摘要
qPh-3D为1个控制株高的主效QTL,可在科农9204×京411衍生的重组自交系群体(KJ-RILs)的14组环境数据中被稳定检测到,定位于科农9204基因组3D染色体KN3D:515.08~539.08 Mb区间内,其降低株高的等位基因来自京411。本研究继续深入分析该QTL降秆机制,并利用包含187个家系的KJ-RILs群体及316份育成品种(系)组成的自然作图群体,对其进行遗传效应解析,进一步明确其对产量性状的影响。基于KJ-RILs群体分析结果表明,来自京411的qPh-3D降秆基因型通过降低穗部以下各节间长度进而显著降低株高,但对穗长无显著影响。qPh-3D在降低株高的同时,可一定程度降低单株产量。在qPh-3D靶区间内选择2个紧密连锁的标记AX-110160363和AX-111109273,对316份自然作图群体进行产量性状遗传效应和靶区段选择效应分析。结果表明,降秆基因型在降低株高的同时,对穗长具有一定正效应,但对单株产量具有显著负效应。qPh-3D靶区段育种选择效应分析结果表明,北京和陕西对qPh-3D降秆基因型利用率较高;而四川、青海、山东以及国外地区对其利用率较低,且在不同年代中,降秆基因型利用率均较低。随着时间的推移,qPh-3D的增秆基因型利用率呈上升趋势。此外,本研究还开发了1个与qPh-3D紧密连锁的基于PCR技术检测的InDel分子标记。研究结果可对未来qPh-3D分子育种应用提供理论参考。
小麦(Triticum aestivum L.)是我国乃至世界上最重要的粮食作物之一,其总面积、总产量仅次于水稻和玉米,为人类提供约20%的能
随着分子生物学技术的快速发展及小麦全基因组测序信息的公开,小麦株高QTL精细定位及相关基因的克隆也取得重要研究进展。目前至少发现并命名35个控制小麦株高的基
单位面积穗数、每穗粒数和千粒重共同构成产量三要
以科农9204、京411为亲本,构建了包含188个家系的重组自交系群体(KJ-RILs,KJ001~KJ188),其中KJ129家系因基因型缺失没有纳入后续的研究分析。316份小麦育成品种(系)组成的自然作图群体由鲁东大学麦类分子育种创新团队收集保存,用于靶区段产量性状遗传效应及育种选择效应解析相关研
将187个KJ-RILs家系以及双亲在12个不同的环境下种植,种植时间、地点及处理分别为2011-2012年石家庄高、低氮(E2、E1),2012-2013年石家庄高、低氮(E4、E3),2012-2013年北京高、低氮(E6、E5),2012-2013年新乡高、低氮(E8、E7),2013-2014年石家庄高、低氮(E10、E9)和2014-2015年石家庄高、低氮(E12、E11);各环境对应的土壤含氮量数据见Cui
316份自然作图群体种植时间、地点分别为2019-2020年、2020-2021年烟台鲁东大学校内试验基地、2020-2021年鲁东大学瀑拉谷试验基地、2020-2021年石家庄栾城实验基地,对其进行株高、穗长、穗粒数、单株穗数、单株产量及千粒重调查分析。以上田间设计和产量相关性状调查参考Fan
采用改良的CTAB
课题组前期已基于KJ-RILs群体构建了小麦高密度遗传连锁图
基于科农9204和京411全基因组重测序数据,获得双亲靶区间内的序列差异位点,获得≥3 bp靶区间的插入缺失位点(InDel, insertion deletion),利用WheatOmics的引物设计窗口(http://202.194.139.32/PrimerServer/)设计靶区间多态性InDel分子标记。本研究根据科农9204基因组3D染色体KN3D: 528091763位置处,开发了1个InDel分子标记,命名为3DKN-528091763,其上游引物序列为:5'-GGACTCGATGCACACTTTTG-3';下游引物序列为:5'-ACAGATGGCAAAGCAAGAAC-3'。
对187个KJ-RILs家系在6个高氮(E2、E4、E6、E8、E10、E12)和6个低氮(E1、E3、E5、E7、E9、E11)环境下的株高及其他表型数据利用软件QGAStation 2.
对316份育成品种(系)组成的自然作图群体在E9~E12环境下的株高、穗长、单株穗数、穗粒数、单株产量和千粒重数据分别进行最佳线性无偏估计,获得其对应的BLUE值。根据316份育成品种(系)的55K芯片物理位置信息,在qPh-3D靶区间内选择两个SNP标记AX-110160363和AX-111109273,根据两标记对应的基因型对316份育成群体(系)进行分组统计,结合自然群体的产量性状数据,进行遗传效应解析和靶区段选择效应分析。将两位点与科农9204基因型相同的类型定义为增秆基因型,将两位点与京411基因型相同的类型定义为降秆基因型,将两位点同时存在科农9204基因型和京411基因型的类型定义为重组基因型,将任一位点为杂合的类型定义为杂合基因型。相关数据分析作图采用GraphPad Prism 8(https://www.graphpad-prism.cn)和FineBI(https://www.finebi.com/)。方差分析采用IBM SPSS Statistics 21(https://www.ibm.com/support/pages/ibm-spss-statistics-21-documentation)。
结合KJ-RILs群体基因型数据及14组株高表型数据进行QTL分析,qPh-3D在14组环境中均能被检测到。根据其侧翼标记AX-110160363和AX-111705267对应科农9204物理位置,将其定位于KN3D: 515.08~539.08 Mb区间内,其中5组数据将该QTL定位至KN3D: 536.08~539.08约3.00 Mb物理区间内(
环境 Environment | 位置(Mb) Position | 左侧标记 Left marker | 右侧标记 Right marker | LOD值 LOD score | 表型变异率(%) Percent variance effect | 加性效应 Additive effect |
---|---|---|---|---|---|---|
E1 | 536.08 | AX-94584051 | AX-111109273 | 14.00 | 10.17 | 2.28 |
E2 | 515.08 | AX-110160363 | AX-110515857 | 4.47 | 4.74 | 2.00 |
E3 | 537.08 | AX-111109273 | AX-111705267 | 9.41 | 12.57 | 2.81 |
E4 | 515.08 | AX-110160363 | AX-110515857 | 4.82 | 2.85 | 1.78 |
E5 | 538.08 | AX-111109273 | AX-111705267 | 10.31 | 8.34 | 2.88 |
E6 | 524.08 | AX-108939123 | AX-108842519 | 13.48 | 8.32 | 2.50 |
E7 | 524.08 | AX-108939123 | AX-108842519 | 13.55 | 8.38 | 2.72 |
E8 | 536.08 | AX-94584051 | AX-111109273 | 6.93 | 6.91 | 2.19 |
E9 | 524.08 | AX-108939123 | AX-108842519 | 17.08 | 14.96 | 3.09 |
E10 | 523.08 | AX-111163387 | AX-109868592 | 10.23 | 4.37 | 2.57 |
E11 | 524.08 | AX-108939123 | AX-108842519 | 9.93 | 7.63 | 2.41 |
E12 | 515.08 | AX-110160363 | AX-110515857 | 9.28 | 7.03 | 2.85 |
LN-BLUE | 524.08 | AX-108939123 | AX-108842519 | 15.06 | 9.11 | 2.26 |
HN-BLUE | 539.08 | AX-111109273 | AX-111705267 | 8.83 | 6.15 | 2.18 |
E1、E2:2011-2012年石家庄低、高氮;E3、E4:2012-2013年石家庄低、高氮;E5、E6:2012-2013年北京低、高氮;E7、E8:2012-2013年新乡低、高氮;E9、E10:2013-2014年石家庄低、高氮;E11、E12:2014-2015年石家庄低、高氮;LN-BLUE、HN-BLUE:低氮、高氮条件下最佳线性无偏估计值;下同
E1, E2: 2011-2012 in Shijiazhuang under low nitrogen (LN) and high nitrogen (HN), respectively; E3, E4: 2012-2013 in Shijiazhuang under LN and HN, respectively; E5, E6: 2012-2013 in Beijing under LN and HN, respectively; E7, E8: 2012-2013 in Xinxiang under LN and HN, respectively; E9, E10: 2013-2014 in Shijiazhuang under LN and HN, respectively; E11, E12: 2014-2015 in Shijiazhuang under LN and HN, respectively; LN-BLUE, HN-BLUE: The best linear unbiased estimate values under low/high nitrogen environment, respectively; The same as below

图1 多环境下株高QTL-qPh-3D的LOD值分布
Fig.1 LOD distribution of QTL-qPh-3D in multi-environments
上图横坐标为用于QTL定位分析的SNP标记在科农9204参考基因组中的物理位置(Mb),纵坐标为不同环境对应的LOD值;下图为qPh-3D在3D染色体上的定位区间(绿色区段表示),其中红色SNP标记将用于后续遗传效应的分析
The abscissa in the upper figure indicates the physical position (Mb) in KN9204 assembly of SNP markers used for QTL analysis; The ordinate indicates the LOD score corresponding in different environments; The following figure shows the distribution of the SNP markers used for QTL analysis. The segment in green indicated the confidence interval of qPh-3D, and the markers with red color were used for the subsequent genetic effect analysis
结合科农9204基因组及京411重测序数据,获得qPh-3D靶区段≥3 bp的InDel位点。相对科农9204,京411在科农9204基因组3D染色体KN3D: 528091763位置处检测到22 bp序列缺失,开发了1个InDel分子标记3DKN-528091763。利用该标记对科农9204、京411及KJ-RILs群体家系进行基因型鉴定,3DKN-528091763在科农9204和京411中扩增的目的条带分别为390 bp和368 bp(

图2 InDel分子标记3DKN-528091763在部分KJ-RILs家系及亲本中的扩增电泳结果
Fig.2 Amplification and electrophoresis results of InDel molecular marker 3DKN-528091763 in parts of the KJ-RILs and their parents
M:50 bp DNA marker;1~23:KJ-RILs家系部分材料扩增条带;K:科农9204;J:京411
M:50 bp DNA marker; 1-23: Band type of parts of the 187 KJ-RILs; K: Kenong 9204; J: Jing 411
基于187个KJ-RILs家系,将靶区间内两个SNP标记AX-111109273和AX-111705267及本研究开发的基于PCR检测技术的InDel分子标记3DKN-528091763与株高、穗长及各节间长进行关联分析,用以解析qPh-3D对株高及各节间长的遗传效应。结果显示,在高、低氮条件下,来自京411的qPh-3D降秆基因型均能极显著降低株高(P<0.01),且在低氮条件下降秆效应更显著,平均降幅为7.42%。qPh-3D降秆基因型对穗长具有一定的负效应,平均降幅为1.88%,但未达到显著水平。分析增秆基因型和降秆基因型各节间长的差异,结果表明,qPh-3D降秆基因型显著降低了穗下节间、倒二、倒三和倒四节间长,降幅分别为10.72%、5.78%、5.40%和6.83%,在低氮条件下来自京411的等位基因对倒三节间长和倒四节间长降幅的影响显著高于高氮条件下(

图3 基于KJ-RILs群体qPh-3D对株高及各节间长遗传效应解析
Fig.3 Genetic effects analysis of qPh-3D on plant height and each internode length in the KJ-RILs
横坐标上侧数字代表对应基因型的表型数据;降秆基因型:与京411基因型相同的家系;增秆基因型:与科农9204基因型相同的家系;*:显著差异水平(P<0.05);**:极显著差异水平(P<0.01);ns:无显著差异(P>0.05);下同
The number over the abscissa represents the phenotypic data of the corresponding genotype; Reduced allele: The same genotype as Jing 411; Increased allele: The same genotype as Kenong 9204; *: Significant difference level (P<0.05); **: Significant difference level (P<0.01); ns: No significant difference (P>0.05); The same as below
基于KJ-RILs群体表型数据,在高、低氮条件下分别对增秆基因型(与科农9204相同基因型)、降秆基因型(与京411相同基因型)在5个生长阶段(拔节早期、拔节期、孕穗期、抽穗期、开花后期)的株高进行表型鉴定和统计分析。结果表明,4个环境下,qPh-3D在拔节早期降秆效应开始呈现,此后,随着植株生长,qPh-3D效应在拔节期、孕穗期和抽穗期逐渐增大,最后差异稳定于开花期后期(

图4 qPh-3D不同发育时期株高动态差异分析
Fig.4 Dynamic difference analysis of plant height by qPh-3D at different developmental stages
S1:拔节早期;S2:拔节期;S3:孕穗期;S4:抽穗期;S5:开花后期
S1: Early jointing; S2: Jointing stage; S3: Booting stage; S4: Heading stage; S5: Blooming late stage
基于8个环境(E1~E8)中不同基因型的产量性状数据,解析qPh-3D对产量性状的遗传效应。结果显示,qPh-3D降秆基因型在降低株高的同时也降低了单株产量,平均降幅为5.00%,但仅在个别环境下达到显著,qPh-3D对于千粒重虽有不同程度降低,但并不显著,平均降幅为3.95%;通过对穗部性状分析,发现qPh-3D对穗粒数、每穗小穗数、每穗粒重和单株穗数无明显影响(

图5 基于KJ-RILs群体qPh-3D对小麦产量相关性状的遗传效应解析
Fig.5 Analysis of genetic effects of qPh-3D on wheat yield-related traits in the KJ-RILs population
乐麦5号、山农15和小偃68因基因型缺失,定义为缺失。分析结果显示,在316份育成群体(系)中,增秆基因型占比为25.00%,降秆基因型占比为12.97%,重组基因型占比57.60%,杂合基因型占比3.47%(
基因型 | 数量 | 百分比(%) |
---|---|---|
Genotype | Quality | Percentage |
增秆基因型Increased allele | 79 | 25.00 |
降秆基因型Reduced allele | 41 | 12.97 |
重组基因型Recombinant allele | 182 | 57.60 |
杂合基因型Heterozygous allele | 11 | 3.47 |
缺失Miss | 3 | 0.96 |
基于标记AX-110160363和AX-111109273对316份自然群体的基因型分组结果,分析其对产量性状的遗传效应。结果表明,与京411基因型相同的降秆基因型能极显著降低株高,降幅为10.76%;此外,其还显著增加穗粒数和穗长,增幅分别为5.20%和6.46%。但该降秆基因型在降低株高的同时显著降低了单株穗数和单株产量,降幅分别为7.83%和6.49%,对千粒重有一定的负效应,降幅为0.99%(

图6 基于316份育成品种(系)qPh-3D产量性状遗传效应解析
Fig.6 Genetic effects of qPh-3D on yield related traits in authorized varieties (advanced lines)
对316份育成品种(系)根据选育省份和地区进行分类(其中有28份材料因地区信息缺失未统计;另贵州和西藏材料分别为5份和4份,因较少不具代表性,故未进行分析),分析qPh-3D靶区段在不同省份的育种应用情况和选择效应。结果表明,各省份品种材料对于qPh-3D降秆基因型的选择和应用情况不同。其中北京小麦品种中降秆基因型占比最高,为50.00%;其次为陕西省,降秆基因型材料占比为27.78%,重组基因型占比为50.00%;河南、江苏、河北、四川、青海和山东含有降秆基因型的材料占比分别为25.00%、20.00%、12.50%、12.50%、9.09%和4.47%。国外品种对qPh-3D降秆基因型利用率也较低,仅为5.97%(
地区 Region | 基因型占比(%)Genotype proportion | 数量Quantity | ||||
---|---|---|---|---|---|---|
降秆基因型 Reduced allele | 增秆基因型 Increased allele | 重组基因型Recombinant genotype | 杂合基因型Heterozygous genotype | 缺失 Missing | ||
中国山东Shandong, China | 4.47 | 54.41 | 32.35 | 7.35 | 1.47 | 68 |
中国河南Henan, China | 25.00 | 6.25 | 65.63 | 3.12 | 32 | |
中国四川Sichuan, China | 12.50 | 28.12 | 53.13 | 6.25 | 32 | |
中国青海Qinghai, China | 9.09 | 9.09 | 77.27 | 4.55 | 22 | |
中国陕西Shaanxi, China | 27.78 | 16.66 | 50.00 | 5.56 | 18 | |
中国河北Hebei, China | 12.50 | 50.00 | 37.50 | 16 | ||
中国北京Beijing, China | 50.00 | 28.57 | 7.14 | 14.29 | 14 | |
中国江苏Jiangsu, China | 20.00 | 20.00 | 60.00 | 10 | ||
国外Foreign | 5.97 | 5.97 | 88.06 | 67 |
根据品种审定时间对316份育成品种(系)进行分类,对qPh-3D不同年代选择效应进行分析,其中162份育成品种可以追溯到育成年份,用于后续分析。其中20世纪90年代29份、21世纪00年代81份、21世纪10年代52份。结果表明,在过去3个年代中,降秆基因型利用率均较低,占比10.34%~18.52%(

图7 qPh-3D靶区段在不同年份审定品种中的选择效应分析
Fig.7 The selection effect analysis of qPh-3D target region in varieties released in different ages
本研究前期利用高密度遗传图谱在小麦3D染色体上定位到1个控制株高的稳定QTL-qPh-3
株高对小麦植株形态和产量构成起重要作用,适当降低株高可以提高植株的抗倒伏,进而提高单株产
此外,Li
通过对316份自然群体中qPh-3D靶区段基因型的统计分析结果表明,降秆基因型的利用率在不同地区存在较大差异(
综上,qPh-3D遗传效应易受基因型、环境及遗传背景多因素影响,遗传效应不稳定,分子标记辅助选育可加快qPh-3D在小麦产量性状遗传改良过程中有效应用。未来可通过qPh-3D图位克隆研究,进一步挖掘其新的等位变异,获得最优单倍型,为qPh-3D的分子育种有效利用奠定基础。
参考文献
胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证. 作物学报, 2022, 48(6): 1346-1356 [百度学术]
Hu W J, Li D S, Yi X, Zhang C M, Zhang Y. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat. Acta Agronomica Sinica, 2022, 48(6): 1346-1356 [百度学术]
吕广德, 靳雪梅, 郭营, 赵岩, 钱兆国, 吴科, 李斯深. 小麦株高分子遗传学研究进展. 植物遗传资源学报, 2021, 22(3): 571-582 [百度学术]
Lv G D, Jin X M, Guo Y, Zhao Y, Qian Z G, Wu K, Li S S. Advances in molecular genetics of wheat plant height. Journal of Plant Genetic Resources, 2021, 22(3): 571-582 [百度学术]
Duvick D N. Feeding the ten billion: Plants and population growth. Crop Science, 1999, 39(5): 1522-1523 [百度学术]
周阳, 何中虎, 陈新民, 王德森, 张勇, 张改生. 30余年来北部冬麦区小麦品种产量改良遗传进展. 作物学报, 2007, 33(9): 1530-1535 [百度学术]
Zhou Y, He Z H, Chen X M, Wang D S, Zhang Y, Zhang G S. Genetic gain of wheat breeding for yield in northern winter wheat zone over 30 years. Acta Agronomica Sinica, 2007,33 (9): 1530-1535 [百度学术]
Pearce S, Saville R, Vaughan S P, Chandler P M, Wilhelmet E P. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiology, 2011, 157: 1820-1831 [百度学术]
Chen Z Y, Cheng X J, Chai L L, Wang Z H, Bian R L, Li J, Zhao A J, Xin M M, Guo W L, Hu Z R, Peng H R, Yao Y Y, Sun Q X, Ni Z F. Dissection of genetic factors underlying grain size and fine mapping of QTgw.cau-7D in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2020, 133: 149-162 [百度学术]
Chai L L, Chen Z Y, Bian R L, Zhai H J, Cheng X J, Peng H R, Yao Y Y, Hu Z R, Xin M M, Guo W L, Sun Q X, Zhao A J, Ni Z F. Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2019, 132: 1815-1831 [百度学术]
Cui F, Li J, Ding A M, Zhao C H, Wang L, Wang X Q, Li S S, Bao Y G, Li X F, Feng D S, Kong L R, Wang H G. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theoretical and Applied Genetics, 2011, 122: 1517-1536 [百度学术]
Qin R, Ma T H, Cao M S, Liu X J, Zhou X H, Hu G M, Zhong W, Sun X H, Xiao J G, Dong J J, Kong W C, Zhao C H, Wu Y Z, Sun H, Ji J, Cui F. QTL detection for internode component index in wheat using a RIL mapping population. Plant Molecular Biology Reporter, 2022, DOI: 10.1007/s11105-022-01359-1 [百度学术]
李杏普, 兰素缺, 张京慧, 冯延茹, 刘书娥, 张业伦, Gale M D, Worland T J. Rht8、Rht10和Rht12矮秆基因对产量构成因子的影响. 华北农学报, 2009, 24(S2): 72-75 [百度学术]
Li X P, Lan S Q, Zhang J H, Feng Y R, Liu S E, Zhang Y L, Gale M D, Worland T J. Effects of Rht8, Rht10 and Rht12 dwarf genes on yield components. Acta Agriclturae Boreali-sinica, 2009, 24(S2): 72-75 [百度学术]
Yan J K, Zhang S Q. Effects of dwarfing genes on water use efficiency of bread wheat. Frontiers of Agricultural Science and Engineering, 2017, 4: 126-134 [百度学术]
Mo Y, Vanzetti L S, Hale L, Spagnolo E J, Guidobaldi F, Ai-Oboudo J, Odle N, Pearce S, Helguera M, Dubcovsky J. Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theoretical and Applied Genetics, 2018, 131: 2021-2035 [百度学术]
Fick G N, Qualset C O. Seedling emergence, coleoptile length, and plant height relationships in crosses of dwarf and standard-height wheats. Euphytica, 1976, 25: 679-684 [百度学术]
Singh A, Knox R E, DePauw R M, Singh A K, Cuthbert R D, Kumar S, Campbell H L. Genetic mapping of common bunt resistance and plant height QTL in wheat. Theoretical and Applied Genetics, 2016, 129: 243-256 [百度学术]
胡文静, 高德荣, 陆成彬, 梁秀梅, 石宜宗, 程顺和. 小麦穗部性状和株高的QTL定位及T6VS 6AL易位效应分析. 麦类作物学报, 2019, 39(5): 505-512 [百度学术]
Hu W J, Gao D R, Lu C B, Liang X M, Shi Y Z, Cheng S H. QTL mapping for spike traits and plant height in wheat (Triticum aestivum L.) and analysis of the effect of T6VS 6AL translocation. Journal of Triticeae Crops, 2019, 39(5): 505-512 [百度学术]
Liu G, Jia L J, Lu L H, Qin D D, Zhang J P, Guan P F, Ni Z F, Yao Y Y, Sun Q X, Peng H R. Mapping QTLs of yield-related traits using RIL population derived from common wheat and Tibetan semi-wild wheat. Theoretical and Applied Genetics, 2014, 127: 2415-2432 [百度学术]
Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder S, Weber E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2002, 105: 921-936 [百度学术]
Sadeque A, Turner M A. QTL analysis of plant height in hexaploid wheat doubled haploid population. Thai Journal of Agricultural Science, 2010, 43: 91-96 [百度学术]
Luo Q L, Zheng Q, Hu P, Liu L Q, Yang G T, Li H W, Li B, Li Z S. Mapping QTL for agronomic traits under two levels of salt stress in a new constructed RIL wheat population. Theoretical and Applied Genetics, 2021, 134: 171-189 [百度学术]
Shi S K, Azam F I, Li H H, Chang X P, Li B, Jing R L. Mapping QTL for stay-green and agronomic traits in wheat under diverse water regimes. Euphytica, 2017, 213(11): 246 [百度学术]
Hai L, Guo H J, Wagner C, Xiao S H, Friedt W. Genomic regions for yield and yield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested under varying environments correspond to QTL in widely different wheat materials. Plant Science, 2008, 175(3): 226-232 [百度学术]
McCartney C A, Somers D J, Humphreys D G, Lukow O, Ames N, Noll J, Cloutier S, McCallum B D. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × 'AC Domain'. Genome, 2005, 48(5): 870-883 [百度学术]
马天航, 蔡益彪, 熊永星, 徐勤青, 周晓涵, 孔文超, 李晶雪, 程蕊, 李诗慧, 曹明苏, 王晨阳, 赵春华, 秦冉, 孙晗, 吴永振, 崔法. 小麦不育小穗数QTL-qSsnps-5D遗传及育种选择效应解析. 植物遗传资源学报, 2022, 23(3): 811-822 [百度学术]
Ma T H, Cai Y B, Xiong Y X, Xu Q Q, Zhou X H, Kong W C, Li J X, Cheng R, Li S H, Cao M S, Wang C Y, Zhao C H, Qin R, Sun H, Wu Y Z, Cui F. Analysis of inheritance and breeding selection effect of QTL-qSsnps-5D for sterile spikelets in wheat. Journal of Plant Genetic Resources, 2022, 23(3): 811-822 [百度学术]
Wu X H, Wang Z H, Chang X P, Jing R L. Genetic dissection of the developmental behaviours of plant height in wheat under diverse water regimes. Journal of Experimental Botany, 2010, 61(11): 2923-2937 [百度学术]
刘朦朦, 张萌娜, 张倩倩, 刘锡建, 郭宇航, 孙靳惠, 武亚瑞, 王素容, 吴永振, 孙晗, 崔法, 赵春华. 小麦旗叶宽主效QTL QFlw-5B遗传效应解析. 麦类作物学报, 2019, 39(12): 1399-1405 [百度学术]
Liu M M, Zhang M N, Zhang Q Q, Liu X J, Guo Y H, Sun J H, Wu Y R, Wang S R, Wu Y Z, Sun H, Cui F, Zhao C H. Genetic analysis of a major stable QTL QFlw-5B for wheat flag leaf width. Journal of Triticeae Crops, 2019, 39(12): 1399-1405 [百度学术]
崔俊鹏, 赵慧, 张倩倩, 宫娜, 刘朦朦, 张萌娜, 侯玉竹, 刘成, 李林志, 周芳婷, 吴永振, 孙晗, 赵春华, 崔法. 小麦穗粒数主效QTL-qKnps-4A遗传效应解析. 分子植物育种, 2019, 17(11): 3632-3640 [百度学术]
Cui J P, Zhao H, Zhang Q Q, Gong N, Liu M M, Zhang M N, Hou Y Z, Liu C, Li L Z, Zhou F T, Wu Y Z, Sun H, Zhao C H, Cui F. Genetic effects analysis of major QTL-qKnps-4A for kernel per spike in common wheat. Molecular Plant Breeding, 2019, 17(11): 3632-3640 [百度学术]
张倩倩, 闫学梅, 刘锡建, 张萌娜, 刘朦朦, 周芳婷, 吴永振, 孙晗, 赵春华, 崔法. 小麦穗粒数主效QTL-qKnps-2A遗传效应解析. 分子植物育种, 2020, 18(15): 5003-5009 [百度学术]
Zhang Q Q, Yan X M, Liu X J, Zhang M N, Liu M M, Zhou F T, Wu Y Z, Sun H, Zhao C H, Cui F. Genetic analysis of qKnps-2A: A major stable QTL for kernel number per spike in common wheat. Molecular Plant Breeding, 2020, 18(15): 5003-5009 [百度学术]
Cui F, Fan X L, Zhao C H, Chen M, Ji J, Zhang W, Li J M. A novel genetic map of wheat: Utility for mapping QTL for yield under different nitrogen treatments. BMC Genetics, 2014, 15(1): 57 [百度学术]
Fan X L, Cui F, Ji J, Zhang W, Zhang X Q, Liu J J, Meng D Y, Tong Y P, Wang Y P, Wang T, Li J M. Dissection of pleiotropic QTL regions controlling wheat spike characteristics under different nitrogen treatments using traditional and conditional QTL mapping. Frontiers in Plant Science, 2019, 10: 187 [百度学术]
Cui F, Zhang N, Fan X L, Zhang W, Zhao C H, Yang L J, Pan R Q, Chen M, Han J, Zhao X Q, Ji J, Tong Y P, Zhang H X, Jia J Z, Zhao G Y, Li J M. Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Scientific Reports, 2017, 7(1): 3788 [百度学术]
Shi X L, Cui F, Han X Y, He Y W, Zhao L, Zhang N, Zhang H, Zhu H D, Liu Z X, Ma B, Zheng S S, Zhang W, Liu J J, Fan X L, Si Y Q, Tian S Q, Niu J Q, Wu H L, Liu X M, Chen Z, Meng D Y, Wang X Y, Song L Q, Sun L J, Han J, Zhao H, Ji J, Wang Z G, He X Y, Li R L, Chi X B, Liang C Z, Niu B F, Xiao J, Li J M, Ling H Q. Comparative genomic and transcriptomic analyses uncover the molecular basis of high nitrogen-use efficiency in the wheat cultivar Kenong 9204. Molecular Plant, 2022, 15(9): 1440-1456 [百度学术]
朱志翔. 遗传分析软件QGAStation2.0和GMDR-GPU的开发. 杭州: 浙江大学, 2012 [百度学术]
Zhu Z X. Development of the genetic analysis softwares QGAStation 2.0 and GMDR-GPU. Hangzhou: Zhejiang University, 2012 [百度学术]
Zhang N, Fan X L, Cui F, Zhao C H, Zhang W, Zhao X Q, Yang L J, Pan R Q, Chen M, Han J, Ji J, Liu D C, Zhao Z W, Tong Y P, Zhang A M, Wang T, Li J M. Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the QTL level and their influence on yield related traits. Theoretical and Applied Genetics, 2017, 130(6): 1235-1252 [百度学术]
Snape J W, Law C N,Worland A J. Whole chromosome analysis of height in wheat. Heredity, 1977, 38: 25-36 [百度学术]
Li J H, Xie L N, Tian X L, Liu S Y, Xu D G, Jin H, Song J, Dong Y, Zhao D H, Li G Y, Li Y L, Zhang Y, Zhang Y, Xia X C, He Z H, Cao S H. TaNAC100 acts as an integrator of seed protein and starch synthesis exerting pleiotropic effects on agronomic traits in wheat. The Plant Journal, 2021, 108: 829-840 [百度学术]
Tian X L, Wen W E, Xie L, Fu L P, Xu D G, Fu C, Wang D S, Chen X M, Xia X C, Chen Q J, He Z H, Cao S H. Molecular mapping of reduced plant height gene Rht24 in bread wheat. Frontiers in Plant Science, 2017, 8: 1379 [百度学术]
Zhang K P, Wang J J, Qin H J, Wei Z Y, Hang L B, Zhang P W, Reynolds M, Wang D W. Assessment of the individual and combined effects of Rht8 and Ppd-D1a on plant height, time to heading and yield traits in common wheat. The Crop Journal, 2019, 7(6): 845-856 [百度学术]