摘要
大麦(Hordeum vulgare L.)的芒是其穗部小花的外稃上端延伸出的针状特化结构,内部有绿色组织细胞和维管组织。芒在大麦的防御、光合作用、籽粒自然脱落后在土壤中的固着和萌发出土等方面均具有重要作用。在禾谷类作物中,大麦是少数仍保留着芒结构的栽培作物,在自然群体中其形态变异丰富。研究大麦芒形态的遗传调控与变异分布,具有重要的理论与应用价值。本研究鉴定了1个大麦的钩芒突变体M7966,通过分离群体遗传分析证实该突变由单个显性遗传位点控制;随后利用遗传群体的分离单株混池测序分析,定位和克隆了引起钩芒表型的目标基因HvKNOX3。在突变体中,该基因第4内含子中的一处305 bp序列原位重复与钩芒突变表型共分离;HvKNOX3为homeobox类转录因子,在发育早期1~1.5 cm长的幼穗及播种后35 d的穗轴中特异性表达,在大麦泛基因组包含的20个品种间保守性高,仅在其外显子区域发现少数核苷酸序列变异,其余序列变异均位于非编码区域。通过设计共显性分子标记对我国不同地区来源的238份栽培大麦地方品种进行了基因型鉴定,结果发现该305 bp突变在西藏地方品种中具有较高的分布比例,为钩芒突变起源于喜马拉雅地区的理论假设提供了证据。
关键词
大麦(Hordeum vulgare L.)是禾本科大麦属物种,是世界上最古老的谷类作物之一,具有生育期短、早熟的特点,在全球各地均有分布。在禾本科作物中,全球大麦的种植面积和总产量仅次于玉米、小麦、水
芒是外稃或者颖片上的针状延伸,其变异类型丰富,是大麦穗部重要的光合器官,在大麦发育后期旗叶叶片衰老且光合速率随之下降,而芒仍然保持较高的光合速
吴明
大麦芒的多样性和发育调控一直是遗传研究的热
2020年春季,在北京(中国农业科学院北圃场试验田)种植大麦地方品种哈铁系(HTX)及其衍生的EMS诱变群体中2000个M3家系,各M3家系按单行种植,每行12株,株距20 cm,行距25 cm。野生型亲本HTX作为对照,按每50行种植材料设置一行HTX对照。2020年4-5月间,调查M3单株的表型变异情况,从中发现具有钩芒表型的突变植株2株,将其命名为T-M3-7966;2020年6月初分单株收获。
2020年10月,将其中一个纯和钩芒突变单株的种子(M4)种植于河南新乡(中国农业科学院作物科学研究所新乡基地),按单行种植,每行12株,株距20 cm,行距25 cm;2021年5月,收获有钩芒表型的M4单株及其野生型M4单株。
2021年9月,随机挑取有钩芒表型的12个M4单株收获的M5种子种植于中国农业科学院北圃场温室,培养条件18~26℃,光照14 h,黑暗10 h,形成12个T-M5-M7966家系(
M5 家系 M5 Family | 野生型单株数目 No. of wild-type plants | 突变型单株数目 No. of hooded plants | M4单株基因型 Deduced M4 genotype | 卡方测验 |
---|---|---|---|---|
T-M5-M7966-1 | 12 | 0 | WT | Na |
T-M5-M7966-2 | 0 | 12 | MT | Na |
T-M5-M7966-3 | 2 | 10 | Het | Na |
T-M5-M7966-4 | 21 | 85 | Het |
|
T-M5-M7966-5 | 4 | 8 | Het | Na |
T-M5-M7966-6 | 12 | 0 | WT | Na |
T-M5-M7966-7 | 3 | 9 | Het | Na |
T-M5-M7966-8 | 1 | 11 | Het | Na |
T-M5-M7966-9 | 27 | 76 | Het |
|
T-M5-M7966-10 | 5 | 7 | Het | Na |
T-M5-M7966-11 | 0 | 12 | MT | Na |
T-M5-M7966-12 | 0 | 12 | MT | Na |
WT: 纯合野生型;MT: 纯合突变型;Het: 杂合型; Na: 未做测验;
WT: Homozygous wild-type;MT: Homozygous mutant;Het: Heterozygous; Na: Not analyzed by
2021年11月,在温室对野生型HTX和钩芒突变型纯合M5家系的单株进行正反杂交;2022年春季将杂交F1种子种植于中国农业科学院北圃场试验田,用于进一步证实钩芒突变的遗传显隐性关系。
前期从国家作物种质库提取了238份我国不同地区来源的大麦/青稞种质资源,于2017年秋季种植于中国农业科学院北圃场温室,收集叶片样品进行DNA提取。
对野生型HTX、突变体T-M3-M7966、T-M5-M7966家系各单株以及238份大麦/青稞种质资源,于幼苗期对植株叶片进行取样,采用改进的CTAB提取
引物名称 Primer name | 引物序列(5'-3') Primer sequence (5'-3') | 退火温度(℃) Tm | 产物大小(bp) Product size | 用途 Purpose |
---|---|---|---|---|
KNOX3-F1-2 | TCACCTCAAGCTCAATCCGTC | 59.95 | 1365 | 覆盖CDS1-3的片段扩增 |
KNOX3-R1 | ATGTGGATGCAGGCACAATC | 58.65 | ||
KNOX3-F2-2 | TCACTTCGCACAGCTGCAGT | 59.93 | 1034 | 覆盖CDS4-5的片段扩增 |
KNOX3-R2 | ATGCACGTAGCAAGGCATG | 57.67 | ||
KNX-F1 | AAAGGAGCTCCCTCAGACACAG | 60.11 | 1720 | 基因全长DNA分段测序 |
KNX-R1 | AGGAATGCCGCGACATTAGA | 60.65 | ||
KNX-F2 | TGTGAAATTTCCTGGGTCCG | 60.53 | 2143(野生型)/2448(钩芒) | |
KNOX3-IN3-R2 | TGAAAGAATGCATGCAACGA | 58.27 | ||
KNOX3-IN3-F1 | GCATAGATAGGGTCAGACGTGTG | 59.03 | 2238(野生型)/2543(钩芒) | |
KNX-R3 | ATGCCACAGGAGTCACATCA | 56.20 | ||
KNX-F4 | TGAAACCAGGAAGTTTGGATG | 57.57 | 1972 | |
KNX-R4 | TGAGGAAAGAAGGGATGTGG | 57.19 | ||
KNX-F5 | CCACACACCTTAGGCTCTCC | 56.89 | 1574 | |
KNX-R5 | AGCAGTTTAGCACGCATGAA | 57.02 | ||
KNOX3-IN3-F1 | GCATAGATAGGGTCAGACGTGTG | 59.03 | 1226(野生型)/1531(钩芒) | 共显性标记,检测305 bp插入片段 |
KNOX3-IN3-R2 | TGAAAGAATGCATGCAACGA | 58.27 |
对符合单基因分离比例的T-M5-M7966家系,将野生型与钩芒突变型单株提取DNA,将单株DNA样品进行等量(各单株取DNA 2 μg)混合,形成野生型与突变型两个分离单株混合池。分别提取野生型纯合家系T-M5-M7966-1和钩芒突变型纯合家系T-M5-M7966-12中一个单株的总DNA作为分离群体的双亲样品。对总DNA样品进行全基因组重测序文库构建,并利用华大基因T7二代测序技术平台进行测序。亲本样品每个测序数据量为40 Gb,分离单株混合池样品每个测序数据量为150 Gb。
将测序原始数据下载至本地服务器,使用fastp (v0.20.1)软
对过滤后获得的所有SNP位点,利用QTLseq (v2.2.3)软
从大麦泛基因组序
前期以大麦地方品种哈铁系(HTX)为EMS诱变亲本,创制了一个突变群

图1 野生型HTX与钩芒突变体的整穗与单个小穗形态对比
Fig. 1 The spike and spikelet morphology of the wild-type HTX and the hooded mutant
A: 野生型HTX的整穗;B: T-M5-M7966-12家系中纯合钩芒突变体的整穗;C: HTX与T-M5-M7966-12杂交F1植株的整穗;D: T-M5-M7966-12与HTX杂交F1植株的整穗;E: 野生型HTX单个小穗的结构解剖;F: 纯合钩芒突变体单个小穗的结构解剖(下方)与其背、腹面整体形态(上方)。SL: 不育侧生小穗;GL: 外颖;PA: 内稃;LE: 外稃;AW: 芒;ST: 雄蕊;OV: 雌蕊;AF: 倒生小花;DA: 二叉状芒;图中标尺为1 cm
A: Spike of the wild-type HTX; B: Spike of the hooded mutant identified from homozygous T-M5-M7966-12 family; C: Spike of the F1 plant generated from HTX×T-M5-M7966-12 hybridization; D: Spike of the F1 plant generated from T-M5-M7966-12×HTX hybridization; E: Dissection of the floret organs in wild-type HTX; F: Dissection of the floret organs in hooded mutant (lower), and the intact spikelet (upper). SL: Sterile lateral floret; GL: Glume; PA: Palea; LE: Lemma; AW: Awn; ST: Stamen; OV: Ovary; AF: Anatropous floret; DA: Dichotomous awn; Bar = 1 cm
鉴于EMS突变体多为功能丢失型隐性突变,M3-M7966家系12株M3植株中仅2株表现为钩芒突变表型,因此将T-M3-M7966钩芒单株作为纯合突变体分别收获其种子。种植12株M4单株进行表型观察发现,M4-M7966家系内表型分离,其中2株为野生型(长直芒)、10株为钩芒,因此推测该钩芒表型为显性遗传。对12株M4单株分别收获种子,由此衍生12个M5家系,每个M5家系各种植12株,用于推导M4单株基因型及突变的显隐性遗传关系。结果发现,其中2个家系为野生型、3个家系为突变型、7个家系出现表型分离(
为了对T-M3-M7966携带的钩芒突变基因进行遗传定位,挑选了两个M5分离家系T-M5-M7966-4和T-M5-M7966-9,扩大单株样本数量种植于大田条件下。两个家系内的野生型与钩芒突变型植株的分离比例均符合1∶3(

图2 通过分离单株混合池测序分析鉴定到钩芒突变基因位点HOO
Fig. 2 The locus HOO
上部为野生型单株混池与钩芒单株混池中全基因组SNP位点上的突变型基因频率拟合曲线;下部为各SNP位点上突变型基因频率在两个混池中的差值拟合曲线;灰色长框表示显著关联位点
The upper panel shows fitted curve of mutant allele frequency at each SNP in the wild-type bulk and the mutant bulk, respectively; The lower panel shows fitted curve of differences on mutant allele frequency at each SNP between the two bulks;Grey long frame indicate significant association sites
早期报道的大麦钩芒决定基因HvKNOX3(HORVU.MOREX.r3.4HG0339120

图3 大麦钩芒控制基因HvKNOX3的结构与变异位点
Fig. 3 Model and variations of the gene HvKNOX3 that controls the hooded mutation
M:AL 5000 DNA Marker; A:HvKNOX3基因结构,白色区段为非翻译区(UTR),灰色区段为编码区(CDS),区段间水平线为内含子区域。黑色垂直短线段表示HTX与突变体M7966之间的单核苷酸变异(SNP)位点,三角形表示序列插入/缺失变异,中间第4内含子上的粗体水平线段表示一处305 bp片段的原位串联重复;B:利用包含305 bp重复的特异性扩增片段对M5分离家系进行基因分型检测, HD:钩芒表型;wt:直芒表型
A: HvKNOX3 gene model, white blocks represent the untranslated regions (UTR), gray blocks represent the coding sequences (CDS), and the lines between blocks represent the intron regions. The vertical sticks indicate single nucleotide variations (SNP) between the wild-type HTX and the mutant M7966, the triangles indicate oligo insertion/deletion (In/Del), the bold horizontal bar indicate a 305 bp local duplication at the fourth intron; B: A co-dominant molecular marker targeting the 305 bp duplication was developed for genotyping of the M5 segregated families; HD: hooded phenotype;wt: Normal phenotype
为进一步证实HvKNOX3基因第4内含子中的305 bp序列插入与钩芒突变表型的关联,针对该片段设计了特异性扩增引物(
从BARLEX(https://webblast.ipk-gatersleben.de/)数据库中检索了HvKNOX3(HORVU.MOREX.r3. 4HG0339120)基因的组织时空表达情况,发现该基因在发育早期1~1.5cm长的幼穗及播种后35 d的穗轴中特异性表达(

图4 HvKNOX3在大麦全生育期的时空表达模式
Fig. 4 The expression pattern of HvKNOX3 along barley growth and development
EMB:授粉后4 d的幼胚;ROO1:10 cm高幼苗的根系;LEA:10 cm高幼苗的叶片;ETI:播种后10 d的白化幼苗(黑暗条件培养);ROO2:播种后28 d的植株根系;EPI:播种后28 d的叶脉;INF1:发育至5 mm长的幼穗;INF2:发育至1~1.5 cm长的幼穗;RAC:播种后35 d的穗轴;CAR5:授粉后5 d的籽粒;CAR15:授粉后15 d的籽粒;LEM:播种后42 d的外稃;LOD:播种后42 d的子房;PAL:播种后42 d的内稃;SEN:播种后56 d的衰老叶片
EMB: 4 days embryos; ROO1: Roots from seedlings (10 cm shoot stage); LEA: Leaves from seedlings (10 cm shoot stage); ETI: Etiolated seedling, dark cond (10 days safter planting); ROO2: Roots (28 days after planting); EPI: Epidermal strips (28 days after planting); INF1: Young developing inflorescences (5 mm); INF2: Developing inflorescences (1-1.5 cm); RAC: Inflorescences, rachis (35 days after planting); CAR5: Developing grain (5 days after pollination); CAR15: Developing grain (15 days after pollination); LEM: Inflorescences, lemma (42 days after pollination); LOD: Inflorescences, lodicule (42 days after pollination); PAL: Dissected inflorescences, palea (42 days after pollination); SEN: Senescing leaves (56 days after pollination)
为研究HvKNOX3基因在自然群体中的序列变异,从大麦泛基因
编号 ID | KNOX3_305 bp片段重复 | 编号 ID | KNOX3_305 bp片段重复 | 编号 ID | KNOX3_305 bp片段重复 | 编号 ID | KNOX3_305 bp片段重复 |
---|---|---|---|---|---|---|---|
KNOX3_305 bp duplication | KNOX3_305 bp duplication | KNOX3_305 bp duplication | KNOX3_305 bp duplication | ||||
pZDM01881 (JS) | - | pZDM03083 (ZJ) | - | pZDM05742 (TB) | - | pZDM06702 (TB) | + |
pZDM01882 (JS) | - | pZDM03122 (ZJ) | - | pZDM05781 (TB) | - | pZDM06703 (TB) | + |
pZDM01883 (JS) | - | pZDM03123 (ZJ) | - | pZDM05782 (TB) | - | pZDM06741 (TB) | + |
pZDM01921 (JS) | - | pZDM03161 (ZJ) | - | pZDM05783 (TB) | - | pZDM06742 (TB) | - |
pZDM01922 (JS) | - | pZDM03162 (ZJ) | - | pZDM05821 (TB) | - | pZDM06743 (TB) | - |
pZDM01923 (JS) | - | pZDM03163 (ZJ) | - | pZDM05823 (TB) | - | pZDM06781 (TB) | - |
pZDM01961 (JS) | - | pZDM03201 (ZJ) | - | pZDM05861 (TB) | - | pZDM06782 (TB) | - |
pZDM01962 (JS) | - | pZDM03202 (ZJ) | - | pZDM05862 (TB) | - | pZDM06783 (TB) | - |
pZDM01963 (JS) | - | pZDM03203 (ZJ) | - | pZDM05863 (TB) | - | pZDM06821 (TB) | - |
pZDM02001 (JS) | - | pZDM03241 (ZJ) | - | pZDM05902 (TB) | - | pZDM06861 (TB) | + |
pZDM02002 (JS) | - | pZDM03242 (ZJ) | - | pZDM05903 (TB) | - | pZDM06862 (TB) | - |
pZDM02003 (JS) | - | pZDM03243 (ZJ) | - | pZDM05941 (TB) | - | pZDM06863 (TB) | + |
pZDM02041 (JS) | - | pZDM03281 (ZJ) | - | pZDM05942 (TB) | - | pZDM06901 (TB) | - |
pZDM02042 (JS) | - | pZDM03282 (ZJ) | - | pZDM05943 (TB) | - | pZDM06902 (TB) | - |
pZDM02081 (JS) | - | pZDM03283 (ZJ) | - | pZDM05981 (TB) | - | pZDM06942 (TB) | - |
pZDM02082 (JS) | - | pZDM03321 (ZJ) | - | pZDM05982 (TB) | - | pZDM07021 (TB) | - |
pZDM02083 (JS) | - | pZDM03322 (ZJ) | - | pZDM05983 (TB) | - | pZDM07022 (TB) | + |
pZDM02121 (JS) | - | pZDM03323 (ZJ) | - | pZDM06022 (TB) | - | pZDM07062 (TB) | + |
pZDM02122 (JS) | - | pZDM03361 (ZJ) | - | pZDM06023 (TB) | - | pZDM07101 (TB) | - |
pZDM02123 (JS) | - | pZDM04402 (TB) | - | pZDM06061 (TB) | - | pZDM07143 (TB) | - |
pZDM02202 (JS) | - | pZDM04441 (TB) | - | pZDM06062 (TB) | - | pZDM07183 (TB) | - |
pZDM02241 (JS) | - | pZDM04443 (TB) | - | pZDM06063 (TB) | - | pZDM07221 (TB) | - |
pZDM02281 (JS) | - | pZDM04482 (TB) | - | pZDM06101 (TB) | - | pZDM07223 (TB) | - |
pZDM02282 (JS) | - | pZDM04483 (TB) | - | pZDM06102 (TB) | + | pZDM07261 (TB) | - |
pZDM02361 (JS) | - | pZDM04521 (TB) | - | pZDM06103 (TB) | + | pZDM07263 (TB) | - |
pZDM02362 (JS) | - | pZDM04523 (TB) | + | pZDM06142 (TB) | - | pZDM07303 (TB) | - |
pZDM02363 (JS) | - | pZDM04561 (TB) | - | pZDM06143 (TB) | - | pZDM07343 (TB) | - |
pZDM02441 (JS) | - | pZDM04562 (TB) | - | pZDM06182 (TB) | + | pZDM07381 (TB) | - |
pZDM02442 (JS) | - | pZDM04563 (TB) | + | pZDM06183 (TB) | - | pZDM07383 (TB) | - |
pZDM02681 (ZJ) | - | pZDM04641 (TB) | - | pZDM06221 (TB) | - | pZDM07421 (TB) | - |
pZDM02682 (ZJ) | - | pZDM04643 (TB) | - | pZDM06222 (TB) | - | pZDM07422 (TB) | - |
pZDM02683 (ZJ) | - | pZDM04682 (TB) | - | pZDM06223 (TB) | - | pZDM07423 (TB) | - |
pZDM02721 (ZJ) | - | pZDM04683 (TB) | - | pZDM06261 (TB) | + | pZDM07461 (TB) | - |
pZDM02722 (ZJ) | - | pZDM04721 (TB) | - | pZDM06262 (TB) | - | pZDM07463 (TB) | - |
pZDM02723 (ZJ) | - | pZDM04722 (TB) | - | pZDM06263 (TB) | - | pZDM07501 (TB) | - |
pZDM02761 (ZJ) | - | pZDM04882 (TB) | - | pZDM06301 (TB) | - | pZDM07502 (TB) | - |
pZDM02762 (ZJ) | - | pZDM05103 (TB) | - | pZDM06302 (TB) | - | pZDM07503 (TB) | - |
pZDM02763 (ZJ) | - | pZDM05141 (TB) | - | pZDM06303 (TB) | - | pZDM07541 (TB) | - |
pZDM02801 (ZJ) | - | pZDM05142 (TB) | - | pZDM06341 (TB) | - | pZDM07542 (TB) | - |
pZDM02802 (ZJ) | - | pZDM05143 (TB) | - | pZDM06342 (TB) | - | pZDM07543 (TB) | - |
pZDM02803 (ZJ) | - | pZDM05181 (TB) | - | pZDM06343 (TB) | - | pZDM07581 (TB) | - |
pZDM02841 (ZJ) | - | pZDM05182 (TB) | - | pZDM06381 (TB) | - | pZDM07582 (TB) | - |
pZDM02842 (ZJ) | - | pZDM05183 (TB) | - | pZDM06382 (TB) | - | pZDM07583 (TB) | - |
pZDM02843 (ZJ) | - | pZDM05461 (TB) | - | pZDM06383 (TB) | - | pZDM07623 (TB) | - |
pZDM02881 (ZJ) | - | pZDM05462 (TB) | - | pZDM06421 (TB) | - | pZDM07661 (TB) | - |
pZDM02882 (ZJ) | - | pZDM05463 (TB) | - | pZDM06422 (TB) | + | pZDM07662 (TB) | - |
pZDM02883 (ZJ) | - | pZDM05501 (TB) | - | pZDM06423 (TB) | - | pZDM07701 (TB) | - |
pZDM02921 (ZJ) | - | pZDM05502 (TB) | - | pZDM06461 (TB) | - | pZDM07702 (TB) | - |
pZDM02922 (ZJ) | - | pZDM05503 (TB) | - | pZDM06462 (TB) | - | pZDM07703 (TB) | - |
pZDM02923 (ZJ) | - | pZDM05541 (TB) | - | pZDM06463 (TB) | - | pZDM07741 (TB) | - |
pZDM02961 (ZJ) | - | pZDM05543 (TB) | - | pZDM06501 (TB) | - | pZDM07742 (TB) | - |
pZDM02962 (ZJ) | - | pZDM05582 (TB) | - | pZDM06541 (TB) | - | pZDM08381 (TB) | - |
pZDM02963 (ZJ) | - | pZDM05583 (TB) | - | pZDM06543 (TB) | - | pZDM08382 (TB) | - |
pZDM03001 (ZJ) | - | pZDM05622 (TB) | + | pZDM06581 (TB) | - | pZDM08383 (TB) | - |
pZDM03002 (ZJ) | - | pZDM05661 (TB) | - | pZDM06583 (TB) | - | pZDM08503 (JS) | - |
pZDM03003 (ZJ) | - | pZDM05662 (TB) | - | pZDM06621 (TB) | - | pZDM08623 (JS) | - |
pZDM03041 (ZJ) | - | pZDM05663 (TB) | - | pZDM06622 (TB) | - | pZDM08662 (JS) | - |
pZDM03042 (ZJ) | - | pZDM05701 (TB) | - | pZDM06662 (TB) | - | pZDM08663 (JS) | - |
pZDM03081 (ZJ) | - | pZDM05702 (TB) | - | pZDM06663 (TB) | - | ||
pZDM03082 (ZJ) | + | pZDM05703 (TB) | - | pZDM06701 (TB) | + |
括号内字母代表种植资源的地区来源,JS表示江苏,ZJ表示浙江,TB表示西藏; +表示有305 bp片段插入,-表示无305 bp片段插入
The letters in brackets represent the regional source of planting resources, JS indicates Jiangsu, ZJ indicates Zhejiang, and TB indicates Tibet; + indicates that there has 305 bp fragment inserted, - means that there has not been inserted with the 305 bp fragment
栽培大麦自然群体中存在丰富的芒形态变异,例如有芒与无芒、长芒与短芒、直芒与钩芒,还有多芒、卷芒、叶状芒
前期研究已经证实HvKNOX3基因是大麦钩芒突变体的决定因子,但其在自然群体中的核苷酸序列变异情况并不清楚。本研究从已发表的数据信息中提取了大麦泛基因组20个代表性地方品种的HvKNOX3全长序列进行比较分析。这20个大麦地方品种地理来源广泛、遗传距离远,可以反应全球大麦资源的遗传变异范
前人基于少数资源的鉴定结果推测,钩芒突变起源于喜马拉雅地
参考文献
Jenkins G, 顾千若, 译. 大麦(综述). 麦类作物学报, 1986 (2): 27-30 [百度学术]
Jenkins G, Gu Q Rtranslated).Barley (Review). Journal of Triticeae Crops, 1986(2): 27-30 [百度学术]
孙致陆, 李先德. 大麦进口对我国大麦产业的影响与应对措施. 中国食物与营养, 2015, 21(7): 50-54 [百度学术]
Sun Z L, Li X D. Influence of import of barley on Chinese barley industry and countermeasures. Chinese Food and Nutrition, 2015, 21(7) : 50-54 [百度学术]
王忠, 顾蕴洁, 高煜珠. 麦芒的结构及其光合特性. 作物学报, 1993, 35(12) : 921-928 [百度学术]
Wang Z, Gu W J, Gao Y Z. Structure and photosynthetic characteristics of wheat awn. Acta Agronomica Sinica, 1993, 35(12): 921-928 [百度学术]
Guo Z, Schnurusch T. Costs and benefits of awns. Journal of Experimental Botany, 2016, 67(9): 2533-2535 [百度学术]
Rebetzke G J, Bonnett D G, Reynolds M P. Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat. Journal of Experimental Botany, 2016,67(9): erw081 [百度学术]
Qureshi N, Bariana H S, Zhang P, McIntosh R, Bansal U K, Wong D, Hayden M J, Dubcovsky J, Shankar M. Genetic relationship of stripe rust resistance genes Yr34 and Yr48 in wheat and identification of linked KASP markers. Plant Disease, 2018, 102(2): 413-420 [百度学术]
吴明霞. 大麦芒的多样性和遗传基础及其与产量性状的关系. 福州:福建农林大学, 2019 [百度学术]
Wu M X. The diversity and genetic basis of awn and its relationship with yield traits in barley. Fuzhou:Fujian Agriculture and Forestry University, 2019 [百度学术]
陈培元, 李英. 小麦芒的功能及去芒对籽粒重的影响. 作物学报, 1981, 7(4): 279-282 [百度学术]
Chen P Y, Li Y. The effect of wheat awns on grain weight and ther physiological function . Acta Agronomica Sinica, 1981, 7(4): 279-282 [百度学术]
Liller C B, Walla A, Boer M P, Hedley P, Macaulay M, Effgen S, von Korff M, van Esse G W, Koornneef M . Fine mapping of a major QTL for awn length in barley using a multiparent mapping population. Theoretical and Applied Genetics, 2017, 130(2): 269-281 [百度学术]
Milner S G, Jost M, Taketa S, Mazón E R, Himmelbach A, Oppermann M, Weise S, Knüpffer H, Basterrechea M, König P, Schüler D, Sharma R, Pasam R K, Rutten T, Guo G, Xu D, Zhang J, Herren G, Müller T, Krattinger S G, Keller B, Jiang Y, González M Y, Zhao Y, Habekuß A, Färber S, Ordon F, Lange M, Börner A, Graner A, Reif J C, Scholz U, Mascher M, Stein N. Genebank genomics highlights the diversity of a global barley collection. Nature Genetics, 2019, 51(2): 319-326 [百度学术]
Huang D, Zheng Q, Melchkart T, Bekkaoui Y, Konkin D J F, Kagale S, Martucci M, You F M, Clarke M, Adamski N M, Chinoy C, Steed A, McCartney C A, Cutler A J, Nicholson P, Feurtado J A. Dominant inhibition of awn development by a putative zinc-finger transcriptional repressor expressed at the B1 locus in wheat. New Phytologist, 2020, 225(1): 340-355 [百度学术]
耿君佑,陈建辉,董中东,任妍,张宁,孙丛苇,陈锋,赵磊. 小麦芒性基因的定位与候选基因分析. 植物遗传资源学报, 2021, 22(4): 1090-1098 [百度学术]
Geng J Y,Chen J H,Dong Z D,Ren Y,Zhang N,Sun C W,Chen F,Zhao L. Mapping and candidate gene analysis of awn type in common wheat. Journal of Plant Genetic Resources,2021, 22(4): 1090-1098 [百度学术]
金迪, 王冬至, 王焕雪. 小麦芒长抑制基因B2的精细定位与候选基因分析. 作物学报, 2019, 45(6): 84-89 [百度学术]
Jin D, Wang D Z, Wang H X. Fine mapping and candidate gene analysis of awn inhibiting gene B2 in common wheat. Acta Agronomica Sinica, 2019, 45(6): 84-89 [百度学术]
Luo J, Liu H, Zhou T, Gu B, Huang X, Shangguan Y, Zhu J, Li Y, Zhao Y, Wang Y, Zhao Q, Wang A, Wang Z, Sang T, Wang Z, Han B. An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell, 2013,25(9): 3360-3376 [百度学术]
Gu B, Zhou T, Luo J, Liu H, Wang Y, Shangguan Y, Zhu J, Li Y, Sang T, Wang Z, Han B. An-2 encodes a cytokinin synthesis enzyme that regulates awn length and grain production in rice. Molecular Plant, 2015, 8(11): 1635-1650 [百度学术]
Hua L, Wang D R, Tan L, Fu Y, Liu F, Xiao L, Zhu Z, Fu Q, Sun X, Gu P, Cai H, McCouch S R, Sun C. LABA1, a domestication gene associated with long, barbed awns in wild rice. Plant Cell, 2015, 27(7): 1875-1888 [百度学术]
Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano H Y. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell, 2004, 16(2): 500-509 [百度学术]
Jin J, Hua L, Zhu Z, Tan L, Zhao X, Zhang W, Liu F, Fu Y, Cai H, Sun X, Gu P, Xie D, Sun C. GAD1 encodes a secreted peptide that regulates grain number, grain length, and awn development in rice domestication. Plant Cell, 2016, 28(10): 2453-2463 [百度学术]
Thirulogachandar V, Schnurbusch T. 'Spikelet stop' determines the maximum yield potential stage in barley. Journal of Experimental Botany, 2021, 72(22): 7743-7753 [百度学术]
Müller K J, Romano N, Gerstner O, Garcia-Maroto F, Pozzi C, Salamini F, Rohde W. The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature, 1995, 374(6524): 727-730 [百度学术]
Pozzi C, di Pietro D, Halas G, Roig C, Salamini F. Integration of a barley (Hordeum vulgare) molecular linkage map with the position of genetic loci hosting 29 developmental mutants. Heredity, 2003, 90(5): 390-396 [百度学术]
Yuo T, Yamashita Y, Kanamori H, Matsumoto T, Lundqvist U, Sato K, Ichii M, Jobling SA, Taketa S. A SHORT INTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley. Journal of Experimental Botany, 2012, 62(14): 5223-5232 [百度学术]
Taketa S, Takahisa Y,Yukie S, Shoko M, Masahiko I. Molecular mapping of the short awn 2 (lks2) and dense spike 1 (dsp1) genes on barley chromosome 7H. Breeding Science, 2011,61: 80-85 [百度学术]
Rossini L, Vecchietti A, Nicoloso L, Stein N, Franzago S, Salamini F, Pozzi C. Candidate genes for barley mutants involved in plant architecture: An in silico approach. Theoretical and Applied Genetics, 2006, 112(6): 1073-1085 [百度学术]
Huang B, Wu W, Hong Z. Genetic loci underlying awn morphology in barley. Genes, 2021, 12(10):1613 [百度学术]
Yang P, Perovic D, Habekuss A, Zhou R, Graner A, Ordon F, Stein N. Gene-based high-density mapping of the gene rym7 conferring resistance to barley mild mosaic virus (BaMMV). Molecular Breeding, 2013, 22 (2): 532-539 [百度学术]
Chen S, Zhou Y, Chen Y, Gu J. An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34: 884-890 [百度学术]
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics , 2009, 25 (14):1754-1760 [百度学术]
Mascher M, Wicker T, Jenkins J, Plott C, Lux T, Koh C S, Ens J, Gundlach H, Boston L B, Tulpová Z, Holden S, Hernández-Pinzón I, Scholz U, Mayer K F X, Spannagl M, Pozniak C J, Sharpe A G, Šimková H, Moscou M J, Grimwood J, Schmutz J, Stein N. Long-read sequence assembly: A technical evaluation in barley. Plant Cell, 2021, 33(6): 1888-1906 [百度学术]
Danecek P, Bonfield J K, Liddle J, Marshall J, Ohan V, Pollard M O, Whitwham A, Keane T, McCarthy S A, Davies R M, Li H. Twelve years of SAMtools and BCFtools. GigaScience , 2021, 10(2): giab008 [百度学术]
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics, 2011, 27(21): 2987-2993 [百度学术]
Sugihara Y, Young L, Yaegashi H, Natsume S, Shea D J, Takagi H, Booker H, Innan H, Terauchi R, Abe A. High-performance pipeline for MutMap and QTL-seq. PeerJ, 2019, 10: e13170 [百度学术]
Ito K, Murphy D. Application of ggplot2 to pharmacometric graphics. American Society for Clinical Pharmacology and Therapeutics, 2013, 2(10): e79 [百度学术]
Jayakodi M, Padmarasu S, Haberer G, Bonthala V S, Gundlach H, Monat C, Lux T, Kamal N, Lang D, Himmelbach A, Ens J, Zhang X Q, Angessa T T, Zhou G, Tan C, Hill C, Wang P, Schreiber M, Boston L B, Plott C, Jenkins J, Guo Y, Fiebig A, Budak H, Xu D, Zhang J, Wang C, Grimwood J, Schmutz J, Guo G, Zhang G, Mochida K, Hirayama T, Sato K, Chalmers K J, Langridge P, Waugh R, Pozniak C J, Scholz U, Mayer K F X, Spannagl M, Li C, Mascher M, Stein N. The barley pan-genome reveals the hidden legacy of mutation breeding. Plant Physiology, 2020, 588(7837): 284-289 [百度学术]
Jiang C, Lei M, Guo Y, Gao G, Shi L, Jin Y, Cai Y, Himmelbach A, Zhou S, He Q, Yao X, Kan J, Haberer G, Duan F, Li L, Liu J, Zhang J, Spannagl M, Liu C, Stein N, Feng Z, Mascher M, Yang P. A reference-guided TILLING by amplicon-sequencing platform supports forward and reverse genetics in barley. Plant Communications, 2022, 3(4): 100317 [百度学术]
Osnato M, Stile M R, Wang Y, Meynard D, Curiale S, Guiderdoni E, Liu Y, Horner D S, Ouwerkerk P B, Pozzi C, Müller K J, Salamini F, Rossini L. Cross talk between the KNOX and ethylene pathways is mediated by intron-binding transcription factors in barley. Plant Physiology, 2010, 154(4): 1616-1632 [百度学术]