摘要
穗顶部退化型在生产中十分常见,它影响穗粒数、结实率和单株产量,需要在育种实践中尽量避免;而直立密穗型是一种能够适应密植栽培的穗型。分离和克隆这两个性状的相关基因对水稻的分子设计育种具有重要意义。本研究报道了一个水稻穗部突变体zhao1的研究结果。zhao1表现为密穗和穗顶部退化的双重表型,利用该材料与 IRAT129杂交,F2群体中分离出穗型和顶部退化两个独立遗传的性状。遗传分析表明,直立密穗性状为单基因显性性状,而穗顶部退化性状可能涉及不多于两对的基因。分别对这两个性状开展了连锁分析和图位克隆,发现密穗性状的候选基因为DEP1,其突变方式与dep1的突变方式相同。穗顶部退化性状的连锁和图位克隆结果将穗顶部退化候选基因确定在第3号染色体6.85~6.93 Mb区间内。该区间包含8个推测的基因,其中基因LOC_Os03g12790的表达量下调了27倍,是可能的候选基因,为最终克隆穗顶部退化候选基因奠定了基础。
水稻产量是一种数量性状,主要是由每株穗数、每穗粒数和千粒重三个因素决
穗顶部退化的原因可能多样,在穗顶部退化的基因克隆上,对一个根变短、叶片细胞死亡、株高变矮、穗变短、顶部小穗退化、花药和花粉粒发育异常的突变体tut1的研究表明,TUT1基因编码一个SCAR/WAVE同源蛋白,通过激活Arp2/3参与调控微丝排列,tut1突变体的微丝排列缺陷导致植株整体发育受到阻
多数育种材料的穗顶部退化表型是微效多基因控制的数量性状,不同作图群体、不同的年份和地点QTL的重复检出率较低。徐华山
水稻穗属于一种有限生长的圆锥花序,由一次枝梗、二次枝梗、穗轴和小穗组
突变体zhao1和对照均来自于育种田里1个F5高世代材料(未命名),对照为性状稳定的高代材料,突变体具有密穗与穗顶部退化的表型。除此以外,突变体还表现出分蘖减少,株高降低,茎秆变粗。2020年,在海南三亚中国农业科学院作物科学研究所基地,利用该材料与正常表型品种 IRAT129杂交,配制遗传作图群体,杂交种经过中国农业科学院作物科学研究所北京顺义试验基地正季(2021月夏季)繁殖后,2021年冬季在海南试验基地种植F2群体。2022年夏季在北京正季种植 F3 群体1500株左右,每行10株,株距15 cm,行距20 cm。成熟时,对突变体及对照10 株的株高、分蘖数、主穗长、一次枝梗数、二次枝梗数、结实率、粒长、粒宽、千粒重等农艺性状进行考种。为了研究性状的遗传分离规律,利用F3株系单株表型的分离规律来判断F2单株的基因型,并利用卡方测验进行遗传分析。
在田间分别取亲本IRAT129,zhao1叶片以及F3 群体600个显性穗顶部退化表型和416个隐性直立密穗表型样本叶片。利用CTAB
引物名称 | 正向序列(5'-3') | 反向序列(5'-3') |
---|---|---|
Primer name | Forword sequence(5'-3') | Reverse sequence(5'-3') |
Y9-30 | AAGACGAACGGGTCAAACAT | AAAGACTGTGTCGAAGCCTAAAA |
Y9-46 | TGGACACCCACTGTATCCAC | GGGTTTTGGACTTTTGGTCA |
Y9-63 | ATCTCCCGCCACTTCTTCTC | TCGGCCACGATCTTATCTCT |
O9-8 | ACATCTCTGCTCGCCATTCT | GCGAGGTTTGAGTATGCTGG |
O9-10 | CGGGCACTAAATGATCGTGG | GGCGACGTGTACAAGAGGTT |
SS9-25 | CGCCAAATACTTGTCCTGAT | AAGGAGGAAGGCGATTTAGA |
Y3-59 | CGTTTTATCCGACGTGACACT | GCACTATGGGGAAGAGAGGG |
O9-40 | TTTGGGAGGAAGCCAGAGTT | CAGAGCCAGAGATGCGTTTC |
Y3-53 | TGTCACCAAACTCGATTGCC | CATGGGCACATCCTCTTTCC |
Y3-3 | GGTTGCTGGACACCAGAGAT | GTGGCCAAACTACGACCAAT |
Y3-35 | CAAGATGCTCGCCTAGTTGC | TTGTCTCATACACCACCCCA |
IN1-1 | CGTTCGATCGATCTCTCTCC | TGTTTCGTGCAACACACAAT |
对对照和突变体的幼苗进行取样置于2 mL管中,使用天根公司试剂盒进行目标RNA的提取。利用北京宝日医生物技术有限公司的 PrimeScript Ⅱ 1st Strand cDNA Synthesis Kit 试剂盒合成 cDNA。使用TaKaRa 公司TB Gree
引物名称 | 正向序列(5'-3') | 反向序列(5'-3') |
---|---|---|
Primer name | Forward sequence(5'-3') | Reverse sequence(5'-3') |
LOC_Os03g12790 | GCCGGTCTCCATTTCATCTTTCTC | GCTGCTCAGCTTGGTTATACAGAC |
LOC_Os03g12810 | ACCTCTTGTGGAAGCTATTGTTGG | CTTCAGCATGGGCAGTCAGTTG |
LOC_Os03g12815 | TCTCCTTCGTGCCCTTTCTGTTG | TCAACGCTACCAGGGATAGAGACG |
LOC_Os03g12820 | CGTACAACTGCTTCAAGAGAGGAC | AGCGCAAGAACCGGATGAAC |
LOC_Os03g12830 | TCCGTGAACTCTTGGAGCAGATG | AGTGTTTCGGATCAAGCCCTCTC |
LOC_Os03g12840 | TTGGCGTCTATCGATTTCCAAGAG | AGTGGTCTTGGAGGAAGTTCTGAG |
LOC_Os03g12850 | AGGATGTGGTAGCGTTGTGC | CAGAGTCCCTCTTCCTCTCCTTTC |
LOC_Os03g12860 | CGCTTTAGCGAAGCAACTGAACC | CCGTCTGCTTCAGCTTTGTCCTTG |
Ubiquitin | GCTCCGTGGCGGTATCAT | CGGCAGTTGACAGCCCTAG |
zhao1突变体是来自于育种田里一个高世代变异材料, 表现为密穗与穗顶部退化表型(

图 1 对照品种和突变体zhao1的表型鉴定
Fig.1 Phenotypic characterization of CK and the zhao1
A:对照(左)与突变体zhao1(右)抽穗期后植株的表型图,比例尺为15 cm; B:对照(左)与突变体zhao1(右)抽穗期的穗部形态;比例尺为6 cm; C:对照(左)与突变体zhao1(右)抽穗同时期第一节间、第二节间、第三节间、第四节间对比图,比例尺为2 cm; D:F2群体中,分离出正常穗、正常穗+秃尖、密穗、密穗+秃尖(从左到右)4种表型; E:突变体zhao1(左)与对照(右)籽粒长度比较,比例尺为2 cm; F:突变体zhao1(上)与对照(下)籽粒宽度比较,比例尺为2 cm
A: Plant phenotypes of wild type CK (left) and mutant zhao1 (right) after heading stage, bar=15 cm; B: Panicle morphology comparison of wild type CK (left) and mutant zhao1 (right) at heading stage; bar=6 cm; C: Comparison between the first, second, third and fourth internodes of CK (left) and mutant zhao1 (right) heading at the same time, bar=2 cm; D: In F2 population, four phenotypes were isolated from left to right: normal panicle, normal panicle + bald tip, dense panicle, dense panicle + bald tip; E: Comparison of grain length between mutant zhao1 (left) and CK (right), bar= 2 cm; F: Comparison of grain width between mutant zhao1 (top) and CK (bottom), bar=2 cm
农艺性状 Agronomic traits | 对照 CK | 突变体 Mutant |
---|---|---|
株高(cm)Plant height | 97.87±5.49 |
58.80±2.0 |
分蘖数Tiller number | 12.00±2.14 |
4.30±0.7 |
主穗长(cm)Main panicle length | 19.61±2.07 |
12.15±0.5 |
一次枝梗数Primary branch number | 11.11±0.83 |
24.00±3.0 |
二次枝梗数Secondary branch number | 23.44±5.16 | 19.50±6.34 |
总小花数Total number of spikelets | 141.67±25.23 | 204.00±39.60 |
退化小花数Total number of aborted spikelets | 13.33±5.08 |
73.70±24.9 |
每穗实粒数Grain number per panicle | 128.33±24.32 | 130.30±24.76 |
结实率(%)Seed setting rate | 90.52±0.04 |
64.65±0.0 |
粒长(mm)Seed length | 8.04±0.64 | 8.71±0.19 |
粒宽(mm)Seed width | 3.12±0.23 | 2.90±0.13 |
千粒重(g)1000-grain weight | 22.71±2.49 |
17.86±1.6 |
所有的数值表示为平均值±标准误( n=10); t测验,
All data are presented as mean±SE ( n=10 );
由于突变体的表型为穗顶部退化与直立密穗。初步判断该突变体可能涉及两个以上基因的突变,该材料可能含有已经被广泛应用的密穗型基因dep1,同时又渗入了穗顶部退化的基因。为了区分基因,利用一个表型正常的品种IRAT129作亲本,配制杂交组合,F1表现直立密穗与穗顶部退化表型,显示了这两个性状均为显性。由于穗顶部退化极易受环境影响,在F3群体获得穗型和穗顶部退化单个性状的分离株系,并通过这些单个性状分离家系的分离比例来判定性状的遗传规律。在F3的5个穗型分离家系242个单株中,密穗与正常穗株系的比例为175直立密穗∶67正常穗,经过卡方检验,符合3∶1(
为了确定控制zhao1直立密穗以及穗顶部退化基因,利用两个亲本zhao1 和 IRAT129间有多态的127 对引物,对分别取样的密穗群体和穗顶部退化群体分别进行连锁分析。就直立穗性状而言,在确定连锁关系后,先用F3 群体中直立密穗表型的101株小群体进行初定位,将直立密穗基因定位于第9号染色体两个标记RJ9-8和RM24457之间大约1.4 Mb的物理距离内,进一步开发了6对多态性引物Y9-30、Y9-46、Y9-63、O9-8、O9-10和SS9-25(

图 2 密穗基因的精细定位
Fig.2 Fine mapping of dense panicle gene
A:直立密穗型基因精细定位于引物Y9-63与SS9-25之间的90 kb物理距离内,n表示用于定位直立密穗型单株的数目;横线上方表示用于精细定位的引物标记,下方表示该标记下的重组交换株数,下同;B:直立密穗性状精细定位区间内的候选基因图,红色箭头框为目的基因;C:DEP1与等位基因dep1的结构变异图
A: The dense and erect panicle gene of the zhao1 mutant located within 90 kb physical distance flanked by the primers of Y9-63 and SS9-25, with n indicating the number of individual plants that would target the dense and erect panicle genotype. The upper part of the horizontal line is the primer marker for the gene mapping, and the lower part is the number of recombinant exchange plants under the marker, the same as below;B:Candidate gene maps within the fine mapping interval of the dense and erect panicle trait, the red arrow box is the target gene;C: Structural variation of DEP1 and allele dep1
利用穗顶部退化样本进行连锁分析,在对混池分析的基础上,先用F3 群体中穗顶部退化表型的64个小样本将穗顶部退化基因初步定位于第3号染色体分子标记RM3872和RM1338之间,进一步扩大群体至600株,连续筛选和开发新的引物(

图3 穗顶部退化基因的精细定位
Fig. 3 Fine mapping of panicle apical abortion gene
突变体zhao1穗顶部退化基因精细定位于RM3872与IN1-1的80 kb物理区间内,n表示用于定位穗退化型单株的数目
The apical abortion gene of the mutant zhao1 located within 80 kb physical distance between RM3872 and IN1-1, n indicating the number of individual plants that would target the apical abortion genotype
根据水稻基因组数据库,发现穗顶部退化基因的精细定位区间内有8个候选基因,分别是LOC_Os03g12790、LOC_Os03g12810、LOC_Os03g12815、LOC_Os03g12820、LOC_Os03g12830、LOC_Os03g12840、LOC_Os03g12850、LOC_Os03g12860。为进一步确定候选基因,对它们进行测序,8个基因完全测通,在CDS区没有发现差异。比较这8个候选基因的表达量(

图4 穗退化型候选基因的表达分析
Fig. 4 Expression analysis of candidate genes for apical abortion type
本研究报道了1个育种高世代的变异材料zhao1的表型和遗传规律,并对突变的性状进行了候选基因定位。突变体的表型为直立密穗与穗顶部退化,除此以外还表现分蘖减少、株高降低、茎秆变粗、结实率降低、千粒重下降,产量也因此受到影响。在F2群体中,可以分离出正常穗、正常穗与穗顶部退化、密穗、密穗与穗顶部退化4种表型,预示着穗型和穗顶部退化是两个独立性状。利用F3独立的两个性状分离群体进行定位,将直立密穗型基因定位于第9号染色体引物Y9-63和SS9-25之间的90 kb物理距离内,区间内含有已经克隆的DEP1基因,测序结果显示突变体的DEP1基因在外显子处发生637 bp缺失和12 bp插入突变,形成提前终止密码子,说明zhao1含有密穗基因dep1。
对另一个穗顶部退化性状的遗传和图位克隆的结果发现,zhao1中可能存在不超过两对控制穗顶部退化的基因,精细定位的结果表明,其中的1个位点位于第3染色体的分子标记RM3872和IN1-1之间6.85~6.93 Mb约80 kb的范围内。目标区域中含有8个候选基因,其中包含2个未知功能植物蛋白编码基因LOC_Os03g12815和LOC_Os03g12850,1个假定蛋白编码基因LOC_Os03g12830,1个脱落酸外排转运蛋白编码基因LOC_Os03g12790,1个maf蛋白编码基因LOC_Os03g12810,1个SRO蛋白编码基因LOC_Os03g12820,1个1,3,4-三磷酸肌醇5/6-激酶编码基因LOC_Os03g12840,和1个同源异型盒相关含亮氨酸拉链结构的编码基因LOC_Os03g12860。定量结果显示,基因LOC_Os03g12790表达量变化最大,突变体相对于对照品种下调了27倍,而基因LOC_Os03g12820和LOC_Os03g12815的表达量分别增加了2.6倍和3倍,这些基因值得进一步的关注。尽管基因LOC_Os03g12820和LOC_Os03g12815的表达量显著增加,根据测序结果,突变体和野生型之间并没有序列差异,排除了它们作为候选基因的可能性。Upadhyay
参考文献
邢永忠,徐才国,华金平,谈移芳. 水稻穗部性状的QTL与环境互作分析. 遗传学报, 2001,28(5):439-446 [百度学术]
Xing Y Z,Xu C G,Hua J P,Tan Y F. QTL and environmental interaction analysis of rice panicle traits.Acta Genetica Sinica,2001,28(5):439-446 [百度学术]
Xing Y Z,Zhang Q F. Genetic and molecular bases of rice yield. Annual Review of Plant Biology, 2010,61:421-442 [百度学术]
霍中洋,叶全宝,李华,张洪程,戴其根,许轲. 水稻源库关系研究进展.中国农学通报,2002,18(6):72-77 [百度学术]
Huo Z Y,Ye Q B,Li H,Zhang H C,Dai Q G,Xu K. Research progress on the source sink relationship of rice.Chinese Agricultural Science Bulletin,2002,18(6):72-77 [百度学术]
Bai J T,Zhu X D,Wang Q,Zhang J,Chen H Q,Dong G J,Zhu L,Zheng H K,Xie Q J,Nian J Q,Chen F,Fu Y,Qian Q,Zuo J R. Rice TUTOU1 encodes a suppressor of cAMP receptor-like protein that is important for actin organization and panicle development. Plant Physiology, 2015,169(2):1179-1191 [百度学术]
Wang Q L,Sun A Z,Chen S T,Chen L S,Guo F Q. SPL6 represses signaling outputs of ER stress in control of panicle cell death in rice. Nature Plants , 2018, 4(5):280-288 [百度学术]
Zafar S A,Patil S B,Uzair M,Fang J J,Zhao J F,Guo T T,Yuan S J,Luo Q,Shi J X,Schreiber L,Li X Y. DEGENERATED PANICLE AND PARTIAL STERILITY 1 (DPS1) encodes a cystathionine beta-synthase domain containing protein required for anther cuticle and panicle development in rice. New Phytologist, 2020, 225(1):356-375 [百度学术]
Zhu Z C,Luo S,Lei B,Li X Y,Cheng Z J. Locus TUTOU2 determines the panicle apical abortion phenotype of rice(Oryza sativa L.)in tutou2 mutant. Journal of Integrative Agriculture,2022,21(3):10 [百度学术]
Ali A,Wu T,Zhang H,Xu P,Zafar S A,Liao Y,Chen X,Zhou H,Liu Y,Wang W. A putative SUBTILISIN-LIKE SERINE PROTEASE 1 (SUBSrP1) regulates anther cuticle biosynthesis and panicle development in rice. Journal of Advanced Research, 2022,42:273-287 [百度学术]
Heng Y Q,Wu C Y,Long Y,Luo S,Ma J,Chen J,Liu J F,Zhang H,Ren Y L,Wang M,Tan J J,Zhu S S,Wang J L,Lei C L,Zhang X,Guo X P,Wang H Y,Cheng Z J,Wan J M. OsALMT7 maintains panicle size and grain yield in rice by mediating malate transport. Plant Cell, 2018, 30(4):889-906 [百度学术]
徐华山,孙永建,周红菊,余四斌. 构建水稻优良恢复系背景的重叠片段代换系及其效应分析. 作物学报,2007,33(6):979-986 [百度学术]
Xu H S,Sun Y J,Zhou H J,Yu S B.Construction of overlapping fragment substitution lines with excellent restorer line background in rice and analysis of their effects. Acta Agronomica Sinica,2007,33(6):979-986 [百度学术]
王斌,刘贺梅,毛毕刚,高素伟,徐宏斌,葛建贵.水稻顶部小穗退化性状的QTL分析.中国水稻科学,2011,25(5):561-564 [百度学术]
Wang B,Liu H M,Mao B G,Gao S W,Xu H B,Ge J G. QTL Analysis of the panicle apical abortion traits of rice. Chinese Journal of Rice Science,2011,25(5):561-564 [百度学术]
Wang X L,Li L F,Sun X T,Xu J,Ouyang L J,Bian J M,Chen X R,Li W X,Peng X S,Hu L F,Cai Y C,Zhou D H,He X P,Fu J R,Fu H H,He H H, Zhu C G. Fine mapping of a novel major quantitative trait locus, qPAA7, that controls panicle apical abortion in rice. Frontiers in Plant Science, 2021,12:683329 [百度学术]
高素伟,张玲,毛毕刚,王久林,程治军,万建民. 水稻穗顶部退化突变体L-05261的遗传分析. 作物学报,2011,37(11):1935-1941 [百度学术]
Gao S W,Zhang L,Mao B G,Wang J L,Cheng Z J,Wan J M. Genetic analysis of rice mutant L-05261 with panicle apical abortion trait. Acta Agronomica Sinica,2011,37(11):1935-1941 [百度学术]
Cheng Z J,Mao B G,Gao S W,Zhang L,Wang J L,Lei C L,Zhang X,Wu F Q,Guo X P,Wan J M. Fine mapping of qPAA8, a gene controlling panicle apical development in rice. Journal of Integrative Plant Biology, 2011, 53(9):710-718 [百度学术]
张兴元,罗胜,王敏,丛楠,赵志超,程治军.与SP1互作的水稻穗顶部退化基因qPAA3的精细定位. 中国农业科学,2015,48(12):2287-2295 [百度学术]
Zhang X Y,Luo S,Wang M,Cong N,Zhao Z C,Cheng Z J. Fine mapping of the panicle apical abortion gene qPAA3 interacting with SP1. Scientia Agricultura Sinica,2015,48(12):2287-2295 [百度学术]
张杰瑜,朱婷婷,姜树坤,刘鑫,寻子琦,程治军. 利用一个F2∶3单基因分离群体精细定位水稻穗顶部退化基因ATS1. 植物遗传资源学报,2022,23(4):1124-1131 [百度学术]
Zhang J Y,Zhu T T,Jiang S K,Liu X,Xun Z Q,Cheng Z J. Utilize an F2:3 fine mapping of the panicle apical abortion gene ATS1 in a single gene segregated population. Journal of Plant Genetic Resources,2022,23(4):1124-1131 [百度学术]
Tan C J,Sun Y J,Xu H S,Yu S B. Identification of quantitative trait locus and epistatic interaction for degenerated spikelets on the top of panicle in rice. Plant Breeding, 2011, 130(2):177-184 [百度学术]
Jiang S K,Wang J Y,Liu D,Chen L L,Zhang X J,Xu F,Sun S C,Jiang H,Ding G H,Wang T T,Bai L M,Zhang F M,Xu Z J. Mapping and candidate gene analysis for a new top spikelet abortion mutant in rice. Plant Breeding,2016,135:155-165 [百度学术]
丛斌,贾红武,李严,张丕方,孙崇荣. 水稻幼穗形态发生与顶端分生组织的研究. 西北植物学报,1999,19(3):415-421 [百度学术]
Cong B,Jia H B,Li Y,Zhang P F,Sun C R. Studies on morphogenesis and apical meristem of young spike in rice. Acta Botanica Boreali-Occidentalia Sinica, 1999,19(3):415-421 [百度学术]
徐正进,陈温福,张树林,张文忠,马殿荣,刘丽霞,周淑清.辽宁水稻穗型指数品种间差异及其与产量和品质的关系. 中国农业科学,2005,38(9):1926-1930 [百度学术]
Xu Z J,Chen W F,Zhang S L,Zhang W Z,Ma D R,Liu L X,Zhou S Q. Differences in panicle type index among rice varieties in Liaoning and their relationship with yield and quality. Scientia Agricultura Sinica,2005,38(9):1926-1930 [百度学术]
Huang X Y,Qian Q,Liu Z B,Sun H Y,He S Y,Luo D,Xia G M,Chu C G,Li J Y,Fu X D. Natural variation at the DEPI locus enhances grain yield in rice.Nature Genetics,2009, 41: 494-497 [百度学术]
Fumio T S,Yasushi K,Hiroshi K,Haruko O, Akemi T,Naho H,Akio M,Hirohiko H, Hidemi K,Masahiro Y,Seiichi T. A loss-of-function mutation of rice DENSE PANICLE 1 causes semi-dwarfness and slightly increased number of spikelets. Breeding Science,2011, 61(1): 17-25 [百度学术]
Zhou Y,Zhu J Y,Li Z Y,Yi C D,Liu J,Zhang H G,Tang S Z,Gu M H,Guo H L. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics, 2009,183(1):315-324 [百度学术]
Abe Y,Mieda K, Ando T,Kono I,Yano M,Kitano H,Iwasaki Y. The SMALL AND ROUND SEED1 (SRS1/DEP2) gene is involved in the regulation of seed size in rice. Genes & Genetic Systems, 2010,85(5):327-339 [百度学术]
Li F,Liu W,Tang J,Chen J,Tong H,Hu B,Li C,Fang J,Chen M,Chu C. Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Research, 2010, 20(7):838-849 [百度学术]
Zhu K,Tang D,Yan C,Chi Z,Yu H,Chen J,Liang J,Gu M,Cheng Z. ERECT PANICLE 2 encodes a novel protein that regulates panicle erectness in indica rice. Genetics, 2010, 184(2):343-350 [百度学术]
Piao R,Jiang W,Ham T H,Choi M S,Qiao Y,Chu S H,Park J H,Woo M O,Jin Z,An G,Lee J,Koh H J. Map-based cloning of the ERECT PANICLE 3 gene in rice. Theoretical & Applied Genetics, 2009, 119(8):1497-1506 [百度学术]
Murray M G,Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research,1980,8(19):4321-4325 [百度学术]
Sanguinetti C J,Dias N E,Simpson A J. Rapid silver staining and recover of PCR products separated on polyacrylamide gels. Biotechniques,1994, 17(5 ): 915-919 [百度学术]
Upadhyay N,Kar D,Mahajan D B,Nanda S,Rahiman R,Panchakshari N,Bhagavatula L,Datta S. The multitasking abilities of MATE transporters in plants. Journal of Experimental Botany, 2019,70(18):4643-4656 [百度学术]
Qin P,Zhang G, Hu B,Wu J,Chen W,Ren Z,Liu Y,Xie J, Yuan H,Tu B,Ma B, Wang Y,Ye L,Li L,Xiang C,Li S. Leaf-derived ABA regulates rice seed development via a transporter-mediated and temperature-sensitive mechanism. Science Advances, 2021,7(3): eabc8873 [百度学术]