1.1 |
冬性Winter | 63 | 14.2 | 0 | 0 | 3 | 4.8 | 0 | 0 | 0 | 0 |
强冬性Strong winter | 42 | 9.4 | 0 | 0 | 1 | 2.4 | 0 | 0 | 0 | 0 |
未区分 Un-discrimination | 82 | 18.4 | 3 | 3.7 | 9 | 11.0 | 1 | 1.2 | 0 | 0 |
类型 Type | Vrn-D1 | Vrn-B3 | vrn-A1+vrn-B1+vrn-D1 |
基因推测材料数 No. of accessions based on genotype |
一致性(%) Consistency | |||||
材料数Number |
频率(%) Frequency | 材料数Number |
频率(%) Frequency | 材料数Number |
频率(%) Frequency | |||||
春性Spring | 71 | 85.5 | 1 | 1.2 | 0 | 0 | 83 | 100.0 | ||
弱冬性Weak winter | 121 | 69.1 | 0 | 0 | 24 | 13.7 | 126 | 72.0 | ||
冬性Winter | 22 | 34.9 | 0 | 0 | 40 | 63.5 | 43 | 68.3 | ||
强冬性Strong winter | 15 | 35.7 | 0 | 0 | 27 | 64.3 | 28 | 64.3 | ||
未区分 Un-discrimination | 71 | 86.6 | 1 | 1.2 | 3 | 3.7 |
甘肃省地域狭长,西北部和东南部适宜种植品种的冬春性差异较大。中西部种植品种春性强、抽穗早,生长后期可避开干热风的危害;东南部麦区春性逐渐变弱(陇南麦区),冬性渐强(定西、天水南部等),以上区域种植的小麦由春性向弱冬性过度,早抽穗适期灌浆,可避免后期高温青干逼熟;靠近定西、天水东北边的渭河上游及平凉、庆阳泾河流域的陇东旱塬区域冬季较为寒冷,种植区域11月份至次年1月份温度能满足春化需求,完成营养生长向生殖生长的转变,不仅确保小麦成长正常,且避免倒春寒产生的冻害,这些区域种植的小麦为冬性和强冬性。依据春化显性等位变异Vrn-A1对Vrn-B1和Vrn-D1的上位作用、携带vrn-D1的材料抗寒性强等信息及资源目录记载的冬春性,筛选出284份优异地方种质资源(详见https://doi.org/10.13430/j.cnki.jpgr.20230320003,
445份地方品种中共发现6种春化等位变异,且分布频率差异较大,从河西灌溉春麦区、中部旱地春麦区、洮岷高寒春麦区、嘉陵江上游冬麦区、渭河上游冬麦区到陇东旱塬冬麦区,春化显性等位变异的频率依次降低,而隐性等位变异逐渐升高。仅1个春化显性等位变异组合有6种;2个或3个显性等位变异组合有6种,因显性等位变异分布频率低,导致携带以上显性等位变异组合的频率更低。2种以上显性变异组合中,除Vrn-B1a+Vrn-D1外,其余显性春化等位变异组合的材料全部分布在春麦区,而全隐性等位变异vrn-A1+vrn-B1+vrn-D1+vrn-B3的分布频率从西南向东北呈上升趋势,且陇东旱塬冬麦区(55.6%)>渭河上游冬麦区(45.7%)>嘉陵江上游冬麦区(42.0%)>河西灌溉春麦区(7.7%)=洮岷高寒春麦区(7.7%)>中部旱地春麦区(4.3%)。春化基因的显性等位变异可以减少或消除小麦对低温春化作用的需求,其中,Vrn-A1位点显性等位变异无春化需求,Vrn-B1与Vrn-D1位点显性等位变异需要部分春化需求,且Vrn-A1位点对Vrn-B1与Vrn-D1位点有上位作用;说明甘肃大部分地方品种需要部分或较强的春化需求。
姜莹
甘肃地方品种非敏感等位变异Ppd-D1a冬麦区频率高于春麦区;全隐性春化基因组合vrn-A1+vrn-B1+vrn-D1+vrn-B3结合Ppd-D1a的材料30份,除洮岷高寒春麦区外,其余不同麦区均有分布,且冬麦区高于春麦区;全隐性春化基因组合vrn-A1+vrn-B1+vrn-D1+vrn-B3结合Ppd-D1b的材料共57份,冬麦区频率仍高于春麦区,但不同冬麦区和春麦区Ppd-D1a和Ppd-D1b的频率不同;从春麦区向冬麦区光周期非敏感基因Ppd-D1a频率逐步提高,春麦区Ppd-D1b的频率高于Ppd-D1a,不同冬麦区光周期基因等位变异处于互补型分布。
Yang
冬春性是小麦春化阶段的生长发育特性,春化发育至少受控于Vrn-1、Vrn-2和Vrn-3(Vrn-B3)的基因组位
春化和光周期基因对小麦的抽穗、开花影响较大,资源目录记载的冬春性类型与基于标记检测的春化显性等位变异和全隐性组合推测的冬春性的一致性,从春麦区到冬麦区逐渐降低。不一致性不仅与显性等位变异Vrn-A1、Vrn-B1和Vrn-D1对低温春化的敏感性和要求有关,也与光周期基因Ppd-A1、Ppd-B1、Ppd-D1非敏感或敏感等位变异有
低温胁迫是小麦广泛分布的最主要限制因素,处于黄淮海麦区的甘肃省天水、陇南、陇东等区域冬春季冻害常有发生,秋播冬麦区的耐低温小麦新品种选育应用必不可
参考文献
Lozada D N, Carter A H, Esten M R. Unlocking the yield potential of wheat: Influence of major growth habit and adaptation genes. Crop Breeding, Genetics and Genomics, 2021, 3: e210004 [百度学术]
Worland A J, Borner A, Korzun V, Li W M, Petrovic S, Sayers E J. The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica, 1998, 100: 385-394 [百度学术]
Snape J W, Butterworth K, Whitechurch E, Worland A J. Waiting for fine times: Genetics of flowering time in wheat. Euphytica, 2001, 119: 185-190 [百度学术]
Distelfeld A, Li C, Dubcovsky J. Regulation of flowering in temperate cereals. Current Opinion in Plant Biology, 2009, 12: 178-184 [百度学术]
Trevaskis B. The central role of the VERNALIZATION1 gene in the vernalization response of cereals. Functional Plant Biology, 2010, 37: 479-487 [百度学术]
Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J. Allelic variation at the VRN-1 promoter region in polyploid wheat. Theoretical and Applied Genetics,2004, 109: 1677-1686 [百度学术]
Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, Sanmiguel P, Bennetzen J, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303: 1640-1644 [百度学术]
Zhu X, Tan C, Cao S, Yan L. Molecular differentiation of null alleles at ZCCT-1 genes on the A, B, and D genomes of hexaploid wheat. Molecular Breeding,2011, 27: 501-510 [百度学术]
Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proceedings of the National Academy of Sciences, 2006, 103(51): 19581-19586 [百度学术]
Milec Z, Tomková L, Sumíková T, Pánková K. A new multiplex PCR test for the determination of Vrn-B1 alleles in bread wheat (Triticum aestivum L.). Molecular Breeding, 2012, 30: 317-323 [百度学术]
Fu D P, Szücs L, Yan M, Helguera J S, Skinner J V, Zitzewitz P M, Hayes D J. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Molecular Genetics and Genomics, 2005, 273: 54-65 [百度学术]
Zhang X K, Xiao Y G, Zhang Y, Xia X C, Dubcovsky J, He Z H. Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese wheat cultivars and their association with growth habit. Crop Science, 2008, 48: 458-470 [百度学术]
姜莹, 黄林周, 胡银岗. 中国小麦地方品种春化基因的分布及其与冬春性的关系.中国农业科学, 2010, 43 (13): 2619-2632 [百度学术]
Jiang Y, Huang L Z, Hu Y G. Distribution of vernalization genes in Chinese wheat landraces and their relationship with winter hardness. Scientia Agricultura Sinica, 2010, 43 (13): 2619-2632 [百度学术]
杨芳萍, 韩利明, 阎俊, 夏先春, 张勇, 曲延英, 王忠伟, 何中虎. 春化和光周期基因等位变异在23个国家小麦品种中的分布. 作物学报, 2011, 37 (11): 1917-1925 [百度学术]
Yang F P, Han L M, Yan J, Xia X C, Zhang Y, Qu Y Y, Wang Z W, He Z H. Distribution of allelic variation for genes of vernalization and photoperiod among wheat cultivars from 23 countries. Acta Agronomica Sinica, 2011, 37 (11): 1917-1925 [百度学术]
游光霞, 孙果忠, 张秀英, 肖世和. 中国黄淮海地区小麦品种抗寒性及其与VRN1基因型的关系. 作物学报, 2015, 41 (4): 557-564 [百度学术]
You G X, Sun G Z, Zhang X Y, Xiao S H. Cold hardness and its relationship with the VRN1 genotype in wheat varieties in the Yellow-Huai-Hai River Vally Region of China. Acta Agronomica Sinica, 2015, 41 (4): 557-564 [百度学术]
Koemel J E, Guenzi A C, Anderson J A, Smith L. Cold hardiness of wheat near-isogenic lines differing in vernalization alleles. Theoretical and Applied Genetics, 2004, 109: 839-846 [百度学术]
Reddy L, Allan R E, Garland-Campbell K A. Evaluation of cold hardiness in two sets of near isogenic lines of wheat (Triticum aestivum L.) with polymorphic vernalization alleles. Plant Breeding, 2006, 125: 448-456 [百度学术]
Amo A, Serikbay D, Song L X, Chen L, Hu Y G. Vernalization and photoperiod alleles greatly affected phenological and agronomic traits in bread wheat under autumn and spring sowing conditions. Crop and Environment, 2022, 1: 241-250 [百度学术]
Beales J, Turner A, Griffiths S, Snape J W, Laurie D A. A pseudo-response regulator is mis-expressed in the photoperiod insensitive Ppd-Dla mutant of wheat (Triticum aestivum L). Theoretical and Applied Genetics, 2007, 115:721-733 [百度学术]
Yang F P, Zhang X K, Xia X C, Laurie D A, Yang W X, He Z H. Distribution of the photoperiod insensitive Ppd-D1a allele in Chinese wheat cultivars. Euphytica, 2008, 165:445-452 [百度学术]
杨芳萍, 夏先春, 张勇, 张晓科, 刘建军, 唐建卫, 杨学明, 张俊儒, 刘茜, 李式昭, 何中虎. 春化、光周期和矮秆基因在不同国家小麦品种中的分布及其效应. 作物学报, 2012, 38 (7): 1155-1166 [百度学术]
Yang F P, Xia X C, Zhang Y, Zhang X K, Liu J J, Tang J W, Yang X M, Zhang J R, Liu Q, Li S Z, He Z H. Distribution of allelic variation for vernalization, photoperiod, and dwarfing genes and their effects on growth period and plant height among cultivars from major wheat producing countries. Acta Agronomica Sinica, 2012, 38 (7): 1155-1166 [百度学术]
尚勋武, 康志玉, 柴守玺, 王化俊, 郝晨阳. 甘肃省小麦品质生态区划和优质小麦产业化发展建议. 甘肃农业科技, 2003(5): 10-13 [百度学术]
Shang X W, Kang Z Y, Chai S X, Wang H J, Hao C Y. Suggestions to the industrialization of high quality wheat and ecozone division in Gansu according to wheat quality. Gansu Agricultural Science and Technology, 2003(5): 10-13 [百度学术]
杨文雄. 甘肃小麦生产技术指导. 北京:中国农业技术出版社, 2009:42-55 [百度学术]
Yang W X. Technical guidance of wheat production in Gansu. Beijing: China Agriculture Press, 2009: 42-55 [百度学术]
张博, 白斌, 张雪婷, 杨智全, 王晓龙, 张晓科. 甘肃小麦品种主要春化和光周期基因的组成和分布. 麦类作物学报, 2017, 37 (7): 864-870 [百度学术]
Zhang B, Bai B, Zhang X T, Yang Z Q, Wang X L, Zhang X K. Combination and distribution of vernalization and photoperiod genes in wheat varieties from Gansu province. Journal of Triticease Crops,2017, 37 (7): 864-870 [百度学术]
Derakhshana B, Mohammadia S A, Moghaddama M, Kamalic M R J. Molecular characterization of vernalization genes in Iranian wheat landraces. Crop Breeding Journal, 2013, 3: 1-11 [百度学术]
刘文林, 张宏纪, 刘东军, 郭怡璠, 孙岩, 马淑梅, 宋凤英, 杨淑萍. 黑龙江小麦春化和光周期主要基因组成分析.植物遗传资源学报, 2014, 15 (6): 1352-1359 [百度学术]
Liu W L, Zhang H J, Liu D J, Guo Y P, Sun Y, Ma S M, Song F Y, Yang S P. Distribution of allelic variation for vernalization and photoperiod genes in the wheat varieties from Heilongjiang. Journal of Plant Genetic Resources,2014, 15 (6): 1352-1359 [百度学术]
Steinfort U, Trevaskis B, Fukai S, Bell K L, M Dreccer M F. Vernalisation and photoperiod sensitivity in wheat: Impact on canopy development and yield components. Field Crops Research, 2017, 201: 108-121 [百度学术]
Royo C, Dreisigacker S, Soriano J M, Lopes M S, Ammar K, Villegas D. Allelic variation at the vernalization response (Vrn-1) and photoperiod sensitivity (Ppd-1) genes and their association with the development of durum wheat landraces and modern cultivars. Frontiers in Plant Science, 2020, 11: 838 [百度学术]
张晓科, 夏先春, 何中虎, 周阳. 用STS标记检测春化基因Vrn-A1在中国小麦中的分布. 作物学报, 2006, 32 (7): 1038-1043 [百度学术]
Zhang X K, Xia X C, He Z H. Zhou Y. Distribution of vernalization gene Vrn-A1 in Chinese wheat cultivars detected by STS marker. Acta Agronomica Sinica, 2006, 32 (7): 1038-1043 [百度学术]
Kiss T, Balla K, Veisz O, Láng L, Bedő Z, Griffiths S, Isaac P, Karsai I. Allele frequencies in the VRN-A1, VRN-B1 and VRN-D1 vernalization response and PPD-B1 and PPD-D1 photoperiod sensitivity genes, and their effects on heading in a diverse set of wheat cultivars (Triticum aestivum L.). Molecular Breeding, 2014, 34: 297-310 [百度学术]
Zhang H J, Xue X H, Guo J, Huang Y W, Dai X R, Li T, Hu H J, Qu Y F, Yu L Q, Mai C Y, Liu H W, Yang L, Zhou Y, Li H J. An association of the recessive allele vrn-D1 with winter frost tolerance in bread wheat. Frontiers in Plant Science, 2022, 13: 879768 [百度学术]