摘要
旱直播技术可有效提升水稻生产效率。中胚轴长度(ML,mesocotyl length)是影响旱直播水稻出苗和幼苗活力的重要性状。选育长中胚轴品种是促进旱直播技术推广最为经济、有效的方式。旱直播在南亚和东南亚地区的籼稻种植区已有一定推广面积,在粳稻种植区推广面积较少。前人已发现一批中胚轴伸长相关候选基因,但其可靠性及适用性尚待验证。基于已报道的97个中胚轴伸长相关候选基因,在不同来源的TROP和TEMP两个粳稻自然群体开展候选基因关联分析,鉴定到4个显著候选基因,解释4.7%~6.3%和5.4%~6.7%的遗传变异。其中,LOC_Os01g44130、LOC_Os03g50560和LOC_Os05g27790在TROP和TEMP群体中均显著关联,而LOC_Os11g10990和LOC_Os10g20860分别在TROP和TEMP群体中显著关联。候选基因所编码蛋白主要参与植物激素合成与代谢、信号转导和植物生长进程。进一步在TROP群体(LOC_Os05g27790-Hap3和LOC_Os05g27790-Hap6、LOC_Os03g50560-Hap1、LOC_Os01g44130-Hap1和LOC_Os11g10990-Hap1和LOC_Os11g10990-Hap3)和TEMP群体(LOC_Os05g27790-Hap6、LOC_Os01g44130-Hap1和LOC_Os10g20860-Hap5)中分别鉴定到6个和3个可用于分子标记辅助育种的优异单倍型。本研究鉴定到的显著关联候选基因及其优异单倍型可应用于水稻长中胚轴分子育种实践中。
水稻(Oryza sativa. L)是最为重要的粮食作物之一。全球有超过50%的人口以稻米为主食。水稻的高产和稳产对于保障我国粮食安全至关重要。水稻生产主要包括传统的育苗移栽和旱直播两种方式。相较于传统移栽,旱直播生产方式无需育苗及移栽,有效降低人力消耗,减少水资源浪费。当前,水稻旱直播方式已在南亚和东南亚地区大面积推
中胚轴的伸长受外界环境因素和内部遗传机制共同影响。外界环境中光照、温度和土壤对中胚轴伸长影响最为显
基于连锁不平衡(LD)的全基因组关联分析(GWAS,genome wide association study)已成为作物复杂性状遗传机制解析的重要方
旱直播技术在南亚和东南亚地区的籼稻种植区有一定的推广面积。近年来,3K重测序项目为水稻的遗传解析提供了充分的基因型和表型信
本研究采用来自于3K重测序项目的两个粳稻亚群(TROP和TEMP)进行中胚轴长度值的CAS分析(TROP所包含材料及表型数据详见https://doi.org/10.13430/j.cnki.jpgr.20230326001,
候选基因 | 染色体 | 开始(bp) | 终止 (bp) | 注释 | 参考文献 |
---|---|---|---|---|---|
Candidate gene | Chromosome | Start | End | Annotation | Reference |
LOC_Os01g08220 | 1 | 4004946 | 4003659 | 赤霉素3-β-双加氧酶2-2 |
[ |
LOC_Os01g13200 | 1 | 7357620 | 7352175 | 脱落酸不敏感因子 8 |
[ |
LOC_Os01g16400 | 1 | 9318060 | 9314159 | NB-ARC 结构域蛋白 |
[ |
LOC_Os01g32940 | 1 | 18080300 | 18079428 | 假定蛋白 |
[ |
LOC_Os01g36020 | 1 | 19931949 | 19929043 | 逆转录组蛋白 |
[ |
LOC_Os01g44130 | 1 | 25298072 | 25291338 | 天冬氨酸蛋白酶米蛋白酶-1前体 |
[ |
LOC_Os01g50970 | 1 | 29288718 | 29285372 | 表达蛋白 |
[ |
LOC_Os01g50980 | 1 | 29295442 | 29290326 | Cullin家族 |
[ |
LOC_Os01g50990 | 1 | 29299464 | 29298041 | FBD 结构域蛋白 |
[ |
LOC_Os01g53090 | 1 | 30521565 | 30512276 | 病原体相关蛋白 |
[ |
LOC_Os01g66100 | 1 | 38385504 | 38382382 | 赤霉素20氧化酶2 |
[ |
LOC_Os01g67430 | 1 | 39178676 | 39177169 | 脂肪酶 |
[ |
LOC_Os01g71410 | 1 | 41376297 | 41375172 | 糖基水解酶家族17 |
[ |
LOC_Os02g07480 | 2 | 3863872 | 3855934 | 含转糖基化酶SLT结构域的蛋白质 |
[ |
LOC_Os02g49230 | 2 | 30099674 | 30094292 | CCT/B-box 锌指结构蛋白 |
[ |
LOC_Os03g06070 | 3 | 3045376 | 3039736 | la 结构域蛋白 |
[ |
LOC_Os03g06139 | 3 | 3085989 | 3075919 | ABC-2 类含转运蛋白结构域的蛋白质 |
[ |
LOC_Os03g39790 | 3 | 22138216 | 22135801 | 转录组蛋白 |
[ |
LOC_Os03g40040 | 3 | 22244649 | 22243187 | 表达蛋白 |
[ |
LOC_Os03g40084 | 3 | 22270021 | 22268809 | 表达蛋白 |
[ |
LOC_Os03g40110 | 3 | 22292562 | 22285683 | nop14-l类家族蛋白 |
[ |
LOC_Os03g40194 | 3 | 22351524 | 22347660 | 类抗病蛋白 RPP13 |
[ |
LOC_Os03g40390 | 3 | 22445121 | 22443273 | 表达蛋白 |
[ |
LOC_Os03g50540 | 3 | 28860136 | 28855620 | 2Fe-2S含铁硫簇结合结构域的蛋白质 |
[ |
LOC_Os03g50550 | 3 | 28862894 | 28861857 | STE_MEK_ste7_MAP2K.7-STE激酶 |
[ |
LOC_Os03g50560 | 3 | 28873264 | 28869065 | RNA识别序列蛋白 |
[ |
LOC_Os03g50570 | 3 | 28880854 | 28875574 | 表达蛋白 |
[ |
LOC_Os03g50580 | 3 | 28882859 | 28882515 | 表达蛋白 |
[ |
LOC_Os03g50590 | 3 | 28891283 | 28890274 | 表达蛋白 |
[ |
LOC_Os03g50600 | 3 | 28896432 | 28896052 | 表达蛋白 |
[ |
LOC_Os03g50610 | 3 | 28900356 | 28900024 | 表达蛋白 |
[ |
LOC_Os03g50620 | 3 | 28906929 | 28901044 | ATP 结合蛋白 |
[ |
LOC_Os03g50630 | 3 | 28913708 | 28913418 | 表达蛋白 |
[ |
LOC_Os03g50644 | 3 | 28917706 | 28916701 | 表达蛋白 |
[ |
LOC_Os03g50660 | 3 | 28929255 | 28927914 | CACTA, En/Spm亚类转录蛋白 |
[ |
LOC_Os03g50670 | 3 | 28940039 | 28931768 | Ty3-gypsy 亚类逆转录组蛋白 |
[ |
LOC_Os03g51340 | 3 | 29378021 | 29376077 | 表达蛋白 |
[ |
LOC_Os03g53320 | 3 | 30603235 | 30602885 | 假定蛋白 |
[ |
LOC_Os03g53340 | 3 | 30607164 | 30603964 | HSF-型 DNA-含有结合结构域的蛋白质 |
[ |
LOC_Os03g56050 | 3 | 31925513 | 31921933 | AP2类乙烯反应性转录因子 |
[ |
LOC_Os03g56060 | 3 | 31934624 | 31930541 | CSLC9-纤维素合成酶样家族C |
[ |
LOC_Os03g56060 | 3 | 31934624 | 31930541 | CSLC9-纤维素合成酶样家族C |
[ |
LOC_Os03g57640 | 3 | 32852782 | 32851425 | 赤霉素受体GID1L2 |
[ |
LOC_Os03g58290 | 3 | 33210400 | 33207531 | 吲哚-3-甘油磷酸裂解酶,叶绿体前体 |
[ |
LOC_Os03g58300 | 3 | 33217418 | 33214533 | 吲哚-3-甘油磷酸裂解酶,叶绿体前体 |
[ |
LOC_Os03g58320 | 3 | 33228543 | 33226460 | 吲哚-3-甘油磷酸裂解酶,叶绿体前体 |
[ |
LOC_Os04g16350 | 4 | 8888963 | 8885859 | 逆转录转座子蛋白 |
[ |
LOC_Os04g17840 | 4 | 9786839 | 9781331 | 逆转录转座子蛋白 |
[ |
LOC_Os04g19900 | 4 | 11100948 | 11096093 | Ty3-gypsy亚类逆转录转座子蛋白 |
[ |
LOC_Os04g33360 | 4 | 20201885 | 20200072 | 赤霉素2-β-双加氧酶7 |
[ |
LOC_Os04g51190 | 4 | 30321649 | 30317693 | 生长调节因子 |
[ |
LOC_Os04g51390 | 4 | 30438328 | 30433199 | 醛糖1差向异构酶 |
[ |
LOC_Os04g51600 | 4 | 30571716 | 30570016 | 表达蛋白 |
[ |
LOC_Os04g58590 | 4 | 34837343 | 34832040 | 含RNA识别基序蛋白质 |
[ |
LOC_Os05g10670 | 5 | 5848291 | 5846045 | 锌指结构家族蛋白CCCH |
[ |
LOC_Os05g10770 | 5 | 5946866 | 5940137 | jumonji转录因子 |
[ |
LOC_Os05g11730 | 5 | 6661493 | 6657481 | CGMC_GSK.7-CGMC包括CDA, MAPK, GSK3和CLKC激酶 |
[ |
LOC_Os05g27650 | 5 | 16103367 | 16093366 | CACTA, En/Spm 亚类转座子蛋白 |
[ |
LOC_Os05g27720 | 5 | 16145937 | 16141193 | CACTA, En/Spm 亚类转座子蛋白 |
[ |
LOC_Os05g27740 | 5 | 16159660 | 16156427 | 表达蛋白 |
[ |
LOC_Os05g27790 | 5 | 16186813 | 16184117 | 膜相关DUF588结构域含蛋白 |
[ |
LOC_Os05g28090 | 5 | 16423221 | 16421457 | 表达蛋白 |
[ |
LOC_Os05g39530 | 5 | 23201465 | 23196134 | 核糖核酸酶P家族蛋白 |
[ |
LOC_Os06g09660 | 6 | 4932177 | 4926492 | 生长素响应因子 |
[ |
LOC_Os06g43690 | 6 | 26312412 | 26303837 | WD重复序列蛋白 |
[ |
LOC_Os06g44070 | 6 | 26583748 | 26581702 | 逆转录转座子蛋白 |
[ |
LOC_Os06g44080 | 6 | 26588132 | 26585560 | 泛素家族蛋白 |
[ |
LOC_Os07g13634 | 7 | 7832311 | 7815442 | 细胞分裂素-N-葡萄糖基转移酶 1 |
[ |
LOC_Os07g22360 | 7 | 12552496 | 12551930 | 表达蛋白 |
[ |
LOC_Os07g23990 | 7 | 13604623 | 13589491 | 含四肽重复结构域的蛋白质 |
[ |
LOC_Os07g24010 | 7 | 13611539 | 13611075 | 假定蛋白 |
[ |
LOC_Os07g24170 | 7 | 13729382 | 13728678 | 表达蛋白 |
[ |
LOC_Os07g24190 | 7 | 13747256 | 13741284 | CESA3-纤维素合成酶 |
[ |
LOC_Os07g25460 | 7 | 14580334 | 14574496 | 含锚蛋白重复结构域的蛋白质 |
[ |
LOC_Os07g27610 | 7 | 16129954 | 16129694 | 表达蛋白 |
[ |
LOC_Os07g27630 | 7 | 16135465 | 16134832 | 表达蛋白 |
[ |
LOC_Os07g27680 | 7 | 16151880 | 16150946 | 表达蛋白 |
[ |
LOC_Os07g28060 | 7 | 16368840 | 16368462 | 乙烯受体 |
[ |
LOC_Os07g39660 | 7 | 23772784 | 23772512 | 假定蛋白 |
[ |
LOC_Os08g04240 | 8 | 2064909 | 2063156 | 富含半胱氨酸的重复分泌蛋白55前体 |
[ |
LOC_Os08g04340 | 8 | 2130615 | 2129613 | 含有质体花青素样结构域的蛋白质 |
[ |
LOC_Os08g04350 | 8 | 2134479 | 2133547 | 含有质体花青素样结构域的蛋白质 |
[ |
LOC_Os08g15296 | 8 | 9272579 | 9271631 | 光系统II反应中心蛋白H |
[ |
LOC_Os08g17350 | 8 | 10613674 | 10613092 | 表达蛋白 |
[ |
LOC_Os08g41180 | 8 | 26016312 | 26015092 | BTB蛋白结构域 |
[ |
LOC_Os09g03140 | 9 | 1505356 | 1503778 | 细胞分裂素-O-葡糖基转移酶2 |
[ |
LOC_Os09g11380 | 9 | 6336208 | 6327584 | 表达蛋白 |
[ |
LOC_Os09g11800 | 9 | 6598134 | 6596786 | 表达蛋白 |
[ |
LOC_Os09g12000 | 9 | 6760348 | 6759298 | 假定蛋白 |
[ |
LOC_Os09g20350 | 9 | 12218346 | 12216432 | 乙烯响应转录因子 |
[ |
LOC_Os10g03730 | 10 | 1684278 | 1681080 | OsFBX347 - F-box 蛋白结构域 |
[ |
LOC_Os10g03780 | 10 | 1715027 | 1707818 | OsFBX351 - F-box 蛋白结构域 |
[ |
LOC_Os10g20860 | 10 | 10573989 | 10570876 | 蛋白酶抑制剂/种子贮藏/LTP家族 |
[ |
LOC_Os11g10920 | 11 | 6034441 | 6030542 | 羧基末端蛋白酶 |
[ |
LOC_Os11g10990 | 11 | 6066797 | 6064996 | 热激蛋白DnaJ |
[ |
LOC_Os12g08780 | 12 | 4517346 | 4515673 | 黄素单加氧酶 |
[ |
LOC_Os12g24800 | 12 | 14234903 | 14232903 | 9-顺式环氧类胡萝卜素双加氧酶1 |
[ |
TROP群体 | TEMP群体 | ||||
---|---|---|---|---|---|
材料代号 Code name | 名称 Name | 中胚轴长度 (cm) Mesocotyl length | 材料代号 Code name | 名称 Name | 中胚轴长度 (cm) Mesocotyl length |
A | MALAGKIT | 4.09 | I | LUSITO IRRADIADO 859-85-2 | 2.05 |
B | BIKYAT | 4.23 | J | FU LI HONG | 2.08 |
C | BUNTU DOMBA 1 | 4.26 | K | MAO ZHA NUO | 2.11 |
D | BLUE BELLE | 4.38 | L | HAN NUO | 2.20 |
E | PANNITHI | 0.21 | M | CHEONJUDO | 0.14 |
F | KETAN MLANTING | 0.35 | N | YUNLEN 13 | 0.14 |
G | SAMPANG KUNING | 0.43 | O | MA SHE 8 | 0.15 |
H | PANGETAN | 0.43 | P | LUAN DAO | 0.17 |
将籽粒播种于装有营养土的穴盘内(10个×5个),15粒/穴,每份材料种植一穴。随后,称取500 g营养土至托盘内,将播种后的穴盘置于托盘内并取适量去离子水喷洒穴盘与托盘。将处理后的穴盘和托盘置于30℃恒温黑暗培养箱内培养,每日定时浇水。约10 d后将穴盘从培养箱中取出,选取长势均一株系,采用流动水冲洗根部土壤,随后对各株系进行拍照并利用Image J软件(https://image j.en.softonic.com/)测量中胚轴长度,去除长势较差单株后,每份材料测量约8~15株。
TROP和TEMP群体的基因型数据均来自于水稻3K重测序项
利用筛选后的SNP和Indel进行中胚轴长度的CAS分析。为控制假阳性,CAS分析采用基于PCA(Principal component analysis)+K(Kinship)的混合线性模型(MLM,mixed linear model)(Tassel v5.1
针对TROP和TEMP群体,分别选取4份极长和极短中胚轴品种(
引物名称 Primer name | 正向引物序列(5′-3′) Forward primer sequence(5′-3′) | 反向引物序列(5′-3′) Reverse primer sequence(5′-3′) |
---|---|---|
β-Actin | AGTGTCTGGATTGGAGGAT | TCTTGGCTTAGCATTCTTG |
GAPDH | AAGCCAGCATCCTATGATCAGATT | CGTAACCCAGAATACCCTTGAGTTT |
LOC_Os01g44130 | TTTGTGTTGACGGTTGTGCT | TTTGCACTCTTCGTTTGCCA |
LOC_Os03g50560 | GGTTAACAAGCGCATTTGGC | AAGCCCATTCCTCTCTTCCC |
LOC_Os05g27790 | GCGATCCCGATAACGAACAG | AAGAAGGCCATGCTGATGGA |
LOC_Os11g10990 | GGGAAGAAGAAGACGGTGGA | ACCTGGTAGTGAGACTCGGA |
LOC_Os10g20860 | GAGTGTGCATCAACGTGCTA | CCGAGATCAACTGGGAGGTT |
表3 显著候选基因表达分析引物序列
本研究选择的97个中胚轴伸长候选基因在水稻12条染色体上均有分布。其中,3号染色体最多,1号和7号染色体其次,2号染色体仅有2个。在97个中胚轴伸长候选基因的CDS和启动子区共鉴定出1819个SNP和911个InDel位点,单基因SNP和InDel变异平均分别为18.7和9.4个,遗传变异在染色体上分布详见

图1 已报道97个中胚轴伸长候选基因及其遗传变异在水稻染色体上的分布
Fig. 1 The distribution of 97 mesocotyl elongation candidate genes and their genetic variations on rice chromosomes

图2 TROP和TEMP群体水稻中胚轴长度
Fig. 2 The mesocotyl length of accessions from TROP and TEMP population
在TROP群体中,基于MLM模型,鉴定到7个SNP与中胚轴长度显著关联,分别位于1号(25.3 Mb)、3号(28.9 Mb)、5号(16.2 Mb)和11号(6.1 Mb)染色体上,解释4.7%~6.3%的表型变异。在TEMP群体中,鉴定到26个SNP与中胚轴长度显著相关,分别位于1号(25.3 Mb)、3号(28.9 Mb)、5号(16.1~16.2 Mb)和10号(10.6 Mb)染色体上,解释5.4%~6.7%的表型变异。其中,LOC_Os01g44130、LOC_Os03g50560和LOC_Os05g27790在TROP和TEMP亚群中均与中胚轴长度显著关联;LOC_Os11g10990仅在TROP群体中与中胚轴长度显著关联,而LOC_Os10g20860仅在TEMP群体中与中胚轴长度显著关联(
亚群 | 候选基因 | 标记 | 染色体 | 位置 (Mb) | P值 | 表型变异率(%) |
---|---|---|---|---|---|---|
Group | Candidate gene | Marker | Chromosome | Position | P-value | Phenotypic variation |
TROP | LOC_Os03g50560 | rs3_28875586 | 3 | 28.9 | 4.7E-03 | 4.8 |
LOC_Os01g44130 | rs1_25293070 | 1 | 25.3 | 2.1E-03 | 4.8 | |
LOC_Os01g44130 | rs1_25292504 | 1 | 25.3 | 2.2E-03 | 4.7 | |
LOC_Os01g44130 | rs1_25289678 | 1 | 25.3 | 2.4E-03 | 4.7 | |
LOC_Os05g27790 | rs5_16182057 | 5 | 16.2 | 1.2E-03 | 6.3 | |
LOC_Os05g27790 | rs5_16183210 | 5 | 16.2 | 3.2E-03 | 5.6 | |
LOC_Os11g10990 | rs11_6064185 | 11 | 6.1 | 1.4E-03 | 6.2 | |
TEMP | LOC_Os03g50560 | rs3_28896854 | 3 | 28.9 | 1.1E-04 | 6.7 |
LOC_Os03g50560 | rs3_28895506 | 3 | 28.9 | 1.4E-04 | 6.5 | |
LOC_Os05g27790 | rs5_16143550 | 5 | 16.1 | 1.8E-04 | 6.4 | |
LOC_Os05g27790 | rs5_16156027 | 5 | 16.2 | 2.0E-04 | 6.4 | |
LOC_Os05g27790 | rs5_16183705 | 5 | 16.2 | 2.4E-04 | 6.1 | |
LOC_Os05g27790 | rs5_16090675 | 5 | 16.1 | 2.4E-04 | 6.2 | |
LOC_Os05g27790 | rs5_16092174 | 5 | 16.1 | 2.5E-04 | 6.0 | |
LOC_Os05g27790 | rs5_16182057 | 5 | 16.2 | 2.5E-04 | 6.1 | |
LOC_Os05g27790 | rs5_16157197 | 5 | 16.2 | 2.6E-04 | 6.1 | |
LOC_Os05g27790 | rs5_16154422 | 5 | 16.2 | 2.8E-04 | 6.1 | |
LOC_Os05g27790 | rs5_16182344 | 5 | 16.2 | 2.8E-04 | 6.0 | |
LOC_Os05g27790 | rs5_16159098 | 5 | 16.2 | 2.8E-04 | 5.9 | |
LOC_Os05g27790 | rs5_16181390 | 5 | 16.2 | 2.8E-04 | 5.9 | |
LOC_Os05g27790 | rs5_16157357 | 5 | 16.2 | 2.9E-04 | 6.0 | |
LOC_Os05g27790 | rs5_16091666 | 5 | 16.1 | 2.9E-04 | 6.1 | |
LOC_Os05g27790 | rs5_16091887 | 5 | 16.1 | 3.1E-04 | 6.2 | |
LOC_Os05g27790 | rs5_16090954 | 5 | 16.1 | 3.3E-04 | 5.9 | |
LOC_Os05g27790 | rs5_16155086 | 5 | 16.2 | 3.5E-04 | 5.9 | |
LOC_Os03g50560 | rs3_28925811 | 3 | 28.9 | 3.7E-04 | 5.7 | |
LOC_Os05g27790 | rs5_16183210 | 5 | 16.2 | 3.8E-04 | 5.8 | |
LOC_Os01g44130 | rs1_25290468 | 1 | 25.3 | 4.2E-04 | 5.6 | |
LOC_Os05g27790 | rs5_16155122 | 5 | 16.1 | 4.7E-04 | 5.4 | |
LOC_Os05g27790 | rs5_16155087 | 5 | 16.1 | 5.2E-04 | 5.6 | |
LOC_Os05g27790 | rs5_16143096 | 5 | 16.1 | 5.7E-04 | 5.6 | |
LOC_Os10g20860 | rs10_10570859 | 10 | 10.6 | 6.0E-04 | 5.7 | |
LOC_Os10g20860 | rs10_10569618 | 10 | 10.6 | 5.7E-04 | 5.6 |
针对LOC_Os01g44130基因在TROP和TEMP群体中的单倍型进行分析,其启动子和CDS区的遗传变异位点共同组成了两种主要单倍型(单倍型频率< 0.05未统计,下同),分别命名为LOC_Os01g44130-Hap1和LOC_Os01g44130-Hap2。LOC_Os01g44130-Hap1在TROP和TEMP亚群中均为优势单倍型,分布频率分别为96.1%和97.6%。基于LOC_ Os03g50560基因启动子和CDS区的遗传变异位点,共同组成两种主要单倍型,分别命名为LOC_Os03g50560-Hap1和LOC_Os03g50560-Hap2。LOC_Os03g50560-Hap1在两个亚群中均为优势单倍型,分布频率分别为94.6%和92.9%。LOC_Os05g27790基因启动子和CDS区的遗传变异位点组成了7种主要单倍型,命名为LOC_Os05g27790-Hap1~Hap7,在TROP亚群中均有分布。其中,LOC_Os05g27790-Hap1分布频率最高,为45.8%。TEMP群体中存在LOC_Os05g27790-Hap1~Hap3和LOC_Os05g27790-Hap5~Hap6等5种单倍型。其中,LOC_Os05g27790-Hap1所占比例最高,接近64.8%。LOC_Os10g20860仅在TEMP群体中与中胚轴长度显著关联,其遗传变异位点形成5种主要单倍型,命名为LOC_Os10g20860-Hap1~Hap5。分布最为广泛的为LOC_Os10g20860-Hap1,占比接近66.7%。LOC_ Os11g10990仅在TROP群体中与中胚轴长度显著关联,LOC_Os11g10990-Hap1~Hap4,LOC_ Os11g10990- Hap1分布最为广泛,占比近45.3%(
候选基因 Candidate gene | 单倍型 Haplotypes | TROP | TEMP | |||
---|---|---|---|---|---|---|
数量 Number | 中胚轴长度(cm) Mesocotyl length | 数量 Number | 中胚轴长度 (cm) Mesocotyl length | |||
LOC_Os01g44130 | Hap1 | 321 | 1.792a | 205 | 0.883a | |
Hap2 | 8 | 1.670b | 5 | 0.527b | ||
LOC_Os03g50560 | Hap1 | 316 | 1.788a | 195 | 0.870 | |
Hap2 | 3 | 1.158b | - | - | ||
LOC_Os05g27790 | Hap1 | 153 | 1.871b | 136 | 0.901b | |
Hap2 | 90 | 1.559c | 3 | 0.807bc | ||
Hap3 | 40 | 2.042a | 49 | 0.865b | ||
Hap4 | 19 | 1.630bc | - | - | ||
Hap5 | 7 | 1.667bc | 10 | 0.547c | ||
Hap6 | 7 | 2.245a | 9 | 1.003a | ||
Hap7 | 5 | 1.496c | - | - | ||
LOC_Os10g20860 | Hap1 | - | - | 140 | 0.779c | |
Hap2 | - | - | 21 | 0.830c | ||
Hap3 | - | - | 9 | 1.051b | ||
Hap4 | - | - | 7 | 0.748c | ||
Hap5 | - | - | 6 | 1.475a | ||
LOC_Os11g10990 | Hap1 | 83 | 1.967a | - | - | |
Hap2 | 78 | 1.500b | - | - | ||
Hap3 | 15 | 1.724ab | - | - | ||
Hap4 | 7 | 1.345b | - | - |
不同小写字母分别代表P<0.05水平下差异显著;下同。-代表无数据
Different lowercase letters indicate significant at P<0.05 level; The same as below. - means missing
基于多重比较,在TROP群体中鉴定到6种优异单倍型,分别为LOC_Os05g27790-Hap3和LOC_Os05g27790-Hap6、LOC_Os03g50560-Hap1、LOC_Os01g44130-Hap1和LOC_Os11g10990-Hap1和LOC_Os11g10990-Hap3;在TEMP群体中也鉴定到3种优异单倍型,分别为LOC_Os05g27790-Hap6、LOC_Os01g44130-Hap1和LOC_Os10g20860-Hap5。其中,LOC_Os05g27790-Hap6和LOC_Os01g44130-Hap1在TROP和TEMP群体中均为优异单倍型。TROP群体中优异单倍型LOC_Os05g27790-Hap3和LOC_Os05g27790-Hap6对应中胚轴长度分别为2.042 cm和2.245 cm,与其他单倍型存在显著差异(P<0.05);TEMP群体优异单倍型LOC_Os05g27790-Hap6对应中胚轴长度为1.003 cm,与其他单倍型存在显著差异(P<0.05)。LOC_Os03g50560-Hap1仅在TROP群体中为优异单倍型,对应中胚轴长度为1.788 cm,非优异单倍型LOC_Os03g50560-Hap2为1.158 cm,差异显著(P < 0.05)。LOC_Os01g44130-Hap1在TROP和TEMP群体中均为优异单倍型。其中,TROP群体中优异单倍型LOC_Os01g44130-Hap1对应中胚轴长度为1.792 cm,非优异单倍型LOC_Os01g44130-Hap2对应中胚轴长度为1.670 cm;TEMP群体中优异单倍型LOC_Os01g44130-Hap1对应中胚轴长度为0.883 cm,非优异单倍型LOC_Os01g44130-Hap2对应中胚轴长度为0.527 cm。LOC_Os11g10990仅在TROP群体中与中胚轴长度显著关联,其优异单倍型LOC_Os11g10990-Hap1和LOC_Os11g10990-Hap3所对应中胚轴长度为1.967 cm和1.724 cm,其他材料所对应中胚轴长度为1.345~1.724 cm,差异显著(P < 0.05)。LOC_Os10g20860仅在TEMP群体中显著,其优异单倍型LOC_Os10g20860-Hap5所对应中胚轴长度为1.475 cm,与其他单倍型存在显著差异(P < 0.05)。
对TROP和TEMP亚群进行单倍型加性效应分析。结果表明,TROP亚群中胚轴长度加性效应显著,随着优异单倍型数目由1个增加到5个,所对应的中胚轴长度由1.20 cm增加至2.32 cm,差异显著(P < 0.05,

图3 TROP和TEMP群体中胚轴优异单倍型加性效应分析
Fig. 3 Analysis of additive effects of excellent haplotypes of mesocotyl in TROP and TEMP populations
采用qRT-PCR对初步筛选的5个候选基因进行表达模式验证。在TROP群体中,LOC_Os01g44130和LOC_Os05g27790在长中胚轴品种表达水平显著低于短中胚轴品种;表明LOC_Os01g44130和LOC_Os05g27790参与并负调控中胚轴伸长。LOC_Os03g50560和LOC_Os11g10990在长中胚轴品种表达水平显著高于短中胚轴品种,表明以上基因参与并正调控中胚轴伸长。在TEMP群体中,LOC_Os01g44130和LOC_Os05g27790在长中胚轴品种表达水平显著低于短中胚轴品种;表明LOC_Os01g44130和LOC_Os05g27790参与并负调控中胚轴伸长。LOC_Os03g50560和LOC_Os10g20860在长中胚轴品种表达水平显著高于短中胚轴品种,表明其参与并正调控中胚轴伸长。在TROP和TEMP群体中,LOC_Os01g44130和LOC_Os05g27790和LOC_Os03g50560在两个亚群中的表达趋势一致(

图4 TROP和TEMP候选基因在中胚轴极长和极短材料的表达差异
Fig. 4 Relative expression levels of candidate genes between accessions with longer and shorter mesocotyl in TROP and TEMP
材料代号说明同表2
The accession code description is the same as table 2
水稻的中胚轴长度是典型的数量遗传性状,受多基因控制。旱直播技术在多数水稻种植国家已得到大面积推广,是未来水稻生产的发展方向。解析水稻中胚轴伸长遗传机制,加速选育直播稻,对于促进水稻直播生产具有重要作用。当前,水稻直播出苗影响因素研究已有较多报道,且已发掘部分中胚轴长度相关位点,为培育适宜于直播的种质提供参考。虽然已报道近百个中胚轴长度相关候选基因,但这些基因的可应用性尚未得到验证。另外,旱直播在籼稻种植区域已有一定推广面积,粳稻种植区域面积较少。因此,亟需选育长中胚轴粳稻资源。基于此,本研究以97个已报道中胚轴长度关联候选基因为研究对象,采用两个来源不同的粳稻自然群体(TROP和TEMP),基于CAS发掘中胚轴伸长相关基因,鉴定优异单倍型,为创制长中胚轴优异种质提供参考。
中胚轴伸长受到多种调节蛋白和植物激素的调
相较于单个遗传变异,由同一基因不同区域的多个遗传变异所组成的单倍型对于育种更为重要。因此,针对重要基因在评估群体中的单倍型效应分析十分重要。结果表明,不同群体间单倍体分布存在差异,且优势单倍型也存在不同。如LOC_Os05g27790基因包含7个主要单倍型,其中,TROP材料存在所有7种单倍型,分布最广的为LOC_Os05g27790-Hap1(45.8%)和LOC_Os05g27790-Hap2(26.9%),而TEMP群体中存在LOC_Os05g27790-Hap1、LOC_Os05g27790-Hap2、LOC_Os05g27790-Hap3、LOC_Os05g27790-Hap5和LOC_Os05g27790-Hap6等5种单倍型,分布最广的为LOC_Os05g27790-Hap1(64.8%)和LOC_Os05g27790-Hap3(23.3%),LOC_Os05g27790-Hap2比例极低(1.4%);LOC_Os 03g50560基因包含两种主要单倍型,TROP群体中两种单倍型均存在,分布最广的单倍型为LOC_Os 03g50560-Hap1(94.6%),而LOC_Os03g50560-Hap2比例仅为0.9%,TEMP群体中仅存在LOC_Os03g50560-Hap1(92.9%),其他单倍型分布较少。
加性效应分析表明,显著基因在TROP和TEMP亚群中单倍型累加效应显著。因此,可基于以上基因的优异单倍型开展MAS育种。在TROP和TEMP亚群中,随着优异单倍型数目的增加,中胚轴长度分别由1.20 cm和0.58 cm增加至2.32 cm和1.21 cm。因此,可以通过MAS育种的方式聚合优异单倍型,加速水稻长中胚轴种质选育。不同区域育种历史有较大的差异,且种质资源来源广泛,基于不同区域应选择不同基因和单倍型。本研究在TROP和TEMP群体中分别鉴定到6个和3个优异单倍型。其中,LOC_Os01g44130-Hap1和LOC_ Os05g27790-Hap6在TROP和TEMP群体中均为优异单倍型,具有较强的适应性,在南亚、东南亚和东亚地区的粳稻育种中均可应用。LOC_Os05g27790-Hap3、LOC_Os03g50560-Hap1、LOC_Os11g10990-Hap1和LOC_Os11g10990-Hap3仅适用于TROP群体;LOC_Os10g20860-Hap5仅适用于TEMP群体。携带多个优异单倍型的品系,如TROP群体中来自于印度尼西亚的SIFARASI、KABADOKA、PAE ONGGA、ANENOE和PADI UDANG,马来西亚的ANGKARONG和PINAHULA,菲律宾的SINAPLED、ONOY和BIKYAT;TEMP群体中来自于中国的NAN-29-2、CHING HIS、Diangeng China、MAO ZHA NUO,印度的PUTTIGE和菲律宾的IREQUIN可作为优异亲本应用于直播育种,促进水稻旱直播技术推广。
参考文献
Kumar V, Ladha J K. Direct seeding of rice: Recent developments and future research needs. Advance in Agronomy, 2011, 111: 297-413 [百度学术]
Turner F T, Chen C C, Bollich C N. Coleoptile and mesocotyl lengths in semidwarf rice seedlings. Crop Science, 1982, 22: 43-46 [百度学术]
张光恒, 林建荣, 吴明国, 曹立勇, 程式华. 水稻出苗顶土动力源研究. 中国水稻科学, 2005, 19(1): 59-62 [百度学术]
Zhang G H, Lin J R, Wu M G, Cao L Y, Cheng S H. Analysis on germinating dynamic source of rice (Oryza sativa). Chinese Journal of Rice Science, 2005, 19 (1): 59-62 [百度学术]
Lee H S, Sasaki K, Kang J, Sato T, Song W, Ahn S. Mesocotyl elongation is essential for seedling emergence under deep-seeding condition in rice. Rice, 2017, 10: 32 [百度学术]
Chung N J. Elongation habit of mesocotyls and coleoptiles in weedy rice with high emergence ability in direct-seeding on dry paddy fields. Crop & Pasture Science, 2010, 61: 911-917 [百度学术]
Wang Y, Liu J, Meng Y, Liu H, Liu C, Ye G. Rapid identification of QTL for mesocotyl length in rice through combining QTL-seq and genome-wide association analysis. Frontiers in Genetics, 2021, 12: 713446 [百度学术]
Wu M, Zhang G, Lin J, Cheng S. Screening for rice germplasms with specially elongated mesocotyl. Rice Science, 2005, 12: 226-228 [百度学术]
Zhan J, Lu X, Liu H, Zhao Q, Ye G. Mesocotyl elongation, an essential trait for dry-seeded rice (Oryza sativa L.): A review of physiological and genetic basis. Planta, 2020, 251: 1-14 [百度学术]
Mahender A, Anandan A, Pradhan S K. Early seedling vigour, an imperative trait for direct-seeded rice: An overview on physio-morphological parameters and molecular markers. Planta, 2015, 241: 1027-1050 [百度学术]
Gray W M, Ostin A, Sandberg G, Romano C P, Estelle M. High Temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 7197-7202 [百度学术]
Kato Y, Katsura K. Rice adaptation to aerobic soils: Physiological considerations and implications for agronomy. Plant Production Science, 2014, 17: 1-12 [百度学术]
曹立勇, 朱军, 颜启传, 何立斌, 魏兴华, 程式华. 水稻籼粳交DH群体幼苗中胚轴长度的QTLs定位和上位性分析. 中国水稻科学, 2002, 16(3): 24-27 [百度学术]
Cao L Y, Zhu J, Yan Q C, He L B, Wei X H, Cheng S H. Mapping QTLs with Epistasis for mesocotyl length in a DH population from indica-japonica cross of rice (Oryza sativa). Chinese Journal of Rice Science, 2002,16(3): 24-27 [百度学术]
Ouyang Y N, Zhang Q Y, Zhang K Q, Yu S M, Zhuang J Y, Jin Q Y. QTL mapping and interaction analysis of genotype/environment (F
Wu J, Feng F, Lian X, Teng X, Wei H, Yu H, Xie W, Yan M, Fan P, Li Y, Ma X, Liu H, Yu S, Wang G, Zhou F, Luo L, Mei H. Genome-wide association study (GWAS) of mesocotyl elongation based on re-sequencing approach in rice. BMC Plant Biology, 2015, 15: 218 [百度学术]
Zhao Y, Zhao W, Jiang C, Wang X, Xiong H, Todorovska E G, Yin Z, Chen Y, Wang X, Xie J, Pan Y, Rashid M A R, Zhang H, Li J, Li Z. Genetic architecture and candidate genes for deep-sowing tolerance in rice revealed by non-syn GWAS. Frontiers in Plant Science, 2018, 9: 332 [百度学术]
Liu H, Zhan J, Li J, Lu X, Liu J, Wang, Y, Zhao Q Z, Ye G Y. Genome-wide association study (GWAS) for mesocotyl elongation in rice (Oryza sativa L.) under multiple culture conditions. Genes, 2020, 11: 49 [百度学术]
Lv Y, Shao G, Jiao G, Sheng Z, Xie L, Hu S, Tang S, Wei X, Hu P. Targeted mutagenesis of POLYAMINE OXIDASE 5 that negatively regulates mesocotyl elongation enables the generation of direct-seeding rice with improved grain yield. Molecular Plant, 2020, 14: 344-351 [百度学术]
刘畅, 孟云, 刘金栋, 王雅美, Guoyou Ye. 结合QTL-seq和连锁分析发掘水稻中胚轴伸长相关QTL. 作物学报, 2021, 47(10): 2036-2044 [百度学术]
Liu C, Meng Y, Liu J D, Wang Y M, Ye G Y. Combining QTL-seq and linkage analysis to identify the QTL of mesocotyl elongation in rice (Oryza sativa L.). Acta Agronomica Sinca, 2021, 47(10): 2036-2044 [百度学术]
Jang S G, Park S Y, Lar S M, Zhang H, Lee A R, Cao F Y, Seo J, Ham T, Lee J, Kwon S W. Genome-wide association study (GWAS) of mesocotyl length for direct seeding in rice. Agronomy, 2021, 11: 2527 [百度学术]
Huang Q, Ju C, Cheng Y, Cui D, Han B, Zhao Z, Ma X, Han L. QTL mapping of mesocotyl elongation and confirmation of a QTL in Dongxiang common wild rice in China. Agronomy, 2022, 12: 1800 [百度学术]
Zhang X J, Lai Y C, Meng Y, Tang A, Dong W J, Liu Y H, Liu K, Wang L Z, Yang X L, Wang W L, Ding G H, Jiang H, Ren Y, Jiang S K. Analyses and identifications of quantitative trait loci and candidate genes controlling mesocotyl elongation in rice. Journal of Integrative Agriculture, 2023, 22: 325-340 [百度学术]
Xiong Q, Ma B, Lu X, Huang Y H, He S J, Yang C, Yin C C, Zhao H, Zhou Y, Zhang W K, Wang W S, Li Z K, Chen S Y, Zhang J S. Ethylene-inhibited jasmonic acid biosynthesis promotes mesocotyl/coleoptile elongation of etiolated rice seedlings. Plant Cell, 2017, 29: 1053-1072 [百度学术]
Sun S, Wang T, Wang L, Li X, Jia Y, Liu C, Huang X, Xie W, Wang X. Natural selection of a GSK3 determines rice mesocotyl domestication by coordinating strigolactone and brassinosteroid signaling. Nature Communication, 2018, 9: 2523 [百度学术]
Zheng J, Hong K, Zeng L, Wang L, Kang S, Qu M, Dai J, Zou L, Zhu L, Tang Z, Meng X, Wang B, Hu J, Zeng D, Zhao Y, Cui P, Wang Q, Qian Q, Wang Y, Li J, Xiong G. Karrikin signaling acts parallel to and additively with Strigolactone signaling to regulate rice mesocotyl elongation in darkness. Plant Cell, 2020, 32: 2780-2805 [百度学术]
Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165-1177 [百度学术]
张志辉, 程宇坤, 任毅, 王睿, 董一帆, 耿洪伟. 小麦籽粒相关性状全基因组关联分析.植物遗传资源学报,2023, 24 (4): 993-1006 [百度学术]
Zhang Z H, Cheng Y K, Ren Y, Wang R, Dong Y F, Geng H W. Genome-wide association analysis of wheat grain related traits. Journal of Plant Genetic Resources. 2023,24 (4):993-1006 [百度学术]
Liu J D, He Z H, Rasheed A, Wen W E, Yan J, Zhang P Z, Wan Y X, Zhang Y, Xie C J, Xia X C. Genome-wide association mapping of black point reaction in common wheat (Triticum aestivum L.), BMC Plant Biology, 2017, 17: 220 [百度学术]
Flint-Garcia S A, Thornsberry J M, Buckler E S. Structure of linkage disequilibrium in plants. Annual Review of Plant Biology, 2003, 54: 357-374 [百度学术]
Zhu C S, Gore M, Buckler E S, Status Y J M. Prospects of association mapping in plants. Plant Genome, 2008, 1: 5-20 [百度学术]
Liu J, Zhan J, Chen J, Lu X, Zhi S, Ye G. Validation of genes affecting rice grain zinc content through candidate gene-based association analysis. Frontiers in Genetics, 2021,12:701658 [百度学术]
Sinha P, Singh V K, Saxena R K, Khan A W, Abbai R, Chitikineni A, Desai A, Molla J, Upadhyaya H D, Kumar A, Varshney R K. Superior haplotypes for haplotype‐based breeding for drought tolerance in pigeonpea (Cajanus cajan L.). Plant Biotechnology Journal, 2020, 18: 2482-2490 [百度学术]
Varshney R K, Nayak S N, May G D, Jackson S A. Next generation sequencing technologies and their implications for crop genetics and breeding. Trends in Biotechnology, 2009, 27: 522-530 [百度学术]
Li J, Wang J, Zeigler R S. The 3,000 rice genomes project: New opportunities and challenges for future rice research. Giga Science, 2014, 3: 8 [百度学术]
Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes R R, Zhang F, Mansueto L, Copetti D, Sanciangco M, Palis K C, Xu J, Sun C, Fu B, Zhang H, Gao Y, Zhao X, Shen F, Cui X, Yu H, Li Z, Chen M, Detras J, Zhou Y, Zhang X, Zhao Y, Kudrna S, Wang C, Li R, Jia B, Lu J, He X, Dong Z, Xu J, Li Y, Wang M, Shi S, Li J, Zhang D, Lee S, Hu W, Poliakov A, Dubchak I, Ulat V J, Borja F N, Mendoza J R, Ali J, Li J, Gao Q, Niu Y, Yue Z, Naredo M E B, Talag J, Wang X, Li J, Fang X, Yin Y, Glaszmann J C, Zhang J, Li J, Hamilton R S, Wing R A, Ruan J, Zhang G, Wei C, Alexandrov N, McNally K L, Li Z, Leung H. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 2018, 557: 43-49 [百度学术]
Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of genetic variants from next-generation sequencing data. Nucleic Acids Research, 2010, 38: e164 [百度学术]
Wang C C, Yu H, Huang J, Wang W S, Faruquee M, Zhang F, Zhao X Q, Fu B Y, Chen K, Zhang H L, Tai S S, Wei C, McNally K L, Alexandrov N, Gao X Y, Li J, Li Z K, Xu J L, Zheng T Q. Towards a deeper haplotype mining of complex traits in rice with RFGB v2.0. Plant Biotechnology Journal, 2020, 18: 14-16 [百度学术]
刘利成, 李小湘, 黎用朝, 潘孝武, 闵军, 刘三雄, 刘文强, 胡敏, 段永红, 余亚莹, 张海清. 水稻种子耐厌氧萌发全基因组关联分析. 植物遗传资源学报, 2021, 22(6): 1644-1650 [百度学术]
Liu L C, Li X X, Li Y Z, Pan X W, Min J, Liu S X, Liu W Q, Hu M, Duan Y H, Yu Y Y, Zhang H Q. Genome-wide association study of anaerobic germination tolerance in seeds of rice accessions. Journal of Plant Genetic Resources, 2021, 22(6): 1644-1650 [百度学术]
张红杰, 邓中印, 陶姝, 孙国梁, 贾美玲, 王振玉, 廖如意, 郑兴卫, 李爱丽, 毛龙, 郑军, 耿帅锋. CIMMYT新引进合成小麦株高性状全基因组关联分析. 植物遗传资源学报, 2021, 22(4): 1054-1067 [百度学术]
Zhang H J, Deng Z Y, Tao S, Sun G L, Jia M L, Wang Z Y, Liao R Y, Zheng X W, Li A L, Mao L, Zheng J, Geng S F. Genome-wide association study (GWAS) for plant height traits in synthetic wheat lines introduced in CIMMYT. Journal of Plant Genetic Resources, 2021, 22(4):1054-1067 [百度学术]
潘孝武, 黎用朝, 刘文强, 熊海波, 董铮, 盛新年, 段永红, 余亚莹, 赵文锦, 魏秀彩, 李小湘. 水稻资源开花期耐热性的全基因组关联分析. 植物遗传资源学报, 2021, 22(2): 407-415 [百度学术]
Pan X W, Li Y C, Liu W Q, Xiong H B, Dong Z, Sheng X N, Duan Y H, Yu Y Y, Zhao W J, Wei X C, Li X X. Genome wide association study of heat tolerance at the anthesis stage in rice. Journal of Plant Genetic Resources, 2021, 22(2): 407-415 [百度学术]
Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635 [百度学术]
Lipka A E, Tian F, Wang Q, Peiffer J, Li M, Bradbury P J, Gore M A, Buckler E S, Zhang Z W. GAPIT: Genome association and prediction integrated tool. Bioinformatics, 2012, 8: 2397-2399 [百度学术]
Huang J Y, Zhao X B, Cheng K, Jiang Y H, Ouyang Y D, Xu C G, Li X H, Xiao J X, Zhang Q F. OsAP65, a rice aspartic protease, is essential for male fertility and plays a role in pollen germination and pollen tube growth. Journal of Experimental Botany, 2013, 64: 3351-3360 [百度学术]
Xu Z H, Xue H W. Plant hormones: Function and molecular mechanism. First edition. Shanghai: Shanghai Scientific and Technical Publishers, 2012: 45-67 [百度学术]
Liang Q, Wang C, Ma D R, Li L, Cui Z B, Wang X X, Qian Q, Cai B D, Feng Y Q, Chen W F. Cortical microtubule disorganized related to an endogenous gibberellin increase plays an important role in rice mesocotyl elongation. Plant Biotechnology Journal, 2016, 33: 59-69 [百度学术]
Yuldashev R, Avalbaev A, Bezrukova M, Vysotskaya L, Khripach V, Shakirova F. Cytokinin oxidase is involved in the regulation of cytokinin content by 24-epibrassinolide in wheat seedlings. Plant Physiology and Biochemistry, 2012, 55: 1-6 [百度学术]
Watanabe H, Takahashi K, Saigusa M. Morphological and anatomical effects of abscisic acid (ABA) and fluridone (FLU) on the growth of rice mesocotyls. Plant Growth Regulation, 2011, 34: 273-275 [百度学术]
Chen S Y, Wang, Z Y, Cai, X L. OsRRM, a Spen-like rice gene expressed specifically in the endosperm. Cell Research, 2007, 17: 713-721 [百度学术]
Liang J, Guo S, Sun B, Liu Q, Chen X, Peng H, Zhang Z, Xie Q. Constitutive expression of REL1 confers the rice response to drought stress and abscisic acid. Rice, 2018, 1: 59 [百度学术]
Ge X, Dietrich C, Matsuno M, Li G, Berg H, Xia Y. An Arabidopsis aspartic protease functions as an anti-cell-death component in reproduction and embryogenesis. EMBO Reports, 2005, 6: 282-288 [百度学术]
Nonomura K I, Eiguchi M, Nakano M, Takashima K, Komeda N, Fukuchi S, Miyazaki S, Miyao A, Hirochika H, Kurata N. A novel RNA-recognition-Motif protein is required for premeiotic G1/S-phase transition in Rice (Oryza sativa L.). PLoS Genetics, 2011, 7: e1001265 [百度学术]