摘要
赤霉病严重影响小麦的产量和品质,利用抗病基因改良品种的赤霉病抗性是防治赤霉病危害的有效途径。为创制适用于黄淮麦区抗赤霉病小麦新品系,提高半冬性品种抗赤霉病育种效率。本研究以携带赤霉病抗性主效基因Fhb1、Fhb2、Fhb4和Fhb5的高秆抗赤霉病品系L06486为供体,与黄淮麦区丰产、广适但高感品种济麦24进行杂交,得到的杂种再与矮秆种质206A杂交,于F3至F6连续进行大规模育种田弥雾接种鉴定。通过田间选择,在F7获得106个新品系。采用单花滴注法对106份品系进行抗性评价,同时利用7个与抗赤霉病主效基因Fhb1、Fhb2、Fhb4和Fhb5紧密连锁的分子标记进行基因型分析。结果表明,与亲本济麦24相比,F7品系的赤霉病抗性明显提高。106份新品系中,有98份赤霉病抗性水平达中感以上;有105份携带1~4个抗病基因。Fhb1、Fhb2、Fhb4和Fhb5的检出频率分别为96.23%、41.51%、18.87%和87.74%。携有单个或多个抗性基因的小麦品系较不携带抗性基因的品系表现出更强的赤霉病抗性,聚合抗病基因越多,品系的赤霉病抗性越强。创制的14份携有Fhb1基因组合、中抗赤霉病且农艺性状优良的小麦新品系将为黄淮麦区小麦赤霉病抗性的改良提供帮助。
小麦赤霉病是影响小麦产量和品质最严重的世界性病害之一,造成的产量损失在全球病害中高居第二
小麦赤霉病抗性是多基因控制的数量性
黄淮麦区是我国小麦的主产区,其产量和品质直接关系到我国的粮食安全和食品安全。然而该麦区特别缺乏抗赤霉病的小麦新种质和新品种。国内外科研人员经过多年不懈努力,相继选育出一批赤霉病抗性较好且稳定的品种(系),如苏麦3号、望水白、Frontana等,但这些抗病品种往往伴有植株偏高、穗密度稀、产量低等不良农艺性状,难以在生产中得到应用。使用农艺性状改良后的抗赤霉病种质与黄淮麦区丰产品种杂交,有望能提高小麦赤霉病抗性育种效率。本研究利用携带抗赤霉病主效基因Fhb1、Fhb2、Fhb4和Fhb5的抗赤霉病改良新品系L06486与黄淮麦区丰产、广适品种济麦24进行杂交,得到的杂种再与矮秆种质206A杂交(济麦24/L06486//206A),并从F3开始到F6利用机械喷雾设施开展田间赤霉菌接种鉴定,在F7对获得的表型优良的稳定新品系采用单花滴注法进行抗病性精准评价,同时利用与Fhb1、Fhb2、Fhb4和Fhb5紧密连锁的7个分子标记进行检测,以期选育出适合黄淮麦区种植的赤霉病抗性强且农艺性状优良的小麦新品种(系)。
携带4个抗赤霉病主效基因Fhb1、Fhb2、Fhb4和Fhb5的高抗赤霉病品种望水白、品系L06486(由南京农业大学马正强老师提供),高感赤霉病的半冬性丰产、广适的小麦品种济麦24,矮秆小麦种质206A(由安徽省农科院作物所汪建来老师提供) ,106份高代品系(济麦24/L06486//206A),苏麦3号、郑麦9023、淮麦20、安农8455及黄淮麦区大面积种植品种济麦22。
2014-2020年,利用济麦24与L06486杂交,得到的杂种再与矮秆种质206A杂交,以后每代连续自交。从F3开始到F6,在小麦扬花期利用大型机械喷雾设施向小麦穗部均匀喷洒赤霉病分生孢子液(1×1
2021年10月,将106份高代品系及亲本济麦24、L06486和206A、对照品种苏麦3号(抗病)、郑麦9023(中抗)、淮麦20(中感)、安农8455(高感)及黄淮麦区大面积种植品种济麦22种植于濉溪柳湖试验基地,机器条播,每个品种种植6行,行长2.0 m,行距25 cm,株距3 cm。
赤霉病接种:采用单花滴注接种法,于小麦扬花期,在穗中部小穗的第1朵小花内,用微量移液器注射10 μL分生孢子悬浮液(1×1
病情记载:接种21 d后,调查病小穗数及严重度。小麦赤霉病严重度分级按《小麦抗赤霉病评价技术规范》(NY/T1443.4-2007)进行。以对照品种为标准,根据2次的平均严重度对供试品系进行抗性评价。具体分类标准为:抗病(R):平均严重度≤苏麦3号;中抗(MR):苏麦3号<平均严重度≤郑麦9023;中感(MS):郑麦9023<平均严重度≤淮麦20;感病(S):淮麦20<平均严重度≤安农8455,共4个等级。
以不含抗性基因的高感品种安农8455为对照,根据品系的平均严重度计算不同基因及基因组合的抗性基因效应,公式如下:
抗性基因效应=(携带抗性基因品系的平均严重度-不含抗性基因的高感对照安农8455的平均严重度)/不含抗性基因的高感对照安农8455的平均严重度
于返青期取小麦嫩叶,采用CTAB
基因 Gene | 标记名称 Marker name | 正向引物序列(5΄-3΄) Forward primer sequence(5΄-3΄) | 反向引物序列(5΄-3΄) Reverse primer sequence(5΄-3΄) | 退火温度(℃) Tm |
---|---|---|---|---|
Fhb1 | His-indel | ATGCGTGCGCTGTACTT | CGTCACAGAGTCCAGTGAAA | 62 |
Fhb2 | Wmc398 | GGAGATTGACCGAGTGGAT | CGTGAGAGCGGTTCTTTG | 60 |
Wgrb969 | ATGCCTGCTTGCTCACTG | TCCTATGCGTTCGGTTGG | 61 | |
Fhb4 | Gwm513 | ATCCGTAGCACCTACTGGTCA | GGTCTGTTCATGCCACATTG | 60 |
Gwm149 | CATTGTTTTCTGCCTCTAGCC | CTAGCATCGAACCTGAACAAG | 55 | |
Fhb5 | Wgrb0629 | CACGTATATGTGATGGTACTAC | TATGTGGATGCTAACAGC | 55 |
Mag9482 | CATGATTGATTCGATGACTATAATATCTT | TCTTTCTCCCGTTGCAATGT | 52 |
2014年利用济麦24与L06486进行杂交,获得的杂种优势明显但株高偏高,于2015年将杂种再与矮秆种质206A杂交后每代自交,于F3~F6连续4代进行大规模赤霉病弥雾接种鉴定(

图1 106份小麦品系的选育过程
Fig.1 Breeding process of 106 wheat lines
a:选育流程;b:鉴定圃发病症状
a: Breeding process; b:Fusarium symptom in the field
106份济麦24/L06486//206A组合高代品系的赤霉病病小穗数较感病亲本济麦24有大幅度减少(

图2 亲本及F7的赤霉病抗性表现
Fig.2 FHB resistance of parents and F7 progeny
品种(系) Cultivar (Line) | 严重度 Average severity | 抗性评价 Resistance evaluation | 可能含有基因 Postulated gene | 品种(系) Cultivar (Line) | 严重度 Average severity | 抗性评价 Resistance evaluation | 可能含有基因 Postulated gene | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fhb1 | Fhb2 | Fhb4 | Fhb5 | Fhb1 | Fhb2 | Fhb4 | Fhb5 | ||||||
L06486 | 1.00 | R | + | + | + | + | 21-7148 | 2.10 | MR | + | + | - | + |
济麦24 Jimai 24 | 3.60 | S | - | - | - | - | 21-7149 | 2.10 | MR | + | + | - | + |
苏麦3号 Sumai 3 | 1.00 | R | + | + | - | + | 21-7150 | 2.10 | MR | + | + | - | + |
21-7115 | 1.30 | MR | + | + | - | + | 21-7151 | 2.10 | MR | + | + | - | + |
21-7116 | 1.30 | MR | + | + | - | + | 21-7152 | 2.10 | MR | + | - | + | + |
21-7117 | 1.30 | MR | + | + | - | - | 21-7153 | 2.10 | MR | + | - | - | + |
21-7118 | 1.30 | MR | + | - | + | + | 21-7154 | 2.10 | MR | + | - | - | + |
21-7119 | 1.30 | MR | + | - | - | + | 21-7155 | 2.10 | MR | + | - | - | + |
21-7120 | 1.40 | MR | + | + | + | + | 21-7156 | 2.20 | MR | + | + | - | + |
21-7121 | 1.40 | MR | + | + | - | + | 21-7157 | 2.20 | MR | + | + | - | + |
21-7122 | 1.40 | MR | + | + | - | + | 21-7158 | 2.20 | MR | + | + | - | + |
21-7123 | 1.40 | MR | + | + | - | - | 21-7159 | 2.20 | MR | + | + | - | + |
21-7124 | 1.40 | MR | + | - | + | + | 21-7160 | 2.20 | MR | + | + | - | + |
21-7125 | 1.50 | MR | + | + | + | + | 21-7161 | 2.20 | MR | + | - | - | + |
21-7126 | 1.50 | MR | + | + | - | - | 21-7162 | 2.20 | MR | + | - | - | + |
21-7127 | 1.50 | MR | + | - | + | + | 21-7163 | 2.20 | MR | + | - | - | + |
21-7128 | 1.50 | MR | + | - | - | + | 21-7164 | 2.20 | MR | + | - | - | + |
21-7129 | 1.60 | MR | + | + | - | + | 郑麦9023 Zhengmai 9023 | 2.20 | MR | - | - | - | - |
21-7130 | 1.70 | MR | + | - | + | + | 21-7165 | 2.30 | MS | + | + | - | + |
21-7131 | 1.90 | MR | + | + | - | + | 21-7166 | 2.30 | MS | + | - | + | + |
21-7132 | 1.90 | MR | + | - | - | + | 21-7167 | 2.30 | MS | + | - | + | + |
21-7133 | 2.00 | MR | + | + | + | + | 21-7168 | 2.30 | MS | + | - | + | + |
21-7134 | 2.00 | MR | + | + | - | + | 21-7169 | 2.30 | MS | + | - | - | + |
21-7135 | 2.00 | MR | + | + | - | + | 21-7170 | 2.30 | MS | + | - | - | + |
21-7136 | 2.00 | MR | + | + | - | + | 21-7171 | 2.30 | MS | + | - | - | + |
21-7137 | 2.00 | MR | + | + | - | - | 21-7172 | 2.30 | MS | - | + | - | + |
21-7138 | 2.00 | MR | + | - | + | + | 21-7173 | 2.40 | MS | + | - | + | + |
21-7139 | 2.00 | MR | + | - | + | + | 21-7174 | 2.40 | MS | + | - | + | + |
21-7140 | 2.00 | MR | + | - | - | + | 21-7175 | 2.40 | MS | + | - | + | + |
21-7141 | 2.00 | MR | + | - | - | + | 21-7176 | 2.40 | MS | + | - | - | + |
21-7142 | 2.00 | MR | + | - | - | + | 21-7177 | 2.50 | MS | + | + | - | + |
21-7143 | 2.00 | MR | + | - | - | + | 21-7178 | 2.50 | MS | + | + | - | - |
21-7144 | 2.00 | MR | + | - | - | + | 21-7179 | 2.50 | MS | + | - | - | + |
21-7145 | 2.00 | MR | + | - | - | + | 21-7180 | 2.50 | MS | - | + | - | + |
21-7146 | 2.00 | MR | + | - | - | + | 21-7181 | 2.60 | MS | + | + | - | + |
21-7147 | 2.00 | MR | + | - | - | + | 21-7182 | 2.60 | MS | + | + | - | + |
21-7183 | 2.60 | MS | + | - | + | + | 21-7203 | 3.10 | MS | + | + | - | + |
21-7184 | 2.60 | MS | + | - | + | + | 21-7204 | 3.10 | MS | + | - | + | + |
21-7185 | 2.60 | MS | + | - | - | + | 21-7205 | 3.10 | MS | + | - | - | + |
21-7186 | 2.60 | MS | + | - | - | + | 21-7206 | 3.10 | MS | + | - | - | - |
21-7187 | 2.70 | MS | + | + | - | + | 21-7207 | 3.10 | MS | + | - | - | - |
21-7188 | 2.70 | MS | + | + | - | + | 21-7208 | 3.20 | MS | + | + | - | - |
21-7189 | 2.70 | MS | + | + | - | + | 21-7209 | 3.20 | MS | + | - | - | + |
21-7190 | 2.70 | MS | + | - | - | + | 21-7210 | 3.20 | MS | + | - | - | + |
21-7191 | 2.70 | MS | + | - | - | + | 21-7211 | 3.20 | MS | + | - | - | + |
21-7192 | 2.70 | MS | + | - | - | + | 21-7212 | 3.20 | MS | + | - | - | - |
21-7193 | 2.70 | MS | + | - | - | + | 淮麦20 Huaimai 20 | 3.20 | MS | - | - | - | - |
21-7194 | 2.80 | MS | + | + | - | + | 21-7213 | 3.30 | S | + | + | - | + |
21-7195 | 2.80 | MS | + | - | + | + | 21-7214 | 3.30 | S | + | + | - | - |
21-7196 | 2.80 | MS | + | - | - | + | 21-7215 | 3.30 | S | + | - | - | + |
21-7197 | 2.90 | MS | + | - | - | + | 21-7216 | 3.30 | S | + | - | - | + |
21-7198 | 2.90 | MS | + | - | - | - | 21-7217 | 3.50 | S | - | - | - | - |
21-7199 | 3.00 | MS | + | + | - | + | 21-7218 | 3.40 | S | + | + | - | - |
21-7200 | 3.00 | MS | + | - | - | + | 21-7219 | 3.30 | S | - | - | - | + |
21-7201 | 3.00 | MS | + | - | - | + | 21-7220 | 3.80 | S | + | + | - | + |
21-7202 | 3.00 | MS | + | + | - | + | 安农8455 Annong 8455 | 4.00 | S | - | - | - | - |
+ 表示检测到所测基因;-表示未检测到所测基因。R:抗病;MR:中抗;MS:中感;S:感病;下同
+ indicates that gene was detected; -indicates that no gene was detected. R: Resistant; MR: Moderately resistant; MS: Moderately susceptible; S: Susceptible; The same as below
利用与抗赤霉病基因位点Fhb1、Fhb2、Fhb4和Fhb5紧密连锁的分子标记对106份供试品系进行基因型分析,结果表明,在106份供试品系中,有105份品系携带有抗病基因(
Gene位点 Gene locus | 品系数 No. of varieties | 平均严重度 Average severity | 抗性基因效应(%) Effect of resistance genes | ||||
---|---|---|---|---|---|---|---|
中抗 MR | 中感 MS | 感 S | 总计 Total | 均值 Mean | 范围 Range | ||
安农8455 Annong 8455 | 4.00a | — | |||||
None | 0 | 0 | 1 | 1 | 3.50a | — | -12.50 |
Fhb5 | 0 | 0 | 1 | 1 | 3.30b | — | -17.50 |
Fhb1 | 0 | 4 | 0 | 4 | 3.08b | 2.9~3.2 | -23.00 |
Fhb1+ Fhb2 | 4 | 2 | 2 | 8 | 2.33c | 1.3~3.4 | -41.75 |
Fhb1+ Fhb5 | 18 | 19 | 2 | 39 | 2.36c | 1.3~3.3 | -41.00 |
Fhb2+ Fhb5 | 0 | 2 | 0 | 2 | 2.40c | 2.3~2.5 | -40.00 |
Fhb1+ Fhb2+ Fhb5 | 18 | 11 | 2 | 31 | 2.20c | 1.3~3.8 | -45.00 |
Fhb1+ Fhb4+ Fhb5 | 7 | 10 | 0 | 17 | 2.31c | 1.3~3.1 | -42.25 |
Fhb1+ Fhb2+ Fhb4+ Fhb5 | 3 | 0 | 0 | 3 | 1.63d | 1.4~2.0 | -59.25 |
None表示不含抗性基因位点;不同小写字母分别代表在P<0.05水平上差异显著,下同
None indicates no gene locus was detected;Different lowercase letters indicate significant differences at P<0.05 level,the same as below
根据分子标记检测和单花滴注鉴定结果,对携带不同抗性基因及其组合的小麦品系赤霉病鉴定级别进行统计分析,结果如
与不携带抗性基因的品系相比,携有单个或多个抗性基因的小麦品系的平均严重度均较低。携带抗病基因越多,严重度均值越低,同时抗性品系出现的频率越高,说明聚合多个抗赤霉病基因可以有效提高品种的抗赤霉病水平。
对106份供试材料中50份中抗赤霉病品系开展田间农艺性状调查及室内考种,以黄淮麦区大面积种植品种济麦22为对照品种,结果表明(
品种(系) Cultivar (Line) | 千粒重 (g)1000-grain weight | 株高(cm) Plant height | 穗长(cm) Spike length | 小穗数 Spikelets per spike | 穗粒数 Kernel per spike | 小穗密度 Spikelet density | 产量(kg/h Yield |
---|---|---|---|---|---|---|---|
济麦22 Jimai 22 | 44.00c | 80.33b | 9.33a | 21.33a | 47.67b | 2.29b | 9379.50b |
21-7115 | 45.20b | 83.00b | 8.33b | 19.00b | 38.00c | 2.29b | 9671.55b |
21-7116 | 48.44a | 81.67b | 8.67b | 19.33b | 29.33d | 2.23b | 8738.65c |
21-7117 | 45.16b | 76.67c | 8.33b | 18.33c | 45.67c | 2.21b | 9592.50b |
21-7118 | 47.20b | 81.33b | 7.67c | 18.67b | 34.00c | 2.44b | 8537.55c |
21-7119 | 43.36c | 81.00b | 7.50c | 18.33c | 38.00c | 2.45b | 8437.55c |
21-7120 | 45.56b | 82.33b | 8.33b | 19.67b | 49.67b | 2.36b | 8437.55c |
21-7121 | 46.64b | 83.00b | 7.83c | 19.00b | 44.67c | 2.42b | 9704.85b |
21-7122 | 47.24b | 78.33c | 8.33b | 20.00b | 47.33b | 2.40b | 10772.05a |
21-7123 | 44.32c | 77.33c | 8.33b | 19.00b | 44.00c | 2.29b | 10005.00b |
21-7124 | 48.84a | 77.67c | 9.17a | 19.67b | 39.67c | 2.15b | 9404.70b |
21-7125 | 48.72a | 80.00b | 8.00c | 20.00b | 41.00c | 2.50a | 9671.50b |
21-7126 | 45.36b | 81.67b | 8.33b | 19.33b | 38.00c | 2.32b | 10171.75a |
21-7127 | 45.16b | 77.33c | 9.17a | 21.00a | 40.67c | 2.29b | 9271.30b |
21-7128 | 45.68b | 75.67c | 8.33b | 19.00b | 36.00c | 2.29b | 8137.40d |
21-7129 | 45.36b | 79.00c | 9.33a | 20.33b | 44.33c | 2.18b | 9638.15b |
21-7130 | 46.92b | 79.33c | 9.33a | 19.67b | 35.00c | 2.13b | 10772.05a |
21-7131 | 47.04b | 77.00c | 8.00c | 19.00b | 35.00c | 2.38b | 8237.45d |
21-7132 | 48.96a | 77.33c | 9.00b | 17.67c | 40.67c | 1.97c | 8270.80c |
21-7133 | 49.80a | 74.33c | 8.83b | 21.00a | 62.00a | 2.38b | 9237.95b |
21-7134 | 47.80a | 76.33c | 7.17c | 19.00b | 43.33c | 2.65a | 9137.90c |
21-7135 | 46.40b | 86.33c | 8.33b | 18.33c | 41.67c | 2.21b | 9792.00b |
21-7136 | 44.32c | 83.67c | 8.50b | 20.33b | 45.67c | 2.40b | 8337.50c |
21-7137 | 47.76a | 79.67c | 7.17c | 18.00c | 34.33c | 2.51a | 8170.75d |
21-7138 | 47.80a | 77.33c | 8.83b | 19.33b | 39.00c | 2.20b | 9137.90c |
21-7139 | 48.12a | 77.67c | 9.17a | 21.00a | 51.00b | 2.29b | 9604.80b |
21-7140 | 48.16a | 81.00b | 7.83c | 17.67c | 38.00c | 2.26b | 9304.65b |
21-7141 | 47.76a | 80.67b | 8.33b | 20.00b | 38.00c | 2.41b | 8437.55c |
21-7142 | 48.00a | 81.67b | 8.00c | 20.67b | 48.33b | 2.60a | 7503.75d |
21-7143 | 44.24c | 79.00c | 7.50c | 18.33c | 40.00c | 2.45b | 7537.10d |
21-7144 | 43.76c | 79.00c | 7.33c | 17.67c | 39.00c | 2.42b | 8771.05c |
21-7145 | 41.40c | 81.00b | 8.07c | 19.00b | 41.67c | 2.38b | 8604.30c |
21-7146 | 44.44c | 81.67b | 7.67c | 18.00c | 40.33c | 2.35b | 8204.10d |
21-7147 | 44.96c | 83.67b | 8.67b | 19.33b | 43.00c | 2.24b | 8637.65c |
21-7148 | 47.92a | 78.67c | 8.50b | 21.67a | 47.67b | 2.55a | 8671.00c |
21-7149 | 45.96b | 77.67c | 7.33c | 18.00c | 39.67c | 2.46b | 8170.75d |
21-7150 | 44.80c | 78.33c | 7.67c | 17.33c | 43.33c | 2.27b | 9459.00b |
21-7151 | 48.80a | 80.67b | 9.00b | 22.67a | 65.67a | 2.52a | 8404.20c |
21-7152 | 48.00a | 77.00c | 7.67c | 18.67b | 44.33c | 2.44b | 10371.85a |
21-7153 | 47.92a | 77.33c | 8.17b | 19.00.b | 38.00c | 2.33b | 8937.80c |
21-7154 | 48.28a | 78.00c | 8.00c | 19.33b | 46.33c | 2.42b | 8904.45c |
21-7155 | 45.20b | 79.33c | 7.00d | 17.67c | 37.33c | 2.52a | 9237.95b |
21-7156 | 46.92b | 76.33c | 7.83c | 19.33b | 43.33c | 2.48b | 9603.00b |
21-7157 | 46.64b | 78.33c | 7.67c | 20.00b | 39.33c | 2.63a | 8570.95c |
21-7158 | 48.92a | 85.00b | 6.83d | 17.67c | 37.33c | 2.59a | 9738.20b |
21-7159 | 48.96a | 83.00b | 8.00c | 18.00c | 41.67c | 2.26b | 9204.60b |
21-7160 | 48.80a | 79.33c | 8.33b | 20.00b | 46.33c | 2.41b | 8404.20c |
21-7161 | 46.80b | 76.33c | 7.33c | 19.33b | 40.00c | 2.64a | 10438.55a |
21-7162 | 46.64b | 82.00b | 8.33b | 17.00c | 38.00c | 2.05b | 10938.80a |
21-7163 | 45.56b | 82.67b | 8.83b | 22.33a | 48.67b | 2.52a | 10305.15a |
21-7164 | 44.16c | 77.00c | 7.50c | 18.67b | 40.67c | 2.49b | 10171.75a |
长江中下游麦区是我国小麦赤霉病的重发区,发病环境稳定,抗病种质资源丰富。该麦区选育的小麦品种赤霉病抗性较好且稳定。黄淮麦区历史上缺少发病环境,赤霉病的发生年度间变化很大,难以在田间条件下对育种材料进行准确的表型鉴定。对于育种分离群体,目前只能以表型鉴定为主进行淘汰和筛选。因此,为育种试验田创造充分发病条件对抗赤霉病育种极其重要。本研究利用大型机械喷雾设施向小麦穗部均匀喷洒赤霉病分生孢子液的方法,对育种田进行大规模赤霉病弥雾接种鉴定。不同材料发病充分,品系间病小穗率差异显著。该方法利于大田操作,为育种田创造了充分且稳定的发病环境。筛选出的106份F7品系中,有105份材料携带1~4个抗性基因,中抗及中感材料占92.45%,其中14份中抗赤霉病材料的丰产性接近黄淮麦区大面积种植品种济麦22。该接种方法发挥了从低代即对农艺性状和抗病性同时进行筛选的优势,不仅提高了抗赤霉病育种的选择效率,还可以有效防止后代中抗赤霉病基因的丢失。
Fhb1、Fhb2、Fhb4和Fhb5是目前已报道的赤霉病抗性效应值较大且稳定的基
本研究也发现除携带Fhb5的1份品系表现为感病外,聚合Fhb1+Fhb2、Fhb2+Fhb5和Fhb1+Fhb2+Fhb5的品系也有少部分表现为感病,表明携带赤霉病抗性主效基因的品系也不一定具有抗性,类似的结果在前人的研究中也有报
本研究筛选出50份聚合不同基因组合的中抗赤霉病材料,实现了抗赤霉病基因向黄淮麦区骨干亲本中转移和积累。其中21-7116、21-7120、21-7121、21-7122、21-7125、21-7126、21-7129、21-7132、21-7138、21-7151、21-7160、21-7161、21-7162和21-7163共14份品系均为携有Fhb1多基因组合且农艺性状优良的小麦新品系,这些品系将为黄淮麦区小麦赤霉病抗性的改良提供帮助。
利用大型机械喷雾设施,对育种田进行大规模赤霉病弥雾接种鉴定,为育种试验田创造的充分发病条件。实现了田间抗赤霉病表型和农艺性状的同步筛选,结合分子标记辅助选择将不同位点抗性QTL聚合,有效提高了抗赤霉病育种效率及准确性。创制的14份聚合多个抗病基因、中抗赤霉病新品系,具有良好的农艺性状表现和产量潜力,将为黄淮麦区小麦赤霉病抗性的改良提供帮助。
参考文献
马鸿翔, 王永刚, 高玉姣, 何漪, 姜朋, 吴磊, 张旭. 小麦抗赤霉病育种回顾与展望. 中国农业科学, 2022, 55(5): 837-855 [百度学术]
Ma H X, Wang Y G, Gao Y J, He Y, Jiang P, Wu L, Zhang X. Review and prospect on the breeding for the resistance to fusarium head blight in wheat. Scientia Agricultura Sinica, 2022, 55(5): 837-855 [百度学术]
Figueroa M, Hammond-kosack K E, Solomon P S. A review of wheat disease-a field perspective. Molecular Plant Pathology, 2018, 19(6): 1523-1536 [百度学术]
程顺和, 张勇, 别同德, 高德荣, 张伯桥. 中国小麦赤霉病的危害及抗性遗传改良. 江苏农业学报, 2012, 28(5): 938-942 [百度学术]
Cheng S H, Zhang Y, Bie T D, Gao D R, Zhang B Q. Damage of wheat fusarium head blight (FHB) epidemics and genetic improvement of wheat for scab resistance in China. Jiangsu Journal Agricultural Science, 2012, 28(5): 938-942 [百度学术]
史建荣, 仇剑波, 董飞, 徐剑宏, 祭芳, 刘馨, 俞明正. 小麦镰刀菌毒素及其发生风险研究进展. 麦类作物学报, 2016, 36 (2):129-135 [百度学术]
Shi J R, Qiu J B, Dong F, Xu J H, Ji F, Liu X, Yu M Z. Risks of Fusarium toxins of wheat in China. Journal of Triticeae Crops, 2016, 36 (2):129-135 [百度学术]
Yin Y N, Liu X, Li B, Ma Z H. Characterization of sterol demethylation inhibitor-resistant isolates of Fusarium asiaticum and F. graminearum collected from wheat in China. Phytopathology, 2009, 99 (5):487-497 [百度学术]
Dweba C C, Figlan S, Shimelis H A, Motaung T E, Sydenham S, Mwadzingeni L, Tsilo T J. Fusarium head blight of wheat: Pathogenesis and control strategies. Crop Protection, 2017, 91: 114-122 [百度学术]
Xue S L, Li G Q, Jia H Y, Xu F, Lin F, Tang M Z, Wang Y, An X, Xu H B, Zhang L X, Kong Z X, Ma Z Q. Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2010, 121(1):147-156 [百度学术]
Ma Z, Xie Q, Li G, Jia H, Zhou J, Kong Z, Li N, Yuan Y. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theoretical and Applied Genetics, 2020, 133: 1541-1568 [百度学术]
许峰, 闫素辉, 张从宇, 时侠清, 李文阳, 张子学. 基于MAS的小麦抗赤霉病育种材料抗性评价. 植物遗传资源学报, 2016, 17(1): 132-139 [百度学术]
Xu F, Yan S H, Zhang C Y, Shi X Q, Li W Y, Zhang Z X. Comprehensive evaluation of breeding materials for resistance to wheat scab based on MAS. Journal of Plant Gnenetic Resources, 2016, 17(1): 132-139 [百度学术]
Buerstmayr M, Steiner B, Buerstmayr H. Breeding for Fusarium head blight resistance in wheat-progress and challenges. Plant Breeding, 2020, 139(3): 429-454 [百度学术]
蒋正宁, 吕国锋, 王玲, 陈甜甜, 江伟, 李东升, 高德荣, 张勇. 扬麦品种(系)赤霉病抗扩展性基因分子检测及其抗性评价. 麦类作物学报, 2019, 39(12): 1406-1415 [百度学术]
Jiang Z N, Lv G F, Wang L, Chen T T, Jiang W, Li D S, Gao D R, Zhang Y. Evaluation of Fusarium head blight resistance and molecular detection of typeⅡ resistance genes in Yangmai wheat cultiveers (lines). Journal of Triticeae Crops, 2019, 39(12): 1406-1415 [百度学术]
Yi X, Cheng J Y, Jiang Z N, Hu W J, Bie T D, Gao D R, Li D S, Wu R L, Li Y L, Chen S L, Cheng X M, Liu J, Zhang Y, Cheng S H. Genetic analysis of fusarium head blight resistance in CIMMYT bread wheat line C615 using traditional and conditional QTL mapping. Front Plant, 2018, 9: 573-585 [百度学术]
Guo J, Zhang X L, Hou Y L, Cai J J, Kong L R. High-density mapping of the major fhb resistance gene fhb7 derived from thinopyrum ponticum and its pyramiding with fhb1 by marker-assisted selection. Theoretical and Applied Genetics, 2015, 128 (11): 2301-2316 [百度学术]
Cainong J C , Bockus W W, Feng Y G, Chen P D, Qi L L, Sehgal S K, Danilova T V, Koo D H, Friebe B, Gill B S. Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from Elymus tsukushiensis into wheat. Theoretical and Applied Genetics, 2015, 128(6):1-9 [百度学术]
Qi L L , Pumphrey M O , Friebe B , Pdcs G. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theoretical and Applied Genetics, 2008, 117(7): 1155-1166 [百度学术]
刘易科, 佟汉文, 朱展望, 陈泠, 邹娟, 张宇庆, 焦春海, 高春保. 小麦赤霉病抗性改良研究进展. 麦类作物学报, 2016, 36(1): 51-57 [百度学术]
Liu Y K, Tong H W, Zhu Z W, Chen L, Zou J, Zhang Y Q, Jiao C H, Gao C B. Review on improvement of Fusarium head blight resistance in wheat. Journal of Triticeae Crops, 2016, 36(1): 51-57 [百度学术]
Bernardo A, Bai G, Yu J, Kolb F, Bockus W, Dong Y. Registration of near-isogenic winter wheat germplasm contrasting in Fhb1 for Fusarium head blight resistance. Journal of Plant Regist, 2014, 8(1): 106-108 [百度学术]
Randhawa H S, Asif M, Pozniak C, Clarke J M, Graf R J, Fox S L, Humphreys D G, Knox R E, DePauw R M, Singh A K, Cuthbert R D, Hucl P, Spaner D. Application of molecular markers to wheat breeding in Canada. Plant Breeding, 2013, 132: 458-471 [百度学术]
Xie G Q, Zhang M C, Chakraborty S, Liu C J. The effect of 3BS locus of Sumai 3 on Fusarium head blight resistance in Australian wheats. Australian Journal of Experimental Agriculture, 2007, 47: 603-607 [百度学术]
Salameh A, Buerstmayr M, Steiner B, Neumayer A, Lemmens M, Buerstmayr H. Effects of introgression of two QTL for Fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on Fusarium head blight resistance, yield and quality traits. Molecular Breeding, 2011, 28(4): 485-494 [百度学术]
Porebski S, Bailey L G, Baum B R. Modification of a ctab dna extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 1997, 15(1): 8-15 [百度学术]
Su Z Q, Bernardo A, Tian B, Chen H, Bai G H. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nature Genetics, 2019, 51(7): 1-7 [百度学术]
Mesterhazy A. Updating the breeding philosophy of wheat to Fusarium head blight: Resistance components, QTL identification and phenotyping-a review. Plants, 2020, 9: 1702 [百度学术]
胡文静,高德荣,江伟,廖森,马红勃,张晓祥.黄淮麦区71个小麦品种的赤霉病抗性与基因型分析.麦类作物学报, 2021,41(12):1479-1486 [百度学术]
Hu W J, Gao D R, Jiang W, Liao S, Ma H B, Zhang X X. Analysis of resistance to fusarium head blight and genotype in 71 cultivars in huang-huai river wheat zone. Journal of Triticeae Crops, 2021,41(12):1479-1486 [百度学术]
张煜,李正玲,王震,张彬,王会伟,李金秀,李金榜,胡琳,常东伟. 黄淮南部麦区小麦赤霉病抗性鉴定及基因型分析. 麦类作物学报, 2020, 40 (3): 270-277 [百度学术]
Zhang Y, Li Z L, Wang Z, Zhang B, Wang H W, Li J X, Li J B, Hu L, Chang D W. Identification of the resistance to fusarium head blight of wheat in the south of huang-huai wheat zone and genotype analysis of resistant cultivars. Journal of Triticeae Crops, 2020, 40 (3): 270-277 [百度学术]
张彬,李金秀,王震,袁清川,李金榜.黄淮南片麦区主栽小麦品种对赤霉病抗性分析. 植物保护, 2018, 44(2):190-194 [百度学术]
Zhang B, Li J X, Wang Z, Yuan Q C, Li J B. Resistance of major wheat cultivars to wheat scab in the south of huang-huai wheat zone. Plant Protection, 2018, 44(2):190-194 [百度学术]
徐婷婷,王永军,狄佳春,孙苏阳,蔡士宾,汪巧玲,邹淑琼,朱银,杨欣, 颜伟.小麦抗赤霉病鉴定及其抗病基因的检测. 麦类作物学报, 2019, 39(11):1301-1308 [百度学术]
Xu T T, Wang Y J, Di J C, Sun S Y, Cai S B, Wang Q L, Zou S Q, Zhu Y, Yang X, Yan W. Identification of scan-resistance wheat varieties and detection of disease resistance genes. Journal of Triticeae Crops, 2019, 39(11):1301-1308 [百度学术]
许峰,李文阳,闫素辉,张从宇,郑甲成,杜军丽,张子学,时侠清.小麦抗赤霉病主效QTL的聚合效应分析.麦类作物学报, 2017, 37(5):585-593 [百度学术]
Xu F, Li W Y, Yan S H, Zhang C Y, Zheng J C, Du J L, Zhang Z X, Shi X Q. Analysis of pyramiding effect of major QTLs for resistance to scab in wheat. Journal of Triticeae Crops, 2017, 37(5):585-593 [百度学术]
廖森,方正武,胡文静,王书平,王晓玲,吴荣林,江伟,高德荣. 59份江苏小麦品种(系)的抗赤霉病评价与农艺性状分析. 麦类作物学报, 2022, 42(3): 297-305 [百度学术]
Liao S, Fang Z W, Hu W J, Wang S P, Wang X L, Wu R L, Jiang W, Gao D R. Evaluation of resistance to fusarium head blight and analysis of agronomic traits of 59 wheat germplasm in Jiangsu province. Journal of Triticeae Crops, 2022, 42(3): 297-305 [百度学术]
贾宝森,徐锐,熊泽浩,高德荣,王书平,王晓玲,方正武.198份小麦种质资源赤霉病综合抗性鉴定及其FHB1抗性基因检测. 江苏农业科学, 2021, 49(23): 104-108 [百度学术]
Jia B S, Xu R, Xiong Z H, Gao D R, Wang S P, Wang X L, Fang Z W. Identification of comprehensive resistance of 198 wheat germplasm resources to fusarium head blight and detection of FHB1 resistance gene. Jiangsu Agricultural Science, 2021,49(23): 104-108 [百度学术]