摘要
大麻是一年生草本植物,一种多用途、可持续的作物。迄今为止,关于大麻遗传结构的研究还很少。本研究通过EST-SSR分子标记分析大麻的遗传多样性和种群结构。结果表明,20对引物共扩增出113个清晰条带,其中113个(100%)是多态性的;共检测到232个等位基因,平均每对引物检测到4.0176个等位基因;观测杂合度(Ho)平均为0.7102,期望杂合度(He)平均为0.6935;200个个体香农信息指数介于0.7204~2.4625之间,平均值为1.5368;多态信息含量(PIC)变化范围为0.3519~0.8801,平均为0.6558;平均基因流(Nm)平均值为13.6525。基于种群遗传结构、主成分分析和未加权的算术平均对组法(UPGMA)分析,将大麻材料聚类为3组。不同聚类方法之间结果相似,但3种模型的少数个体植株分布不同。聚类结果、基因多样性和遗传相似系数表明,大麻个体总体亲缘关系较为密切。同时用5对核心引物能够区分参试种质,并为每份种质构建了指纹图谱。研究结果为今后的大麻育种、遗传改良和核心种质资源收集提供了参考。
大麻(Cannabis sativa L.),俗称汉麻,是一种草本植物,属于大麻科。它被认为是最古老的栽培植物之一,可用于多个应用领域,从农业和植物修复到食品、饲料、化妆品、建筑和制药行业。根据不同的应用领域,可以从大麻中获得各种具有工业价值的产品,例如纤维和碎屑,生物建筑和隔热材料,具有重要营养和功能特性的种子、面粉、油和具有药理学意义的生物活性化合
遗传多样性是生物多样性的重要组成部分,是生态系统和物种多样性的基
使用每种技术的选择受到诸如应用的难易程度、基因组覆盖率、成本和自动化兼容性等因素的影响。简单序列重复分子标记是共显性的,符合孟德尔定律。它操作简单,具有高度的重现性和可靠性,能够揭示子代和亲本之间不受基因表达、培养条件或环境条件影响的遗传差异, 并且可以显示出大量的多态
表达序列标签是剖析复杂性状以及估计分子多样性和种群结构的基
试验材料为黑龙江省科学院大庆分院审定品种及搜集保存的200份大麻种质资源(详见https://doi.org/10.13430/j.cnki.jpgr.20230531001,
引物 Primer | 总条带数 TNB | 多态性条带数 NPB | 多态性条带百分比(%) PPB | 等位基因数 Na | 有效等位基因数 Ne | 香农信息指数 I | 观测 杂合度 Ho | 期望 杂合度 He | 多态性 信息含量 PIC | 遗传分化系数 Fst | 基因流 Nm |
---|---|---|---|---|---|---|---|---|---|---|---|
E11 | 5 | 5 | 100 | 5 | 1.6361 | 0.7204 | 0.3015 | 0.3898 | 0.3519 | 0.0087 | 28.4476 |
E17 | 5 | 5 | 100 | 16 | 5.4226 | 1.8902 | 0.8200 | 0.8176 | 0.7901 | 0.0105 | 23.5450 |
E18 | 9 | 9 | 100 | 9 | 2.8520 | 1.2180 | 0.7700 | 0.6510 | 0.5842 | 0.0146 | 16.8654 |
E20 | 5 | 5 | 100 | 20 | 7.8965 | 2.3713 | 0.7739 | 0.8756 | 0.8620 | 0.0112 | 22.0531 |
E22 | 6 | 6 | 100 | 14 | 4.4984 | 1.8273 | 0.6550 | 0.7796 | 0.7530 | 0.0088 | 28.0691 |
E23 | 7 | 7 | 100 | 8 | 3.0620 | 1.2248 | 0.8400 | 0.6751 | 0.6083 | 0.0139 | 17.6978 |
E24 | 3 | 3 | 100 | 19 | 9.0166 | 2.4625 | 0.7889 | 0.8913 | 0.8801 | 0.0120 | 20.5975 |
E25 | 6 | 6 | 100 | 15 | 2.7707 | 1.5314 | 0.7300 | 0.6407 | 0.6133 | 0.0088 | 28.0020 |
E26 | 5 | 5 | 100 | 12 | 6.0606 | 2.0438 | 0.6900 | 0.8371 | 0.8170 | 0.0279 | 8.7112 |
E27 | 4 | 4 | 100 | 11 | 3.2549 | 1.4694 | 0.8000 | 0.6945 | 0.6560 | 0.0109 | 22.7555 |
E3 | 6 | 6 | 100 | 9 | 4.2465 | 1.5819 | 0.7300 | 0.7664 | 0.7254 | 0.0611 | 3.8401 |
E31 | 4 | 4 | 100 | 15 | 6.0146 | 1.9361 | 0.9050 | 0.8358 | 0.8120 | 0.0154 | 16.0308 |
E32 | 7 | 7 | 100 | 9 | 3.5470 | 1.4486 | 0.8342 | 0.7199 | 0.6751 | 0.0121 | 20.4881 |
E37 | 8 | 8 | 100 | 10 | 3.4583 | 1.4709 | 0.4900 | 0.7126 | 0.6683 | 0.0418 | 5.7290 |
E4 | 5 | 5 | 100 | 10 | 2.4153 | 1.1295 | 0.7424 | 0.5875 | 0.5131 | 0.0064 | 38.6339 |
E40 | 3 | 3 | 100 | 8 | 3.9149 | 1.4935 | 0.8550 | 0.7464 | 0.7015 | 0.0094 | 26.2232 |
E43 | 2 | 2 | 100 | 18 | 4.2055 | 1.9170 | 0.7839 | 0.7641 | 0.7414 | 0.0096 | 25.8443 |
E48 | 7 | 7 | 100 | 9 | 1.8701 | 0.9827 | 0.5350 | 0.4664 | 0.4374 | 0.0386 | 6.2266 |
E6 | 3 | 3 | 100 | 9 | 2.4977 | 1.2097 | 0.6784 | 0.6011 | 0.5493 | 0.0295 | 8.2317 |
E7 | 5 | 5 | 100 | 6 | 1.7120 | 0.8076 | 0.4800 | 0.4169 | 0.3757 | 0.0061 | 40.9830 |
均值 Mean | 5.65 | 5.65 | 100 | 11.6 | 4.0176 | 1.5368 | 0.7102 | 0.6935 | 0.6558 | 0.0180 | 13.6525 |
TNB: Total number of bands; NPB: Number of polymorphic bands; PPB: Percentage of polymorphic bands
选取大麻叶片0.5 g,运用柱式植物组织基因组DNA抽提试剂盒(上海生工生物技术有限公司)提取DNA。-20℃保存备用。
从前期开发的EST-SSR引物中随机筛选出40对,由上海生工生物技术有限公司合成。随机选取8个品种的DNA混合样品,对SSR引物进行多态性筛选,筛选出条带清晰、稳定性好的20对引物用于所有材料的PCR扩增,引物序列详见https://doi.org/10.13430/j.cnki.jpgr.20230531001,
群体 Population | 样本数量 Sample size | 等位基因数 Na | 有效等位 基因数 Ne | 香农信息 指数 I | 观测杂合度 Ho | 期望杂合度 He | 多态性信息 含量 PIC |
---|---|---|---|---|---|---|---|
纤用Fiber | 78 | 8.90 | 3.9575 | 1.5014 | 0.7556 | 0.6930 | 0.6503 |
花叶用Floral leaf | 63 | 7.60 | 3.5174 | 1.3756 | 0.6616 | 0.6580 | 0.6134 |
籽用Seed | 59 | 9.65 | 4.0388 | 1.5545 | 0.7017 | 0.7015 | 0.6602 |
均值Mean | 8.72 | 3.8379 | 1.4772 | 0.7063 | 0.6840 | 0.6413 |
PCR反应体系为25 μL,其中DNA (20~50 ng/μL)1μL,10×Taq Buffer(with MgCl2)2.5 μL,引物(10 μmol/L)各0.5 μL,Taq酶 (5 U/μL)0.2 μL,dNTP(mix)(5 μmol/L)0.5 μL,用dd H2O补足。PCR扩增程序为 95 ℃ 5.0 min;94 ℃ 30 s,60 ℃ 30 s,72 ℃ 30 s, 30个循环;72 ℃延伸10 min。PCR扩增产物的片段大小采用QIAxcel高级毛细管电泳仪检测。
利用BioCalculator软件通过计算各峰的峰数、峰高、峰宽、峰面积等特征,对扩增产物的单次数据进行准确分析。选用的多态性较好的5对引物(E-20、E-24、E-26、E-31、E-17)扩增出的DNA片段按从小到大的顺序排列,将分辨率高,条带清晰记为“1”,无条带或模糊条带记为“0”。
根据电泳结果,在凝胶相同迁移率位置上,有条带的记为“1”,无条带的记为“0”,构成“0,1”序列数据阵。计算多态位点数及多态率,使用 Excel 2021计算多态性条带数(NPB,the number of polymorphic bands)和多态性条带百分比(PPB,the percentage of polymorphic bands)。GeneAlEx 6.51b
使用 STRUCTURE 2.3.
在PCR反应中,20对SSR引物对200个个体共扩增出113个位点,全部表现出多态性。每个引物组合的多态位点数量从2到9不等,平均为5.65个位点(
对3种类型参试群体进行遗传多样性指数分析,结果显示(
将200份大麻材料按用途划分为3个种群进行遗传距离比较,如
群体 Population | 纤用 Fiber | 花叶用 Floral leaf | 籽用 Seed |
---|---|---|---|
纤用Fiber | 0.9227 | 0.9691 | |
花叶用Floral leaf | 0.0805 | 0.9392 | |
籽用Seed | 0.0314 | 0.0627 |
对角线上方为 Nei's 遗传一致度,对角线下方为 Nei's 遗传距离
Nei's genetic identity is above diagonal and genetic distance is below diagonal

图1 基于遗传距离构建的UPGMA聚类树
Fig. 1 UPGMA clustering tree based on genetic distance
群体 Population | 纤用 Fiber | 花叶用 Floral leaf | 籽用 Seed |
---|---|---|---|
纤用Fiber | 8.036 | 40.137 | |
花叶用Floral leaf | 0.030 | 11.448 | |
籽用Seed | 0.011 | 0.021 |
对角线上方为基因流(Nm),对角线下方为遗传分化系数(Fst)
Above the diagonal is gene flow (Nm), below the diagonal is the F-Statistics (Fst)
通过UPGMA聚类分析、PCoA分析和遗传结构分析,进一步探讨了基于遗传距离的不同类群和亚类种质之间的关系。使用Structure 2.3.4软件分析了从200个大麻个体扫描的20个SSR引物对的标记。ln P ( K )随着K的增加而不断变化,没有最大值,无法确定最佳亚群数(

图2 200份大麻种群结构分析
Fig. 2 Population structure analysis of 200 industrial hemp samples
A: K值对K数的平均对数;B: K和ΔK的数量之间的关系;C: 使用 STRUCTURE 2.3.4 软件( K = 3)确定的大麻种群结构。横坐标数字代表资源序号和用途类型,1、绿色:纤用型;2、红色:花叶型;3、蓝色:籽用型
A: Average logarithm of K value to K number; B: The relationship between the quantities of K and ΔK; C: Population structure of industrial hemp determined using STRUCTURE 2.3.4 software (K = 3). The horizontal number represents the resource serial number and type of use. 1, green: Fiber type; 2,red: Mosaic type; 3, blue: Seed type
UPGMA树状图表明,种质可以分为3个组群(

图3 基于UPGMA的200份大麻资源聚类分析
Fig. 3 Cluster analysis of 200 industrial hemp resources based on UPGMA
图中编号代表200份大麻个体(与附表1相对应)
The numbers in the figure represent 200 cannabis individuals (corresponding to schedule 1)
对200份大麻个体进行主成分分析 (

图4 200份大麻资源遗传多样性的主成分分析
Fig. 4 Principal component analysis of genetic diversity of 200 industrial hemp resources
经统计分析,5对引物在200份材料中共检测到25条清晰条带。将筛选出的5对核心引物E-20、E-24、E-26、E-31、E-17依次编号为A~E,依据5对引物扩增的多态性位点,按照指纹图谱构建方法为每一份材料建立SSR指纹图谱代码(
编号 Code | 指纹图谱 Fingerprints | 编号Code | 指纹图谱 Fingerprints | 编号Code | 指纹图谱 Fingerprints |
---|---|---|---|---|---|
1 | A00000B00010C01000D00101E00100 | 34 | A00001B00000C10000D10010E10000 | 67 | A01010B01000C10000D00000E00010 |
2 | A01000B11000C00100D00001E00110 | 35 | A00001B00000C10000D10010E10001 | 68 | A00000B01100C11000D10100E00011 |
3 | A00000B10010C00010D00101E00101 | 36 | A10010B00000C10000D00110E10100 | 69 | A01000B00000C01100D00001E00011 |
4 | A00100B01000C01000D00101D00101 | 37 | A01001B10000C01000D10100E00000 | 70 | A00101B01000C11000D00000E00010 |
5 | A00100B01000C00001D01100E00110 | 38 | A10000B00000C00000D10100E01100 | 71 | A01000B01000C01000D00001E00001 |
6 | A00000B01000C00010D00100E00001 | 39 | A10000B10000C00000D00101E00001 | 72 | A00000B00010C11000D10100E00010 |
7 | A10000B01100C01000D01100E00101 | 40 | A01000B00100C11000D10100E00100 | 73 | A00000B10010C01000D01100E00011 |
8 | A01001B00100C00000D10100E00110 | 41 | A10000B01000C01000D01100E00011 | 74 | A00010B01000C10000D10100E00110 |
9 | A00000B00100C00000D01100E00101 | 42 | A00100B01000C00100D10001E00110 | 75 | A00001B00000C11000D10100E00110 |
10 | A10001B10000C10000D10000E00011 | 43 | A00011B00100C11000D10000E00101 | 76 | A01100B01000C10000D10000E00110 |
11 | A10000B10000C01000D00101E00100 | 44 | A01010B00010C01000D00101E00101 | 77 | A01000B00100C01001D10000E00101 |
12 | A00100B01000C00010D10100E00010 | 45 | A00010B11000C01000D00101E00110 | 78 | A01000B01000C10000D00001E00001 |
13 | A00001B01000C01000D10000E00100 | 46 | A00010B01000C10001D00101E00110 | 79 | A00000B00000C10000D00110E10010 |
14 | A00000B01000C10010D01100E00100 | 47 | A10100B01000C10000D00101E00101 | 80 | A01000B01100C10100D10001E00101 |
15 | A01000B00000C01100D00001E00011 | 48 | A01001B11000C01010D00101E00001 | 81 | A00001B00001C01001D00100E00110 |
16 | A01010B01000C01100D10000E00011 | 49 | A00000B01100C10000D00010E00110 | 82 | A01100B01001C01000D10000E01010 |
17 | A00100B00100C00000D00100E00110 | 50 | A10001B00000C00000D10001E01010 | 83 | A00100B11000C01000D00010E10000 |
18 | A10010B01000C01000D00010E00010 | 51 | A10000B01000C00000D10100E11000 | 84 | A00100B00010C00001D10000E00000 |
19 | A00001B00000C01000D00100E00011 | 52 | A01000B00001C01000D00110E00101 | 85 | A01000B10000C01000D00101E00101 |
20 | A00001B00100C00100D11000E01001 | 53 | A01000B10000C00001D10100E00110 | 86 | A00000B00000C00100D00100E00001 |
21 | A01100B00000C00010D01100E01100 | 54 | A01000B01010C00000D00110E00110 | 87 | A01000B01000C00010D10100E01000 |
22 | A00000B00100C11000D00100E00010 | 55 | A00110B01000C10000D01000E01000 | 88 | A10001B01100C00000D00100E00101 |
23 | A00001B00000C10000D01100E | 56 | A01000B00000C00000D10000E01000 | 89 | A00100B10000C01001D00101E00110 |
24 | A10000B00000C00100D10000E00100 | 57 | A01000B10000C10000D11000E00000 | 90 | A00000B01000C00100D10010E00101 |
25 | A00000B00100C00010D00101E10001 | 58 | A00000B01000C10000D01000E00101 | 91 | A00100B10000C10001D01000E01010 |
26 | A00001B10000C01000D00101E00110 | 59 | A00101B10000C00011D00001E00001 | 92 | A00000B01010C01000D00101E11000 |
27 | A01000B01000C10001D00001E00101 | 60 | A00000B00000C00010D00101E00001 | 93 | A01000B00000C11000D10100E00010 |
28 | A10000B00000C10000D0100E10001 | 61 | A01000B00000C10000D10100E01100 | 94 | A00001B00000C10010D01100E01000 |
29 | A01001B01000C00000D00100E01100 | 62 | A01000B00000C00000D00110E00110 | 95 | A01000B00000C10000D01010E00011 |
30 | A01001B00010C00100D10100E01000 | 63 | A00010B10000C10000D11000E00011 | 96 | A00000B10100C10000D01000E01001 |
31 | A00001B00000C10000D10010E10000 | 64 | A00010B00000C10000D10100E00100 | 97 | A00010B00010C10000D00010E00001 |
32 | A10000B00000C10000D00110E00110 | 65 | A01000B01000C01010D00100E00001 | 98 | A00100B00000C10000D00100E00011 |
33 | A00001B00001C10000D10010E00010 | 66 | A00110B01000C11000D01000E01001 | 99 | A00000B00000C10000D01010E00110 |
100 | A00101B10000C01000D01010E00110 | 134 | A01100B11000C01000D01100E10100 | 168 | A01000B00000C01000D00010E10000 |
101 | A01000B01000C01000D01000E00011 | 135 | A00010B01000C01000D11000E00110 | 169 | A01000B00000C01000D00010E10000 |
102 | A01000B00100C10000D10100E00000 | 136 | A00100B01000C01000D11000E00011 | 170 | A01000B01000C10000D00110E10000 |
103 | A00000B01001C01000D11000E01010 | 137 | A01001B01000C01000D11000E00101 | 171 | A10000B00100C01000D00110E10010 |
104 | A00100B11000C01000D11000E00001 | 138 | A00000B00010C01001D01000E00101 | 172 | A01000B00000C00000D00010E10000 |
105 | A10000B00000C01000D00110E10100 | 139 | A00110B00000C11000D11000E01010 | 173 | A01000B10000C10000D00011E10100 |
106 | A00110B10001C01000D01000E00011 | 140 | A00010B00000C01000D01000E00100 | 174 | A01000B00000C01000D00010E10000 |
107 | A01100B11000C01000D10000E00001 | 141 | A00101B10000C01000D01100E00100 | 175 | A00011B01000C00000D00001E00100 |
108 | A10100B01010C01000D10000E01010 | 142 | A00101B00000C01000D10100E00100 | 176 | A01010B11000C10000D10010E01100 |
109 | A00100B01001C11000D10000E00010 | 143 | A01001B00100C11000D00100E01110 | 177 | A01000B00001C10010D11000E00101 |
110 | A01000B00001C00000D00110E00010 | 144 | A00001B00100C01000D10010E00001 | 178 | A00010B01000C11000D10100E00110 |
111 | A01001B00010C01000D01010E10100 | 145 | A00001B00000C00100D00100E00100 | 179 | A00100B10100C10000D11000E00011 |
112 | A00100B10000C01000D10000E00001 | 146 | A00100B00000C01000D00100E01001 | 180 | A00100B00100C00100D01010E00011 |
113 | A01001B00000C00000D00100E10100 | 147 | A11000B01000C01000D00010E01001 | 181 | A00100B00100C10000D00100E10001 |
114 | A01010B00000C01000D01000E01001 | 148 | A01010B01000C11000D11000E01000 | 182 | A00011B00000C11000D00100E00011 |
115 | A00010B00000C01000D00100E00100 | 149 | A00000B00000C01000D01000E00010 | 183 | A10000B10000C01000D10100E10100 |
116 | A00100B01000C11000D10100E00110 | 150 | A01000B01000C11000D01010E10010 | 184 | A00000B00000C00100D01010E10100 |
117 | A00010B00000C11000D10000E00001 | 151 | A01000B01000C10000D00101E10010 | 185 | A01000B01000C00010D00001E00011 |
118 | A01000B00100C11000D01000E00001 | 152 | A01000B01000C10000D01010E10000 | 186 | A10001B01000C00000D10000E00101 |
119 | A00010B00100C00100D10000E00010 | 153 | A01000B00000C01000D01010E10100 | 187 | A10000B01000C00010D01100E00110 |
120 | A01000B00000C10000D00110E10100 | 154 | A01000B00000C10000D00010E10001 | 188 | A00001B01100C11000D01000E00100 |
121 | A00100B11000C10000D01100E00100 | 155 | A01000B00000C10000D01010E10000 | 189 | A00101B10000C00100D10100E00100 |
122 | A00001B10000C10000D01010E10100 | 156 | A01000B01000C10000D01010E10100 | 190 | A00100B00000C10100D11000E01100 |
123 | A00000B00000C10000D00010E10001 | 157 | A01000B00000C11000D01010E10100 | 191 | A00101B00000C11000D00101E00010 |
124 | A01001B00000C10000D01000E10000 | 158 | A01000B01000C11000D01010E00110 | 192 | A00001B00001C01000D10010E01010 |
125 | A01001B00000C10000D11000E00011 | 159 | A00100B01010C10000D10000E01100 | 193 | A11000B01000C01010D11000E01010 |
126 | A00100B01000C01000D01000E01001 | 160 | A10001B00000C01000D00010E00101 | 194 | A00110B10000C10000D11000E10100 |
127 | A01000B01000C10000D01010E11000 | 161 | A01000B11000C01000D00101E00101 | 195 | A00100B00000C00000D00110E00101 |
128 | A00001B01000C00001D00010E00110 | 162 | A01001B00000C01000D00010E01001 | 196 | A00001B01000C01010D00001E00101 |
129 | A01000B11000C10000D10100E1000 | 163 | A10100B00011C01000D10000E00010 | 197 | A01000B01000C10010D00001E00011 |
130 | A01000B01000C10000D01010E00011 | 164 | A01000B01000C01000D01010E10001 | 198 | A01000B00100C00000D11000E01001 |
131 | A01000B00001C10000D01100E00010 | 165 | A01000B01000C01000D01010E10100 | 199 | A00101B00000C01001D10100E01010 |
132 | A00100B00001C11000D10010E01010 | 166 | A01000B00000C00000D00110E00101 | 200 | A01000B11000C00101D00100E00110 |
133 | A00001B00000C01000D01010E10001 | 167 | A00000B01000C00000D00110E00001 |
EST-SSR是利用现有的EST序列进行电子筛查,然后进行PCR检
探索性条件下基因型间的多态性率被认为是衡量DNA标记多样性分析效率的关键因素。大量研究指出,标记的多态性影响植物的遗传多样性水平。一般而言,使用多态性高的引物比使用多态性差的引物,供试材料的遗传参数更可靠。信朋飞
本研究根据大麻种质资源用途类型,将其分为3个亚群进行遗传结构分析。各种群香农信息指数介于1.3756~1.5545之间,遗传多样性水平较高。大麻种群的高度遗传多样性可能与该物种的异花授粉有关。有研究表明PIC≥0.5,为高度多态位点;0.25<PIC<0.5,为中度多态位点;PIC≤0.25,为低度多态位点。在本研究中,20对引物PIC值平均为0.6558,说明大麻EST-SSR标记均表现为高度多态性,适合大麻遗传多样性分析。
可以中和种间分化和种内遗传漂变的高度基因流动在异花授粉植物中极为常见,可导致个体或种群之间的遗传多样性较
物种的遗传结构受多种因素的相互作用影响,例如种子和花粉的传播模式、种群统计历史、地质事件、地理或生态障碍以及环境因素的发散选
本研究根据种群遗传结构分析,将200份材料分成3个类群,并将来自同一种群的个体也聚类到不同的类群中。在UPGMA聚类图中,花叶用类型的一些单株与籽用型和纤用型单株聚在一起,但在种群结构分析中,花叶用材料独立聚类一组。聚类可能是育种和驯化的结果,对多样性结构影响很大。选择和育种倾向于使植物保持具有经济价值的性
根据PCoA、UPGMA和STRUCTURE分析,本研究中的大麻种质基本被分为3组。200份大麻单株材料的分类基本符合群体遗传结构分析,但也存在一定差异。这可能是由于不同方法应用了不同的统计原
本研究利用EST-SSR标记对大麻的遗传结构进行分析,并且对200份大麻种质资源进行了指纹图谱的构建。研究结果表明,籽用型种群与纤用型种群遗传距离最小,基于遗传距离构建的UPGMA聚类树也验证了籽用型与纤用型种群亲缘关系较近;同时通过UPGMA聚类分析、PCoA分析和遗传结构分析,进一步确定了200份大麻的聚类个体材料与种群遗传结构分析结果基本相符。分类结果、基因多样性和遗传相似系数表明,大麻个体总体亲缘关系较为密切。同时本研究选取5对核心引物对参试种质构建大麻指纹图谱,利用组合构成了大麻特有的DNA指纹,能够将这些材料逐一地区分开来。结果证实,大麻种质具有足够的遗传多样性。研究结果将为大麻杂交组合、标记辅助改良、种质资源保护和核心种质收集提供分子依据。
参考文献
Irakli M, Tsaliki E, Kalivas A, Kleisiaris F, Sarrou E, Cook C M. Effect οf genotype and growing year on the nutritional, phytochemical, and antioxidant properties of Industrial Hemp (Cannabis sativa L.) Seeds. Antioxidants (Basel, Switzerland), 2019, 8(10):491 [百度学术]
Bailey J K, Schweitzer J A, Ubeda F, Koricheva J, Leroy C J, Madritch M D, Rehill B J, Bangert R K, Fischer D G, Allan G J, Whitham T G. From genes to ecosystems: A synthesis of the effects of plant genetic factors across levels of organization. Biological Sciences, 2009, 364(1523): 1607-1616 [百度学术]
Haddad N M, Crutsinger G M, Gross K, Haarstad J, Tilman D. Plant diversity and the stability of foodwebs. Ecology Letters, 2011, 14(1): 42-46 [百度学术]
Zhang C, Vornam B, Volmer K, Prinz K, Kleemann F, Köhler L, Polle A, Finkeldey R. Genetic diversity in aspen and its relation to arthropod abundance. Frontiers in Plant Science, 2014, 5: 806 [百度学术]
Costa R, Pereira G, Garrido I, Tavares-De-Sousa M M, Espinosa F. Comparison of RAPD, ISSR, and AFLP molecular markers toreveal and classify orchardgrass (Dactylis glomerata L.) germplasm variations. PLoS ONE, 2016, 11(4): e0152972 [百度学术]
Sork V L, Aitken S N, Dyer R J, Eckert A J, Legendre P, Neale D B J T G. Putting the landscape into the genomics of trees: Approaches for understanding local adaptation and population responses to changing climate. Genomes, 2013, 9(4): 901-911 [百度学术]
Feng X J, Jiang G F, Fan Z. Identification of outliers in a genomic scan for selection along environmental gradients in the bamboo locust, Ceracris kiangsu. Scientific Reports, 2015, 5: 13758 [百度学术]
Rellstab C, Gugerli F, Eckert A J, Hancock A M, Holderegger R. A practical guide to environmental association analysis in landscape genomics. Molecular Ecology, 2015, 24(17): 4348-4370 [百度学术]
Li Y, Zhang X X, Mao R L, Yang J, Miao C Y, Li Z, Qiu Y X. Ten years of landscape genomics: Challenges and opportunities. Frontiers in Plant Science, 2017, 8:2136 [百度学术]
Li H, Ma Y, Pei F, Zhang H, Jiang M. Large-scale advances in SSR markers with high-throughput sequencing in Euphorbia fischeriana Steud. Electronic Journal of Biotechnology, 2021, 49:50-55 [百度学术]
Wang K, Lin Z, Wang L, Wang K, Shi Q, Du L, Ye X. Development of a set of PCR markers specific to Aegilops longissima chromosome arms and application in breeding a translocation line. Theoretical and Applied Genetics, 2018, 131(1): 13-25 [百度学术]
Daudi H, Shimelis H, Mathew I, Oteng-Frimpong R, Ojiewo C, Varshney R K. Genetic diversity and population structure of groundnut (Arachis hypogaea L.) accessions using phenotypic traits and SSR markers: Implications for rust resistance breeding. Genetic Resources and Crop Evolution, 2021, 68(2): 581-604 [百度学术]
Ren R, Xu J, Zhang M, Liu G, Yao X, Zhu L, Hou Q. Identification and molecular mapping of a gummy stem blight resistance gene in wild watermelon (Citrullus amarus) germplasm PI 189225. Plant Disease, 2020, 104(1): 16-24 [百度学术]
Chen C, Chang J, Wang S, Lu J, Liu Y, Si H, Sun G, Ma C. Cloning, expression analysis and molecular marker development of cinnamyl alcohol dehydrogenase gene in common wheat. Protoplasma, 2021, 258(4): 881-889 [百度学术]
Wu F, Ma S, Zhou J, Han C, Hu R, Yang X, Nie G, Zhang X. Genetic diversity and population structure analysis in a large collection of white clover (Trifolium repens L.) germplasm worldwide. PeerJ, 2021, 9:e11325 [百度学术]
Jiang W Z, Yao F J, Lu L X, Fang M, Wang P, Zhang Y M, Meng J J, Lu J, Ma X X, He Q, Shao K S. Genetic linkage map construction and quantitative trait loci mapping of agronomic traits in Gloeostereum incarnatum. Journal of Microbiology (Seoul, Korea), 2021, 59(1): 41-50 [百度学术]
Sun M, Dong Z, Yang J, Wu W, Zhang C, Zhang J, Zhao J, Xiong Y, Jia S, Ma X. Transcriptomic resources for prairie grass (Bromus catharticus): Expressed transcripts, tissue-specific genes, and identification and validation of EST-SSR markers. BMC Plant Biology, 2021, 21(1): 264 [百度学术]
徐照龙, 易金鑫, 余桂红, 张大勇, 何晓兰, 王秀娥, 马鸿翔. 藜科6种耐盐植物遗传多样性的EST-SSR分析. 植物遗传资源学报, 2011, 12(1): 113-120 [百度学术]
Xu Z L, Yi J X, Yu G H, Zhang D Y, He X L, Wang X E, Ma H X. EST-SSR based genetic diversity analysis on salt tolerant plants from six species in Chenopodiaceae. Journl of Plant Genetic Resources, 2011, 12(1):113-120 [百度学术]
张金渝, 杨维泽, 崔秀明, 金航, 虞泓, 陈中坚, 沈涛, 杨涛. 三七栽培居群遗传多样性的EST-SSR分析. 植物遗传资源学报, 2011, 12(2): 249-254 [百度学术]
Zhang J H, Yang W Z, Cui X M, Jin H, Yu H, Chen Z J, Shen T, Yang T. Arapid method for DNA extraction from plant tissue. Journl of Plant Genetic Resources, 2011, 12(2):249-254 [百度学术]
Zhang F, Wang C, Li M, Cui Y, Shi Y, Wu Z, Hu Z, Wang W, Xu J, Li Z. The landscape of gene-CDS-haplotype diversity in rice: Properties, population organization, footprints of domestication and breeding, and implications for genetic improvement. Molecular Plant, 2021, 14(5): 787-804 [百度学术]
张水明, 陈程, 陈芳芳, 汪天. 16个蝴蝶兰品种EST-SSR遗传多样性分析. 植物遗传资源学报, 2013, 14(3): 560-564 [百度学术]
Zhang S M, Chen C, Chen F F, Wang T. Analysis of genetic diversity of 16 phalaenopsis cultivars using EST-SSR markers. Journl of Plant Genetic Resources, 2013, 14(3): 560-564 [百度学术]
信朋飞, 臧巩固, 赵立宁, 高春生, 程超华. 大麻SSR标记的开发及指纹图谱的构建. 中国麻业科学, 2014, 36(4): 174-182 [百度学术]
Xin P F, Zang G G, Zhao L N, Gao C S,Cheng C H. Development of SSR markers and construction of fingerprint for Cannabis ( Cannabis sativa L. ) . Plant Fiber Sciences in China, 2014, 36(4): 174-182 [百度学术]
Wu X B, Duan L Z, Chen Q, Zhang D Q. Genetic diversity, population structure, and evolutionary relationships within a taxonomically complex group revealed by AFLP markers: A case study on Fritillaria cirrhosa D.Don and closely related species. Global Ecology and Conservation, 2020, 24: e01323 [百度学术]
Stavridou E, Lagiotis G, Kalaitzidou P, Grigoriadis I, Bosmali I, Tsaliki E, Tsiotsiou S, Kalivas A, Ganopoulos I, Madesis P. Characterization of the genetic diversity present in a diverse sesame landrace collection based on phenotypic traits and EST-SSR markers coupled with an HRM analysis. Plants (Basel, Switzerland), 2021, 10(4):656 [百度学术]
Peakall R, Smouse P E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics (Oxford, England), 2012, 28(19): 2537-2539 [百度学术]
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018, 35(6): 1547-1549 [百度学术]
Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155(2): 945-959 [百度学术]
Wang M L, Zhu C, Barkley N A, Chen Z, Erpelding J E, Murray S C, Tuinstra M R, Tesso T, Pederson G A, Yu J. Genetic diversity and population structure analysis of accessions in the US historic sweet sorghum collection. Theoretical and Applied Genetics, 2009, 120(1): 13-23 [百度学术]
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 2005, 14(8): 2611-2620 [百度学术]
Zheng Y, Zhang Z, Wan Y, Tian J, Xie W. Development of EST-SSR markers linked to flowering candidate genes in Elymus Sibiricus L. based on RNA Sequencing. Plants (Basel, Switzerland), 2020, 9(10):1371 [百度学术]
Fan M, Gao Y, Wu Z, Zhang Q. Linkage map development by EST-SSR markers and QTL analysis for inflorescence and leaf traits in Chrysanthemum (Chrysanthemum morifolium Ramat.). Plants (Basel, Switzerland), 2020, 9(10):1342 [百度学术]
Norman C E, Diane R E. Population genetic consequences of small population size: Implications for plant conservation. Annual Review of Ecology and Systematics, 1993, 24:217-242 [百度学术]
George J, Dobrowolski M P, Van Zijll De Jong E, Cogan N O, Smith K F, Forster J W. Assessment of genetic diversity in cultivars of white clover (Trifolium repens L.) detected by SSR polymorphisms. Genome, 2006, 49(8): 919-930 [百度学术]
Smith A L, Hodkinson T R, Villellas J, Catford J A, Csergő A M, Blomberg S P, Crone E E, Ehrlén J, Garcia M B, Laine A L, Roach D A, Salguero-Gómez R, Wardle G M, Childs D Z, Elderd B D, Finn A, Munné-Bosch S, Baudraz M E A, Bódis J, Brearley F Q, Bucharova A, Caruso C M, Duncan R P, Dwyer J M, Gooden B, Groenteman R, Hamre L N, Helm A, Kelly R, Laanisto L, Lonati M, Moore J L, Morales M, Olsen S L, Pärtel M, Petry W K, Ramula S, Rasmussen P U, Enri S R, Roeder A, Roscher C, Saastamoinen M, Tack A J M, Töpper J P, Vose G E, Wandrag E M, Wingler A, Buckley Y M. Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(8): 4218-4227 [百度学术]
Li Z, Yun L, Gao Z, Wang T, Ren X, Zhao Y. EST-SSR primer development and genetic structure analysis of Psathyrostachys juncea Nevski. Frontiers in Plant Science, 2022, 13:837787 [百度学术]
Shen G W, Li J S, Ren C Z, Hu Y G. Analysis of genetic diversity and population structure of oat germplasms from China and Canada.Journal of Triticeae Crops, 2010,30:617-624 [百度学术]
Zheng X, Cheng T, Yang L, Xu J, Tang J, Xie K, Huang X, Bao Z, Zheng X, Diao Y, You Y, Hu Z. Genetic diversity and DNA fingerprints of three important aquatic vegetables by EST-SSR markers. Scientific Reports, 2019, 9(1): 14074 [百度学术]