摘要
双单倍体技术被广泛应用于加速植物育种,近年来,利用含有功能未知结构域DUF679膜蛋白(DMP)突变的玉米(Zea mays L.)株系作为单倍体诱导株系。本研究搜索与玉米DMP基因氨基酸序列同源率60%以上的大豆DMP基因,对其进行生物信息学分析;并结合2214份重测序数据库探究GmDMP基因在大豆中的分子机理及生物多样性。分析结果表明: GmDMP1(Glyma.18G097400)与GmDMP2(Glyma.18G098300),与玉米DMP基因的进化关系亲缘度极高,基因全长均为645 bp,氨基酸序列同源率高达95%以上,编码氨基酸数目与等电点完全一致,磷酸化分布仅有1个位点差异。GmDMP1与GmDMP2基因均有1个相同的结构域DUF679,定位于内质网的可能性较大,均为跨膜的不分泌亲水蛋白。GmDMP1与GmDMP2基因在2214份种质资源中分别发生了3个与1个非同义突变,各组成3种和2种单倍型。GmDMP
大豆[Glycine max (L.) Merr.]的原产国是中国,属一年生草本植物,作为中国的四大粮食作物之一,大豆富含油脂、蛋白质、碳水化合物和其他有益营养物质,作为人类食物和动物饲料的主要来
传统的大豆育种方法需经过7~8代的选育过程,已不能满足人们的需求,纯系育种是作物育种十分重要的组成部
本研究首先利用玉米ZmDMP基因的蛋白序列经过同源序列比对得到大豆的同源基因GmDMP1与GmDMP2,分析大豆两个同源基因的结构差异、进化关系及理化性质。通过2214份重测序数据分析大豆两个同源基因的突变位点及突变类型,为进一步对GmDMP1与GmDMP2基因的单倍型特性分析以及基因的分子机理与多样性的研究分析提供基础依据。
从Phytozome(https://phytozome-next.jgi.doe.gov/)和NCBI(https://www.ncbi.nlm.nih.gov/)网站中下载玉米、拟南芥、番茄、甘蓝型油菜、紫花苜蓿、大豆等作物的DMP基因序列与氨基酸序列。农业农村部北京生物学重点实验室已完成重测序的2214份国内外大豆种质数据,均保存在NCBI序列读取档案中,登录号为PRJNA68197
在GSDS(http://gsds.gao-lab.org)分析绘制DMP基因家族外显子和内含子结构图。利用MEGAX软件中的Muscle算法对DMP基因家族序列进行比对,获得比对结果后用邻接法(Neighbor-joining,NJ)构建系统演化树,利用泊松模型将Bootstrap值设置为“1000”。分析大豆与其他植物DMP基因的亲缘关系。
利用DNAMAN对玉米、拟南芥、甘蓝型油菜、紫花苜蓿,以及大豆GmDMP1(Glyma.18G097400)和GmDMP2(Glyma.18G098300)基因的氨基酸序列进行多序列比对,绘制这几个基因的氨基酸序列结构图。
通过prabi(https://npsa-prabi.ibcp.fr/)在线网站预测和分析了大豆GmDMP1和GmDMP2蛋白质二级结构模型图;利用SWISS-MODEL(https://swissmodel.expasy.org/)构建两个蛋白质的三级结构模型图;利用CDD(https://www.ncbi.nlm.nih.gov/cdd)网站分析蛋白功能结构域。
运用GenScript(https://www.genscript.com/tools/psort)网站中的PSORTⅡ对GmDMP1及GmDMP2基因氨基酸序列进行亚细胞定位预测。利用在线软件ExPasy中的ProtParam(https://web.expasy.org/protparam/)工具预测GmDMP1及GmDMP2基因所编码蛋白质的理化性质,包括蛋白质分子量、等电点、不稳定性、脂肪量和氨基酸含量。使用TMHMM Server v.2.0网站(http://www.cbs.dtu.dk/services/TMHMM-2.0/)预测GmDMP1及GmDMP2基因是否拥有跨膜结构。利用在线网站SignaIP4.1 Server(http://www.cbs.dtu.dk/services/SignalP-4.1/)对GmDMP1及GmDMP2基因氨基酸序列进行信号肽预测。利用网站NetPhos-3.1(https://services.healthtech.dtu.dk)预测GmDMP1及GmDMP2基因氨基酸的磷酸化位点。应用ExPasy中的Protscale(https://web.expasy.org/protscale/)网站预测GmDMP1及GmDMP2基因氨基酸序列的亲疏水性。
从Phytozome(https://phytozome-next.jgi.doe.gov/)在线网站下载大豆GmDMP1与GmDMP2基因在大豆各组织器官中的表达量数据进行比较分析获得差异性并运用TBtools软件绘制表达量热图表达模式图。
利用Phytozome(https://phytozome-next.jgi.doe.gov/)网站对玉米(Zea mays)、拟南芥、番茄、紫花苜蓿、甘蓝型油菜、大豆的DMP基因进行同源比对,并运用MEGA11软件构建系统进化树,GSDS(http://gsds.gao-lab.org/)网站绘制基因结构图如

图1 植物DMP基因系统进化树与基因结构
Fig.1 Phylogenetic tree and gene structure of plant DMP genes
大豆GmDMP1(Glyma.18G097400)和GmDMP2(Glyma.18G098300)两个基因结构均位于18号染色体上,基因全长均为645 bp,无内含子。编码区核苷酸序列长度均为645 bp,编码蛋白长度均为215 aa,基因结构相似度极高,仅有少量的氨基酸差异。两个基因的氨基酸序列同源性高达97%。玉米、拟南芥、甘蓝型油菜、紫花苜蓿以及大豆GmDMP1和GmDMP2基因的多序列比对如

图2 植物DMP基因多序列比对
Fig.2 Multiple sequence alignment of plant DMP genes
深蓝色部分为比对相似度值为100%,粉色部分为比对相似度值大于等于75%,淡蓝色部分为比对相似度大于等于50%,黄色部分为比对相似度大于等于33%
The dark blue part indicates that the comparison similarity value is 100%, the pink part indicates that the comparison similarity value is greater than or equal to 75%, the light blue part indicates that the comparison similarity value is greater than or equal to 50%, and the yellow part indicates that the comparison similarity value is greater than or equal to 33%
蛋白二级结构主要有α螺旋、β折叠、β转角、无规则卷曲和延伸链。大豆GmDMP1和GmDMP2氨基酸序列预测出的二级结构如

图3 GmDMP1和GmDMP2氨基酸序列二级、三级结构预测图
Fig.3 Secondary and tertiary structure prediction of GmDMP1 and GmDMP2 amino acid sequences
图C、D红色部分为ɑ螺旋区,黄色部分为β折叠区,绿色部分为环区
In Figure C and D, the red part is the ɑ helix region, the yellow part is the β pleated sheet region, and the green part is the loop region
氨基酸的保守结构域分析可以辅助确定基因的功能研究。运用在线网站对GmDMP1和GmDMP2氨基酸序列进行BLAST得到的功能结构域分析如

图4 GmDMP1和GmDMP2氨基酸序列结构域
Fig.4 Amino acid sequence domains of GmDMP1 and GmDMP2
大豆GmDMP1和GmDMP2基因的蛋白理化性质分析结果如
蛋白名称 Protein name | 编码 氨基酸数目 Number of encoding amino acids | 分子量 Molecular weight | 等电点 pI | 不稳定 指数 Instability index | 脂肪指数(%) Aliphatic index | 含量最丰富的氨基酸(%) The most abundant amino acid | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
缬氨酸 Valine | 苯丙氨酸 Phenylalanine | 亮氨酸 Leucine | 脯氨酸 Proline | 甘氨酸 Glycine | 苏氨酸 Threonine | 丙氨酸 Alanine | ||||||
GmDMP1 | 214 | 23746.73 | 8.22 | 28.04 | 83.27 | 9.8 | 9.3 | 8.9 | 7.5 | 7 | 6.5 | 5.6 |
GmDMP2 | 214 | 23728.71 | 8.22 | 32.14 | 84.67 | 8.9 | 8.9 | 8.9 | 7.5 | 6.5 | 6.5 | 6.1 |
GmDMP1和GmDMP2基因氨基酸的亚细胞定位预测结果如

图5 GmDMP1和GmDMP2蛋白亚细胞定位
Fig.5 Subcellular localization of GmDMP1 and GmDMP2 proteins
蛋白质的亲疏水性是影响和形成蛋白质二级结构稳定性的重要因素之一,从而影响形成发挥作用的结构域和三级结构。利用工具预测出的大豆GmDMP1和GmDMP2基因蛋白的亲疏水性分析如

图6 GmDMP1和GmDMP2蛋白亲疏水性
Fig.6 GmDMP1 and GmDMP2 proteins are hydrophilic and hydrophobic
跨膜结构域是蛋白与膜脂结合的主要区域。通过在线网站对GmDMP1和GmDMP2蛋白序列预测的跨膜结构域与信号肽分析结果如

图7 GmDMP1和GmDMP2蛋白跨膜结构与信号肽
Fig.7 Transmembrane structure and signal peptide of GmDMP1 and GmDMP2 proteins
蛋白质磷酸化是生物体内重要的共价修饰之一,与信号转导、细胞周期、生长发育及癌症机理有重要关系。GmDMP1和GmDMP2基因氨基酸序列的磷酸化位点分析结果如

图8 GmDMP1和GmDMP2蛋白磷酸化位点
Fig.8 GmDMP1 and GmDMP2 protein phosphorylation sites
将运用Phytozome的表达数据在Tbtools软件分析得出大豆GmDMP1和GmDMP2基因不同组织部分的相对表达量(

图9 大豆各组织部位GmDMP1和GmDMP2基因表达分析
Fig.9 Analysis of GmDMP1 and GmDMP2 gene expression in soybean tissues
将实验室的2214份重测序数据中分析GmDMP1和GmDMP2基因组序列的变异情况(
基因名称 Gene name | 突变类型 Mutation type | 碱基变化 Base change | 氨基酸序列变化 Amino acid sequence change | ||||
---|---|---|---|---|---|---|---|
位点(bp) Site | 原碱基 The original base | 突变碱基 Mutant base | 位点(bp) Site | 原氨基酸 The original amino acid | 突变氨基酸 Mutant amino acid | ||
GmDMP1 | 非同义突变 | +61 | C | G | +21 | 脯氨酸 | 丙氨酸 |
非同义突变 | +76 | C | G | +26 | 亮氨酸 | 缬氨酸 | |
非同义突变 | +431 | G | A | +144 | 甘氨酸 | 谷氨酸 | |
GmDMP2 | 非同义突变 | +454 | G | A | +152 | 缬氨酸 | 异亮氨酸 |

图10 GmDMP1和GmDMP2单倍型分析
Fig.10 Haplotype analysis of GmDMP1 and GmDMP2
A:GmDMP1与GmDMP2基因单倍型分析;B:GmDMP1与GmDMP2基因在野生大豆、栽培大豆地方品种、栽培大豆选育品种间的分布频率
A: The haplotype analysis of GmDMP1 and GmDMP2 genes; B: Distribution frequency of GmDMP1 and GmDMP2 genes in wild soybean, cultivated soybean local varieties and cultivated soybean selected varieties
基因 Gene | 单倍型 Haplotype | 亲疏水性 Hydrophilic | 结构域 Domain | 信号肽 Signal peptide | 磷酸化位点 Phosphorylation site |
---|---|---|---|---|---|
GmDMP1 |
GmDMP | 亲水蛋白 | 与参考基因组一致 | 无信号肽 | 与参考基因组一致 |
GmDMP | 亲水蛋白 | 与参考基因组一致 | 无信号肽 | 与参考基因组一致 | |
GmDMP | 亲水蛋白 | 多一个跨膜结构域(54~76 bp) | 无信号肽 | 与参考基因组一致 | |
GmDMP2 |
GmDMP | 亲水蛋白 | 与参考基因组一致 | 无信号肽 | 与参考基因组一致 |
GmDMP | 亲水蛋白 | 与参考基因组一致 | 无信号肽 | 与参考基因组一致 |
原始的作物育种技术是将外源DNA导入到植物基因组中实现基因表达的调节,使得基因沉默或过表达后获得优良性
DMP基因的出现开辟了单倍体育种的新篇章,更多的作物利用该基因创制出单倍体诱导系以达到缩短育种年限的目标,从而改变了传统的育种方法,实现减少时间与成本消耗的高效快速的育种新模
本研究通过对可诱导单倍体株系的DMP基因进行大豆同源基因搜索,获得GmDMP1与GmDMP2基因,二者的蛋白序列、基因结构、结构域、二三级结构基本一致,相似率达95%以上。经过生物信息学分析表明,GmDMP1与GmDMP2基因编码的蛋白均属于跨膜的不分泌亲水蛋白,亚细胞定位于内质网的可能性最大。邻接法构建的多物种系统进化树以及编码序列分析表明大豆的DMP基因与玉米等作物处在同一分支上,亲缘关系较近。利用2214份重测序数据对GmDMP1与GmDMP2基因进行多态性分析发现两个基因分别在外显子位置发现了3个和1个非同义突变,形成了3种和2种单倍型,并将突变后单倍型亲疏水性、结构域等特性进行比对分析得到只有GmDMP
参考文献
Chaudhary J, Patil G B, Sonah H, Deshmukh R K, Vuong T D, Valliyodan B, Nguyen H T. Expanding omics resources for improvement of soybean seed composition traits. Frontiers in Plant Science, 2015, 6: 1021 [百度学术]
Clemente T E, Cahoon E B. Soybean oil: Genetic approaches for modification of functionality and total content. Plant Physiology, 2009, 151(3):1030-1040 [百度学术]
Chen L, Yang H, Fang Y, Guo W, Chen H, Zhang X, Dai W, Chen S, Hao Q, Yuan S, Zhang C, Huang Y, Shan Z, Yang Z, Qiu D, Liu X, Tran L P, Zhou X, Cao D. Overexpression of GmMYB14 improves high-density yield and drought tolerance of soybean through regulating plant architecture mediated by the brassinosteroid pathway. Plant Biotechnology Journal, 2021, 19(4): 702-716 [百度学术]
Liu S, Zhang M, Feng F, Tian Z. Toward a "green revolution" for soybean. Molecular Plant, 2020, 13(5): 688-697 [百度学术]
Ainsworth E A, Yendrek C R, Skoneczka J A, Long S P. Accelerating yield potential in soybean: Potential targets for biotechnological improvement. Plant Cell Environment, 2012, 35(1): 38-52 [百度学术]
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. Plant Biotechnology Journal, 2022, 20(2): 256-282 [百度学术]
Chaikam V, Molenaar W, Melchinger A E, Boddupalli P M. Doubled haploid technology for line development in maize: Technical advances and prospects. Theoretical and Applied Genetics, 2019, 132(12): 3227-3243 [百度学术]
Gajecka M, Marzec M, Chmielewska B, Jelonek J, Zbieszczyk J, Szarejko I. Changes in plastid biogenesis leading to the formation of albino regenerants in barley microspore culture. BMC Plant Biology, 2021, 21(1): 22 [百度学术]
Jacquier N M A, Gilles L M, Pyott D E, Martinant J P, Rogowsky P M, Widiez T. Puzzling out plant reproduction by haploid induction for innovations in plant breeding. Nature Plants, 2020, 6(6): 610-619 [百度学术]
Coe E H. A line of maize with high haploid frequency. Americam Naturalist, 1959, 93(873): 381-382 [百度学术]
Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio M L, Green J, Chen Z, McCuiston J, Wang W, Liebler T, Bullock P, Martin B. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature, 2017, 542(7639): 105-109 [百度学术]
Liu C, Li X, Meng D, Zhong Y, Chen C, Dong X, Xu X, Chen B, Li W, Li L, Tian X, Zhao H, Song W, Luo H, Zhang Q, Lai J, Jin W, Yan J, Chen S. A 4 bp insertion at ZmPLA1 encoding a putative phospholipase a generates haploid induction in maize. Molecular Plant, 2017, 10(3): 520-522 [百度学术]
Zhong Y, Liu C, Qi X, Jiao Y, Wang D, Wang Y, Liu Z, Chen C, Chen B, Tian X, Li J, Chen M, Dong X, Xu X, Li L, Li W, Liu W, Jin W, Lai J, Chen S. Mutation of ZmDMP enhances haploid induction in maize. Nature Plants, 2019, 5(6): 575-580 [百度学术]
Liu G, Lin Q, Jin S, Gao C. The CRISPR-Cas toolbox and gene editing technologies. Molecular Cell, 2022, 82(2): 333-347 [百度学术]
Zhong Y, Chen B, Li M, Wang D, Jiao Y, Qi X, Wang M, Liu Z, Chen C, Wang Y, Chen M, Li J, Xiao Z, Cheng D, Liu W, Boutilier K, Liu C, Chen S. A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis. Nature Plants, 2020, 6(5): 466-472 [百度学术]
Zhong Y, Chen B, Wang D, Zhu X, Li M, Zhang J, Chen M, Wang M, Riksen T, Liu J, Qi X, Wang Y, Cheng D, Liu Z, Li J, Chen C, Jiao Y, Liu W, Huang S, Liu C, Boutilier K, Chen S. In vivo maternal haploid induction in tomato. Plant Biotechnology Journal, 2022, 20(2): 250-252 [百度学术]
Li Y, Li D, Xiao Q, Wang H, Wen J, Tu J, Shen J, Fu T, Yi B. An in planta haploid induction system in Brassica napus. Jourmal of Integrative Plant Biology, 2022, 64(6): 1140-1144 [百度学术]
Wang N, Xia X, Jiang T, Li L, Zhang P, Niu L, Cheng H, Wang K, Lin H. In planta haploid induction by genome editing of DMP in the model legume Medicago truncatula. Plant Biotechnology Journal, 2022, 20(1): 22-24 [百度学术]
Li Y H, Qin C, Wang L, Jiao C Z, Hong H L, Tian Y, Li Y F, Xing G N, Wang J, Gu Y Z, Gao X P, Li D L, Li H Y, Liu Z X, Jing X, Feng B B, Zhao T, Guan R X, Guo Y, Liu J, Yan Z, Zhang L J, Ge T L, Li X K, Wang X B, Qiu H M, Zhang W H, Luan X Y, Han Y P, Han D Z, Chang R Z, Guo Y L, Reif J C, Jackson S A, Liu B,Tian S L, Qiu L J. Genome-wide signatures of the geographic expansion and breeding of soybean. Science China Life Sciences, 2023, 66(2): 350-365 [百度学术]
Turner-Hissong S D, Mabry M E, Beissinger T M, Ross-Ibarra J, Pires J C. Evolutionary insights into plant breeding. Current Opinion in Plant Biology, 2020, 54: 93-100 [百度学术]
Nagamine A, Ezura H. Genome editing for improving crop nutrition. Frontiers in Genome Editing, 2022, 4: 850104 [百度学术]
Lin X, Liu B, Weller J L, Abe J, Kong F. Molecular mechanisms for the photoperiodic regulation of flowering in soybean. Journal of Integrative Plant Biology, 2021, 63(6): 981-994 [百度学术]
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. Plant Biotechnology Journal, 2022, 20(2): 256-282 [百度学术]
Chaudhary M, Mukherjee T K, Singh R, Gupta M, Goyal S, Singhal P, Kumar R, Bhusal N, Sharma P. CRISPR/Cas technology for improving nutritional values in the agricultural sector: An update. Molecular Biology Reports, 2022, 49(7): 7101-7110 [百度学术]
Weyen J. Applications of doubled haploids in plant breeding and applied research. Methods in Molecular Biology, 2021, 2287: 23-39 [百度学术]
Kelliher T, Starr D, Su X, Tang G, Chen Z, Carter J, Wittich P E, Dong S, Green J, Burch E, McCuiston J, Gu W, Sun Y, Strebe T, Roberts J, Bate N J, Que Q. One-step genome editing of elite crop germplasm during haploid induction. Nature Biotechnology, 2019, 37(3): 287-292 [百度学术]
Ferrie A M R, Bhowmik P, Rajagopalan N, Kagale S. CRISPR/Cas9-mediated targeted mutagenesis in wheat doubled haploids. Methods in Molecular Biology, 2020, 2072: 183-198 [百度学术]
Cistué L, Echávarri B. Barley isolated microspore culture. Methods in Molecular Biology, 2021, 2287: 187-197 [百度学术]
Kuniyoshi D, Masuda I, Kanaoka Y, Shimazaki-Kishi Y, Okamoto Y, Yasui H, Yamamoto T, Nagaki K, Hoshino Y, Koide Y, Takamure I, Kishima Y. Diploid male gametes circumvent hybrid sterility between asian and african rice species. Frontiers in Plant Science, 2020, 11: 579305 [百度学术]
Burk L G, Gerstel D U, Wernsman E A. Maternal haploids of nicotiana tabacum l from seed. Science, 1979, 206(4418): 585 [百度学术]
Kasha K J, Kao K N. High frequency haploid production in barley (Hordeum vulgare L.). Nature, 1970, 225(5235): 874-876 [百度学术]
Satpathy P, de la Fuente S A, Ott V, Müller A, Büchner H, Daghma D E S, Kumlehn J. Generation of doubled haploid barley by interspecific pollination with hordeum bulbosum. Methods in Molecular Biology, 2021, 2287: 215-226 [百度学术]
Cao P, Zhao Y, Wu F, Xin D, Liu C, Wu X, Lv J, Chen Q, Qi Z. Multi-omics techniques for soybean molecular breeding. International Journal of Molecular Sciences,2022, 23(9): 4994 [百度学术]
Thudi M, Palakurthi R, Schnable J C, Chitikineni A, Dreisigacker S, Mace E, Srivastava R K, Satyavathi C T, Odeny D, Tiwari V K, Lam H M, Hong Y B, Singh V K, Li G, Xu Y, Chen X, Kaila S, Nguyen H, Sivasankar S, Jackson S A, Close T J, Shubo W, Varshney R K. Genomic resources in plant breeding for sustainable agriculture. Journal of Plant Physiology, 2021, 257: 153351 [百度学术]
Varshney R K, Bohra A, Roorkiwal M, Barmukh R, Cowling W A, Chitikineni A, Lam H M, Hickey L T, Croser J S, Bayer P E, Edwards D, Crossa J, Weckwerth W, Millar H, Kumar A, Bevan M W, Siddique K H M. Fast-forward breeding for a food-secure world. Trends in Genetics, 2021, 37(12): 1124-1136 [百度学术]
Zhang H, Goettel W, Song Q, Jiang H, Hu Z, Wang M L, An Y C. Selection of GmSWEET39 for oil and protein improvement in soybean. PLoS Genetics, 2020, 16(11): e1009114 [百度学术]
Qi Z, Song J, Zhang K, Liu S, Tian X, Wang Y, Fang Y, Li X, Wang J, Yang C, Jiang S, Sun X, Tian Z, Li W, Ning H. Identification of QTNs controlling 100-seed weight in soybean using multilocus genome-wide association studies. Frontiers in Genetics, 2020, 11: 689 [百度学术]
Duan Z, Zhang M, Zhang Z, Liang S, Fan L, Yang X, Yuan Y, Pan Y, Zhou G, Liu S, Tian Z. Natural allelic variation of GmST05 controlling seed size and quality in soybean. Plant Biotechnology Journal, 2022, 20(9): 1807-1818 [百度学术]