摘要
为获取蓖麻耐盐基因的序列信息,挖掘盐胁迫下差异表达基因及相关代谢途径,本研究以盐胁迫(300 mmol/L NaCl)处理0、12和24 h后通篦5号的幼苗真叶为试验材料,借助高通量测序技术进行转录组测序分析。结果表明,在盐胁迫12 h和24 h分别有4822和3103个差异表达基因。对共有的1872个差异表达基因进行共表达模式聚类分析,发现这些基因共有3种表达模式。KEGG代谢通路分析结果显示,缬氨酸、亮氨酸和异亮氨酸降解(ko00280)、植物昼夜节律调控(ko04712)以及淀粉和蔗糖代谢(ko00500)3个通路在盐胁迫适应过程中显著富集;GO功能富集分析结果显示,多数差异表达基因被富集到生物过程中,其中细胞进程(GO:0009987)和响应非生物胁迫(GO:0009628)过程富集到差异表达基因的数目最多。另外,共有19个转录因子参与蓖麻的盐胁迫响应。植物激素信号转导通路中有42个差异表达基因,其中有97.6%的基因分别在12 h和24 h是上调表达的。此外,还筛选出包括光合作用途径、抗氧化调节、N
近年来土壤盐渍化日渐严重,这是由气候因素和人为因素共同造成
植物在盐胁迫环境下主要受两个阶段的影响:早期反应(渗透相)和晚期反应(离子相
植物对盐胁迫的适应性是极其复杂的,由多种与胁迫相关性状的复杂信号网络调控,而对盐胁迫的耐受性或敏感性在很大程度上取决于植物的发育阶
蓖麻是原产于非洲的一种多年生草本植物,是世界十大油料作物之一,其籽粒的出油率达到了45%~55
试验材料通篦5号由通辽市农业科学院提供,该品种是由哲ImAB3(母本)和哲蓖2号(父本)杂交,通过系谱法培育而来,是我区主推的经济作物品种,在自然条件下,枯萎病率(约0.1%)和田间倒伏率(平均0.2%)均低,种子的含油量(50.53%)和种子产量(最高可达3484.50 kg/h
使用Total RNA Extractor(Sangon)试剂盒提取植物的总RNA,使用Qubit2.0 RNA检测试剂盒(Life)在Qubit2.0荧光计(Invitrogen)上检测RNA浓度及纯度。将按照时间梯度处理的0、12和24 h这3个时间点的RNA样品分别命名为S0 h、S12 h和S24 h,处理间的3次重复样品分别命名为S0 h-1~S0 h-3、S12 h-1~S12 h-3和S24 h-1~S24 h-3。cDNA文库的构建、质控和测序(Illumina Novaseq 6000)部分由上海生工生物公司完成。
将原始数据经过FastQC评估过滤后,使用Trimmomatic删除含有接头和低质量的序列,得到高质量的Clean reads。使用HISAT2将Clean reads映射到蓖麻的参考基因组(https://www.ncbi.nlm.nih.gov/genome/?term=Ricinus+communis%5Borgn%5D),统计Mapping信息并评估样品数据质量。使用StringTie(http://www.ccb.jhu.edu/software/stringtie/)对中靶基因组的序列进行组装,然后利用GffCompare软件与蓖麻的基因组进行比较,发现新的转录区域。使用Hmmer 3.0软件和Pfam(http://pfam-legacy.xfam.org/)数据库将新基因的编码氨基酸序列进行比对,得到新转录本的注释信息。基因的表达水平直接体现着其转录本的丰度情况,基因的表达量与转录本丰度成正比。为了使基因间和样本间的基因表达水平拥有可比性,使用TPM(Transcripts per million)算法统计单个转录本在RNA池中的比例,计算公式如下:
式中代表总外显子片段/读数,代表外显子长度/kb。|log2FC| ≥1 且 qValue < 0.05为筛选标准,使用DESeq2筛选出差异表达基因。使用GO和KEGG数据库对差异表达基因进行功能注释和代谢通路富集分析,P值为0.05。
根据PlantTFDB(planttfdb.gao-lab.org)释放的蓖麻转录因子信息,使用Blastn程序将差异表达基因(DEGs,differentially expressed genes)与转录因子的CDS序列进行比对,获得对应差异表达转录因子的基因ID,E-value值设置为1
植物总RNA的提取同1.2,取1 μL反转录成单链cDNA并稀释10倍作为PCR扩增的模板,按照2× SG Fast qPCR Master Mix的说明书操作步骤,在LightCycler480 II型PCR仪上完成对基因的扩增。反应程序为:预变性95℃ 3min;变性95℃ 5 s,退火和延伸59℃30 s,45个循环。以RcActin(NC_063262.1)基因作为内参基因,用2
引物名称 Primer name | 描述 Description | 正向引物序列(5'-3') Forward primer sequence (5'-3') | 反向引物序列(5'-3') Reverse primer sequence(5'-3') |
---|---|---|---|
LOC8268921 | 可能的锌金属蛋白酶EGY3 | TGTTCTGTGTTTGGCTTGGG | TGGGGAAAAGGGTGAGGAAA |
LOC125370484 | 谷胱甘肽转移酶U7-like | GTCACAGAGTCGAACTTGCC | TGACCCAATGCTCTCACCTCC |
LOC8289823 | 异柠檬酸脱氢酶[ NADP ] | GATTACTCGCCATGTCCAGC | AGAAGAGAAAGCGAGGCGAT |
LOC8270317 | 半胱氨酸蛋白酶抑制剂5 | TCCGCAATCTTTCTCCTGGT | AGAACCTTCCCAACTCCTGC |
LOC8263265 | 番茄红素异构酶 | CCCCAATGTCCTTCCCTCTT | GTCATCGACCAACAGAGTGC |
LOC8268009 | GAST1蛋白 | TGATGATGAGGAAGGCAAGC | AGCACAACACTTTTGGCAGA |
LOC8276068 | β -淀粉酶3 | AATCAAGCCATCATGCCGTC | GCAGCATCACAAACACTGGA |
RcActin | β-内参 | TCCCTCAGTACGTTCCAGCA | CACCTCCATACTCCTCCCT |
由

图1 蓖麻叶片生理指标测定及表型观察
Fig.1 Physiological index measurement and phenotypic observation of castor leaf
柱子上方字母表示在P<0.05水平差异显著
The letters above the column indicate a significant difference at P<0.05 level
对通篦5号盐胁迫处理3个时间梯度的9个RNA样品经Illumina测序后,共得到65.05 Gb的Clean bases,每个文库的Clean reads在39,936,016条以上,Q30均超过93.45%,说明碱基识别的准确性较高。在HISTA 2对Clean reads组装和拼接后,映射到蓖麻基因组的Reads比例为94.97%~98.40%,这些Reads比对到基因组中的单个位置的比例为86.49%~95.30%。将处理0 h、12 h和24 h的RNA样品分别命名为S0 h、S12 h和S24 h,利用Pearson相关性评估样本时发现,S0 h的3次生物学重复间的相关系数分别为0.99、0.97和1,S12 h的3次生物学重复间的相关系数分别为1、0.87和0.9,S24 h的3次生物学重复间的相关系数分别为0.99、1和0.99,相同处理下Pearson相关系数均大于0.8,说明3次生物学重复是可靠的、可重复性较高(

图2 不同盐胁迫时间点转录组间的Pearson相关分析
Fig. 2 Pearson correlation analysis between transcription groups at different salt stress time points
S0 h、S12 h和S24 h分别表示盐胁迫处理0 h、12 h和24 h,-1、-2和-3则分别表示3次生物学重复,下同
S0 h, S12 h, and S24 h represent salt stress treatments at 0 hours, 12 hours, and 24 hours, respectively, while -1, -2, and -3 represent three biological replicates, the same as below
根据DESeq2筛选结果,在盐胁迫处理S12 h和S24 h分别鉴定出4822和3103个差异表达基因(相较于S0 h),并且随着胁迫时间的延长上调表达的差异表达基因数目远多于下调表达的差异表达基因数目(

图3 蓖麻盐胁迫差异表达基因的韦恩图
Fig. 3 Venn diagram of DEGs in castor salt stress
A:上调表达基因的韦恩图;B:下调表达基因的韦恩图; 数字表示差异表达基因的数量。S12 h-vs-S0 h和S24 h-vs-S0 h分别表示盐胁迫12 h和24 h相较于0 h的差异表达基因,下同
A: Venn diagram of up-regulated genes; B: Venn diagram of down-regulated genes; the numbers indicate the number of DEGs. S12 h-vs-S0 h and S24 h-vs-S0 h represent differentially expressed genes at 12 h and 24 h under salt stress compared to 0 h, respectively, the same as below
对S12 h-vs-S0 h和S24 h-vs-S0 h共有的1130个上调表达基因和746个下调表达基因进行共表达模式聚类分析,依据不同盐胁迫处理梯度时间的TPM表达值,绘制这些差异表达基因的不同表达模式(

图4 差异表达基因的共表达模式分析
Fig. 4 Analysis of DEGs co-expression patterns
a:共有差异表达基因表达聚类;b:共有差异表达基因表达模式
a: Common DEGs expression clustering; b: common DEGs expression patterns
使用KEGG数据库识别蓖麻幼苗盐胁迫反应过程中的关键途径。在盐胁迫处理S12 h-vs-S0 h,识别到1037个差异表达基因被分配到250个途径,其中缬氨酸、亮氨酸和异亮氨酸降解(ko00280: Valine, leucine and isoleucine degradation)和植物昼夜节律调控(ko04712: Circadian rhythm - plant)显著富集;在S24 h-vs-S0 h有692个差异表达基因被分配到262个代谢通路,其中淀粉和蔗糖代谢(ko00500: Starch and sucrose metabolism)和缬氨酸、亮氨酸和异亮氨酸降解显著富集(

图5 蓖麻盐胁迫的KEGG富集途径
Fig. 5 KEGG enrichment pathways of castor under salt stress
为深入了解差异表达基因的功能,当校正后的P值<0.05时,将不同处理间的差异表达基因分配到GO条目,分别富集到183(S12 h-vs-S0 h)和299(S24 h-vs-S0 h)个条目。在生物过程(BP,biological process)、细胞成分(CC,cellular component)和分子功能(MF,molecular function)这3类中,BP所占比例最多,在S12 h-vs-S0 h和S24 h-vs-S0 h中分别占61.2%(112个)和54.8%(164个)。而在BP的亚类中,细胞进程(GO:0009987, Cellular process)在S12 h-vs-S0 h中富集差异表达基因条数最多,响应非生物胁迫过程(GO:0009628, Response to abiotic stimulus)在S24 h-vs-S0 h中富集差异表达基因条数最多;MF的亚类中催化活性(GO:0003824, Catalytic activity)在2个时间段均富集差异表达基因条数最多(

图6 蓖麻差异表达基因的GO富集分析
Fig. 6 GO enrichment analysis of castor DEGs
在差异表达基因中共鉴定出19个包括WRKY、NAC、AP2/ERF、bZIP、MYB、bHLH和其他转录因子,其中WRKY和AP2/ERF家族基因数量最多,均有3个基因参与蓖麻幼苗盐胁迫的响应(

图7 蓖麻转录因子表达热图
Fig. 7 Transcription factor expression heat map of castor
植物激素信号转导产生的一些复合物参与了盐胁迫反应。因此,根据富集到植物激素信号转导(ko04075: Plant hormone signal transduction)过程中上调表达的差异表达基因绘制表达热图(

图8 植物激素信号转导过程中差异表达基因的表达模式
Fig. 8 The expression pattern of DEGs in plant hormone signal transduction
高等植物在遭受盐胁迫后会降低光合速率减少水分的流失以缓解环境压力,细胞色素b6/f复合体(Cytochrome b6/f complex)、ATP合酶(ATP synthase)、光系统Ⅰ(PSⅠ,Photosymbol Ⅰ)和光系统Ⅱ(PSⅡ,Photosymbol Ⅱ)等元件共同组成了光合电子传递系统,因此分析蓖麻盐胁迫下差异表达基因的表达情况,能够为渗透胁迫、离子毒害和糖分积累等反馈抑制机制提供参考(

图9 参与光合作用途径的差异表达基因分析
Fig. 9 DEGs analysis involved in photosynthesis pathway
A:参与光和电子传递的差异表达基因统计;B:差异表达基因不同处理间的韦恩图;C:共有差异表达基因的差异表达倍数线图;图中down表示基因的差异表达倍数<1,下调表达
A: DEGs statistics involved in light and electron transport; B: The venn diagram of DEGs between different treatments; C: Differential expression fold line of common DEGs; The term down in the figure represents the fold change in gene expression, which is less than 1, indicating downregulated expression
高等植物在受到盐胁迫后会使体内活性氧(ROS)消除系统被激活,导致参与编码过氧化氢酶(CAT,catalase)途径、过氧化物酶(POD,peroxidase)途径、谷胱甘肽过氧化物酶(GPX,glutathione peroxidase)途径、抗坏血酸-谷胱甘肽(AsA-GSH,ascorbate-glutathione)循环途径和过氧化物酶/硫氧还蛋白(PrxR-Trx,sulfiredoxin peroxiredoxin)等途径的基因被激活表达。因此,分析了与抗氧化调节相关的差异表达基因(

图10 抗氧化调节相关的差异表达基因
Fig. 10 Antioxidant regulation related DEGs
A:抗氧化酶数量统计;B:差异表达基因不同处理间的韦恩图;C:共有差异表达基因的差异表达倍数线图;图中up和down分别表示基因的差异表达倍数>1和<1,分别表示上调表达基因和下调表达基因,下同
A: Antioxidant enzyme quantity statistics; B: The venn diagram of DEGs between different treatments; C: Differential expression fold line of common DEGs. In the figure, the terms up and down represent the fold change in gene expression, with up indicating an increase in gene expression and down indicating a decrease in gene expression, the same as below
本研究共筛选出33个参与N

图11 参与N
Fig. 11 DEGs involved in N
A:N
A: Statistics of DEGs related to N
为验证转录组测序(RNA-seq)结果的可靠性,筛选了4个持续上调表达的差异表达基因和3个持续下调表达的差异表达基因进行qRT-PCR验证,基因的相对表达量以胁迫0 h作为对照组。结果显示,qRT-PCR与RNA-seq两者表达趋势一致,表明RNA-seq的试验结果是可靠的(

图12 差异表达基因的测序与qRT-PCR验证结果
Fig. 12 Sequencing and qRT-PCR validation results of DEGs
蓖麻苗期遭受盐胁迫会对植株的根和叶片等组织造成损伤,出现发育迟缓现象,阻遏了其发挥实际的遗传潜
在盐胁迫下植物会产生一系列的细胞反应和分子机制从而缓解或抵消损
研究发现,盐胁迫诱导产生的自由基可以通过提高抗氧化酶活性的方式加以清除,从而消除细胞和组织的氧化损
研究表明,
植物昼夜节律调控又被称为植物生物钟调控,在应对非生物胁迫如盐、低温和缺水等环境时会诱导生物钟调控基因的表达来缓解压
热休克蛋白HSP90(Heat shock protein90)作为真核细胞生理和应激条件下调节蛋白质平衡的关键分子伴侣,介导植物的非生物胁迫和生物胁迫抗
研究表明,植物激素信号转导过程中的相关基因也积极地参与植物的盐胁迫反
生长素(Auxin)作为一种促生长激素,在盐胁迫下Auxin转运蛋白AUX1和PIN1/2的定位会发生改变,根组织的Auxin会发生极性运输,Auxin积累量减少,根生长速度会减缓,使植物在盐环境中生
油菜素类固醇(BRs,brassinosteroids)是一组植物类固醇激素,参与植物的细胞分裂和伸长、生殖发育、光形态建成、叶片的衰老和各种胁迫反
细胞分裂素(CK,cytokinins)调节着植物的细胞分裂、营养分配、叶片衰老、维管和茎分化等一系列发育过
乙烯(Ethylene)是一种气体植物激素,在植物的盐响应中有着重要作
综上,本研究在通篦5号苗期盐胁迫过程中发现了多个响应盐胁迫的关键基因,均可以作为盐胁迫下优秀的靶标基因来探究蓖麻的盐胁迫响应机制。
本研究对通篦5号在300 mmol/L NaCl 胁迫下进行RNA-Seq分析,在S12 h和S24 h(相较于S0 h)分别筛选出4822和3103个差异表达基因,其中上调表达的差异基因数目要高于下调表达的差异基因数目。功能注释和富集分析结果表明,差异表达基因主要富集在淀粉和蔗糖代谢以及缬氨酸、亮氨酸和异亮氨酸降解途径。此外,分别有19个转录因子、42个激素传导途径相关基因、29个参与ROS消除途径基因和33个与离子转运相关的基因,这些基因可能在蓖麻幼苗参与盐胁迫响应的过程中发挥重要作用。
参考文献
Zhang T T, Zeng S L, Gao, Y, Ouyang Z T, Li B, Fang C M, Zhao B. Assessing impact of land uses on land salinization in the Yellow River Delta, China using an integrated and spatial statistical model. Land Use Policy, 2011, 28(4): 857-866 [百度学术]
Okur B , Ren N . Soil salinization and climate change. Climate Change and Soil Interactions, 2020, DOI:https://doi.org/10.1016/B978-0-12-818032-7.00012-6 [百度学术]
Chi W, Zhao Y, Kuang W, Pan T, Ba T, Zhao J, Jin L, Wang S. Impact of cropland evolution on soil wind erosion in inner mongolia of China. Land, 2021, 10(6):583 [百度学术]
Yin X, Lu J, Agyenim-Boateng K G, Liu S. Breeding for climate resilience in castor: Current status, challenges, and opportunities. Genomic Designing of Climate-Smart Oilseed Crops, 2019,2: 441-498 [百度学术]
Zhang J L, Shi H. Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis Research, 2013, 115(1):1-22 [百度学术]
Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681 [百度学术]
Munns R. Genes and salt tolerance: Bringing them together. New Phytologist, 2005, 167(3):645-663 [百度学术]
de Oliveira A B, Alencar N L M, Gomes-Filho E. Comparison between the water and salt stress effects on plant growth and development. Responses of Organisms to Water Stress, 2013, 4: 67-94 [百度学术]
Tester M, Davenport R. N
Roy S J, Negrão S, Tester M. Salt resistant crop plants. Current Opinion in Biotechnology, 2014, 26: 115-124 [百度学术]
Raza A, Tabassum J, Fakhar A Z, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique K H M, Singh R K, Zhuang W, Varshney R K. Smart reprograming of plants against salinity stress using modern biotechnological tools. Critical Reviews in Biotechnology, 2022, 15:1-28 [百度学术]
Singh R K, Kota S, Flowers T J. Salt tolerance in rice: Seedling and reproductive stage QTL mapping come of age. Theoretical and Applied Genetics, 2021, 134(11):3495-3533 [百度学术]
Kashyap S P, Prasanna H C, Kumari N, Mishra P, Singh B. Understanding salt tolerance mechanism using transcriptome profiling and de novo assembly of wild tomato Solanum chilense. Scientific Reports, 2020, 10(1):15835 [百度学术]
Nagano A J, Sato Y, Mihara M, Antonio B A, Motoyama R, Itoh H, Nagamura Y, Izawa T. Deciphering and prediction of transcriptome dynamics under fluctuating field conditions. Cell, 2012, 51(6):1358-1369 [百度学术]
Guan L, Haider M S, Khan N, Nasim M, Jiu S, Fiaz M, Zhu X, Zhang K, Fang J. Transcriptome sequence analysis elaborates a complex defensive mechanism of grapevine (Vitis vinifera L.) in response to salt stress. International Journal of Molecular Sciences, 2018, 19(12):4019 [百度学术]
Ma W, Kim J K, Jia C, Yin F, Kim H J, Akram W, Hu X, Li X. Comparative transcriptome and metabolic profiling analysis of buckwheat (Fagopyrum Tataricum (L.) Gaertn.) under salinity stress. Metabolites, 2019, 14, 9(10):225 [百度学术]
Thatikunta R, Siva Sankar A, Sreelakshmi J, Palle G, Leela C, Durga Rani C V, Gouri Shankar V, Lavanya B, Narayana Reddy P, Dudhe M Y. Utilization of in silico EST-SSR markers for diversity studies in castor (Ricinus communis L.). Physiology and Molecular Biology of Plants, 2016, 22(4):535-545 [百度学术]
Nian H X, Chen G X, Wang Z A, Zhao L T. Applications of castor oil in lubrication field. Synthetic. Lubrication, 2011, 38: 32-34 [百度学术]
Azad A K, Rasul M G, Khan M M K, Sharma S C, Mofijur M, Bhuiya M M K. Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia. Renewable and Sustainable Energy Reviews, 2016, 61: 302-318 [百度学术]
Kallamadi P R, Nadigatla V P R G R, Mulpuri S. Molecular diversity in castor (Ricinus communis L.) . Industrial Crops and Products, 2015, 66: 271-281 [百度学术]
Wang Y, Jie W, Peng X, Hua X, Yan X, Zhou Z, Lin J. physiological adaptive strategies of oil seed crop Ricinus communis early seedlings (cotyledon vs. true leaf) under salt and alkali stresses: from the growth, photosynthesis and chlorophy ll fluorescence. Frontiers in Plant Science, 2019, 9:1939 [百度学术]
de Lima G S, Nobre R G, Gheyi H R. Physiology, growth and yield of castor bean under salt stress and nitrogen doses in phenophases. Idesia, 2014, 32(3): 91-99 [百度学术]
Wang Y, Peng X, Salvato F. Salt-adaptive strategies in oil seed crop Ricinus communis early seedlings (cotyledon vs. true leaf) revealed from proteomics analysis. Ecotoxicology and Environmental Safety, 2019, 171: 12-25 [百度学术]
Lei P, Liu Z, Hu Y. Transcriptome analysis of salt stress responsiveness in the seedlings of wild and cultivated Ricinus communis L. Journal of Biotechnology, 2021, 327: 106-116 [百度学术]
Li G, Wan S W, Zhou J, Yang Z Y, Qin P. Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Industrial Crops & Products, 2010, 31(1):13-19 [百度学术]
Zhao K, Zhang D, Lv K. Functional characterization of poplar WRKY75 in salt and osmotic tolerance. Plant Science, 2019, 289: 110259 [百度学术]
Gupta R, Leibman-Markus M, Anand G. Nutrient elements promote disease resistance in tomato by differentially activating immune pathways. Phytopathology, 2022, 112(11): 2360-2371 [百度学术]
Chen N N,Tong S H,Tang H,Zhang Z Y,Liu B,Lou S L,Liu J Q,Liu H H,Ma T,Jiang Y Z. The PalERF109 transcription factor positively regulates salt tolerance via PalHKT1; 2 in Populus alba var. pyramidalis. Tree Physiology, 2020, 6(40):717-730 [百度学术]
Liu P, Sun F, Gao R. RAP2.6L overexpression delays waterlogging induced premature senescence by increasing stomatal closure more than antioxidant enzyme activity. Plant Molecular Biology, 2012, 79(6): 609-622 [百度学术]
Wang Y, Wang J, Zhao X. Overexpression of the transcription factor gene OsSTAP1 increases salt tolerance in rice. Rice, 2020, 13(1): 1-12 [百度学术]
Luo X, Wu J, Li Y. Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses. PLoS ONE, 2013, 8(1): e54002 [百度学术]
Yan H, Li Q, Park S C, Wang X, Liu Y J, Zhang Y G, Tang W, Kou M, Ma D F. Overexpression of CuZnSOD and APX enhance salt stress tolerance in sweet potato. Plant Physiology and Biochemistry, 2016, 109: 20-27 [百度学术]
Qi Y C, Liu W Q, Qiu L Y. Overexpression of glutathione S-transferase gene increases salt tolerance of Arabidopsis. Russian Journal of Plant Physiology, 2010, 57(2): 233-240 [百度学术]
Kausar A, Ashraf M Y, Niaz M. Some physiological and genetic determinants of salt tolerance in sorghum (Sorghum bicolor (L.) Moench): Biomass production and nitrogen metabolism. Pakistan Journal of Botany, 2014, 46(2): 515-519 [百度学术]
高晓敏, 王琚钢, 刘亚男, 马海洋, 陈菁, 石伟琦. 植物昼夜节律及其对非生物逆境的响应. 植物生理学报, 2017, 53(10): 1833-1841 [百度学术]
Gao X M, Wang J G, Liu Y N, Ma H Y, Chen J, Shi W Q. The plant circadian rhythm and its response to abiotic stresses. Plant Physiology Journal, 2017, 53(10): 1833-1841 [百度学术]
Ke Q, Kim H S, Wang Z. Down‐regulation of GIGANTEA‐like genes increases plant growth and salt stress tolerance in poplar. Plant Biotechnology Journal, 2017, 15(3): 331-343 [百度学术]
Nakamichi N, Takao S, Kudo T. Improvement of Arabidopsis biomass and cold, drought and salinity stress tolerance by modified circadian clock-associated PSEUDO-RESPONSE REGULATORs. Plant and Cell Physiology, 2016, 57(5): 1085-1097 [百度学术]
Zhang K, He S, Sui Y. Genome-wide characterization of HSP90 gene family in cucumber and their potential roles in response to abiotic and biotic stresses. Frontiers in Genetics, 2021, 12: 584886 [百度学术]
Mishra R C, Grover A. Constitutive over-expression of rice ClpD1 protein enhances tolerance to salt and desiccation stresses in transgenic Arabidopsis plants. Plant Science, 2016, 250: 69-78 [百度学术]
Haxim Y, Si Y, Liu X. Genome-wide characterization of HSP90 gene family in malus sieversii and their potential roles in response to valsa mali infection. Forests, 2021, 12(9): 1232 [百度学术]
Raza A, Salehi H, Rahman M A. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. Frontiers in Plant Science, 2022, 13:961872 [百度学术]
Wang X, Wu Y, Sun M. Dynamic transcriptome profiling revealed key genes and pathways associated with cold stress in castor (Ricinus communis L.). Industrial Crops and Products, 2022, 178: 114610 [百度学术]
Golldack D, Li C, Mohan H. Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Frontiers in Plant Science, 2014, 5: 151 [百度学术]
Wang R, Estelle M. Diversity and specificity: Auxin perception and signaling through the TIR1/AFB pathway. Current Opinion in Plant Biology, 2014, 21: 51-58 [百度学术]
Vriet C, Russinova E, Reuzeau C. Boosting crop yields with plant steroids. The Plant Cell, 2012, 24(3): 842-857 [百度学术]
Krishna P. Brassinosteroid-mediated stress responses. Journal of Plant Growth Regulation, 2003, 22(4): 289-297 [百度学术]
Wei L J, Deng X G, Zhu T. Ethylene is involved in brassinosteroids induced alternative respiratory pathway in cucumber (Cucumis sativus L.) seedlings response to abiotic stress. Frontiers in Plant Science, 2015, 6: 982 [百度学术]
Xu P, Fang S, Chen H. The brassinosteroid‐responsive xyloglucan endotransglucosylase/hydrolase 19 (XTH19) and XTH23 genes are involved in lateral root development under salt stress in Arabidopsis. The Plant Journal, 2020, 104(1): 59-75 [百度学术]
Li Z Y, Xu Z S, He G Y. A mutation in Arabidopsis BSK5 encoding a brassinosteroid-signaling kinase protein affects responses to salinity and abscisic acid. Biochemical and Biophysical Research Communications, 2012, 426(4): 522-527 [百度学术]
Mok D W S, Mok M C. Cytokinin metabolism and action. Annual Review of Plant Biology, 2001, 52: 89 [百度学术]
Nishiyama R, Le D T, Watanabe Y. Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PLoS ONE, 2012, 7(2): e32124 [百度学术]
Dubois M, Van den Broeck L, Inzé D. The pivotal role of ethylene in plant growth. Trends in Plant Science, 2018, 23(4): 311-323 [百度学术]
Jiang C, Belfield E J, Cao Y. An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. The Plant Cell, 2013, 25(9): 3535-3552 [百度学术]