摘要
芒是麦类作物穂部器官的重要组成部分,在提高籽粒产量、促进种子传播和防御虫害等方面具有重要作用。大麦具有丰富的芒型突变体,加之其二倍体的特性,成为麦类作物芒器官形态建成研究的理想作物。本研究报道了一个大麦芒型突变体材料calcaroides,表现为外稃顶端或是稃芒基部异形凸起,形成呈钩状不完全花器结构,属基部钩芒类型。突变体芒较短并伴随抽穗期推迟,株高、穗长和穗粒数显著降低等表型。遗传分析表明,突变体的芒型突变性状受单隐性基因cal-d控制。前期利用cal-d导入系BW106 × Bowman的F2群体,结合简化基因组测序(GBS,genotyping by sequencing)分析,将cal-d基因初步定位于3H染色体。进一步利用来自F2的杂合单株,包括13000株单株的F2:3群体进行精细定位,最终将cal-d基因定位于3H染色体153~329 Mb区间的近着丝粒区域。通过转录组混池测序分析结合大麦基因组和表达谱资源数据库,初步筛选了9个候选基因。本研究结果为大麦芒型突变基因cal-d的克隆与功能验证奠定了基础,对于解析麦类作物芒的遗传发育机制具有重要的意义。
大麦(Hordeum vulgare L.)因其优良的适应性和耐逆性,在世界范围内广泛种植。芒是外稃尖端延伸而出的针状结构,是禾本科作物的重要穗部性
大麦芒型变异丰富、遗传稳定,是形态学变种分类的重要依据,在形态上主要分为直芒和钩芒两大
大麦中已经鉴定了大量的芒发育异形突变体,但只有少数基因被克隆,如钩芒基因HvKnox
本研究的大麦芒型突变体cal-d由育成品种Foma经X射线诱变产生,与轮回亲本Bowman进行多代回交得到近等基因系BW106,其穗部稃芒表型与突变体cal-d一致。BW106与Bowman杂交构建定位群体,亲本与杂种F1及F2群体种植于中国农业科学院作物科学研究所东圃场,1 m行长,每行15株,试验田间管理同于大麦大田生产。温室盆栽种植来自F2杂合植株的F2:3分离群体,每盆种植1株。成熟后考察单株穗子芒型,使用刻度标尺(精度0.1 cm)测量株高与穗长,并统计穗粒数。农艺性状测量参考《大麦种质资源描述规范和数据标准
在幼苗三叶期,选取F2分离群体的370株单株及亲本Bowman、BW106的叶片,利用改良CTAB
标记 Marker | 引物名称 Primer name | 引物序列(5′-3′) Primer sequence(5′-3′) |
---|---|---|
M1 | FAM-F | CGCTGCTCCATAGTTTTGGGGGGT |
HEX-F | CGCTGCTCCATAGTTTTGGGGGGG | |
Common-R | GTACATATATGGTGTCCTTTGCG | |
M2 | FAM-F | CGCACGCACGCCATAATTGGTCGC |
HEX-F | CGCACGCACGCCATAATTGGTCGT | |
Common-R | CCGGCGACCGCGTCGGCGTC | |
M3 | FAM-F | TCATAAAGCGACTGACAATGCCGAC |
HEX-F | TCATAAAGCGACTGACAATGCCGAT | |
Common-R | TTACTTGGTGAACACAAGACC | |
M4 | FAM-F | CAACCCCAACTGCATGAATGCACTA |
HEX-F | CAACCCCAACTGCATGAATGCACTG | |
Common-R | ATCCGGAGCGCCTGAGCTTAAA | |
M5 | FAM-F | TCAGGCGGCTTAATATACATTG |
HEX-F | TCAGGCGGCTTAATATACATTA | |
Common-R | ATCAAAACCGTTTTCCAGTA | |
M6 | FAM-F | TGGTGGCAGGGAGATATTTTTTTTTT |
HEX-F | TGGTGGCAGGGAGATATTTTTTTTTG | |
Common-R | AATAACGCATCACCAGCTGGTGC | |
M8 | FAM-F | TGGATGGATGCTATCAACACTTGC |
HEX-F | TGGATGGATGCTATCAACACTTGG | |
Common-R | TCTGCCAGAGAATACTAACTAC | |
M9 | FAM-F | TCGACGTTGTTTTGCTGACATTTCG |
HEX-F | TCGACGTTGTTTTGCTGACATTTCA | |
Common-R | TTGGTATGGAAATCGAGGCAGG | |
M10 | Forward | GATTTCTTTGGGAGGGACGG |
Reverse | TTTGGAGGCCTCTTGTCAGT |
在F2交换单株中分别选取野生直芒表型和基部钩芒cal-d突变表型的等量DNA,各自分别混合成一组用于外显子测序分析。其中野生型池包括BW106_Bo_1_69、BW106_Bo_2_16、BW106_Bo_3_4、BW106_Bo_3_44、BW106_Bo_5_18和BW106_Bo_5_75,突变型池包括BW106_Bo_1_3、BW106_Bo_2_47、BW106_Bo_2_48、BW106_Bo_4_26和BW106_Bo_5_21(野生型池和突变型池的编号为材料名称+果穗序号+单株序号)。使用标准大麦外显子组捕获实验方
为获得突变基因cal-d的遗传变异,选择F2不同发育时期(长度)的幼穗进行转录组测序。分别选取野生型长度为0.4 cm、0.6 cm、1.2 cm、1.5 cm和3.0 cm,突变体长度为0.6 cm、0.8 cm、1.2 cm、1.5 cm和3.0 cm的新鲜幼穗,相同时期取8个幼穗混合为一个样本,用于提取RNA。采用Trizol
与野生型Bowman的直芒相比,突变体cal-d的稃芒基部具有钩形不完全花器结构,表现为基部钩状芒形,并且芒长较短。同时,突变体抽穗期延迟,株高、穗长和穗粒数显著低于野生型(

图1 野生型和突变体cal-d的表型比较
Fig.1 Phenotypic comparison between WT and mutant cal-d
A~C:分别为野生型与突变体cal-d的整株、穗部和芒部表型比较;**表示在P<0.01水平差异显著
A-C: Comparison of whole plant, spike and awn phenotypes between WT and mutant cal-d,respectivery; ** indicates the difference is extremely significant at the level of P<0.01;WT: Wild type, the same as below
表型 Phenotype | 野生型 Wild type | 突变型 cal-d | P值 P value |
---|---|---|---|
株高(cm) | 71.91±1.19 | 63.50±2.99 | 0.00753 |
穗长(cm) | 9.01±0.15 | 8.33±0.41 | 0.0477 |
穗粒数 | 20.81±0.36 | 16.06±1.54 | 2.24E-05 |
将突变体cal-d与正常直芒品种Bowman杂交,F1植株呈现直芒,表明基部钩芒性状为隐性突变。F2370株植株中,直芒与基部钩芒植株的比例为283:87,卡方(χ²)测验(χ²=0.44,χ²0.05,1=3.84)表明该性状遗传符合3:1(显性:隐性)的孟德尔分离。
提取370株F2单株的基因组DNA,利用简化基因组测序鉴定基因型,结合表型开展连锁分析,将cal-d基因定位于3H染色体的85~438 Mb区间(

图2 cal-d定位遗传图谱
Fig.2 Genetic map for mapping of cal-d
根据突变型池和野生型池的 SNP-index结果,筛选出大约700个多态性SNP标记,进一步用于高分辨率作图(

图3 cal-d基因定位
Fig.3 Gene mapping of cal-d
A:突变型池和野生型池的等位频率(SNP-index),红色箭头指示7个cal-d相关的SNP,可优先验证并用于缩小F2重组子的定位区域;B:cal-d基因精细定位,n表示子代个体数,重组数即交换单株的数目
A: Allele frequency difference (SNP-index) of cal-d mutant pool and WT pool, the red arrow indicated that 7 correlation SNPs have the priority to be validated and used for narrow down the mapping region of F2 recombinants; B: Fine mapping of cal-d, n represents the population size of offspring, and No. recombinations is the number of swapping individuals
由于近着丝粒区域的重组交换抑制,不太可能通过筛选交换单株克隆cal-d基因,所以采用转录组测序进行变异筛选,从而缩小候选基因的范围。利用转录组混池测序分析,在目的区间内检测到644个遗传变异,包括565个SNP和79个InDel,对变异进行功能预测,筛选出80个变异位点(包括67个SNP和13个InDel)造成了基因编码氨基酸的改变,包含错义突变、选择性剪切位点突变、移码突变以及转录提前终止。
这80个显著变异位点分布在62个基因上,结合大麦不同组织特异性表达谱数据挖掘,发现其中9个基因在发育的花序组织或外稃中具有较高表达(

图4 区间内候选基因表达热图
Fig.4 Expression profile of candidate genes in the interval
花序2:发育中的花序(1~1.5 cm);籽粒5:发育中的籽粒(授粉5 d);根2:根(授粉28 d);分蘖:第三节间发育的分蘖;根1:幼苗的根(10 cm的芽期);幼芽:幼苗的芽(10 cm的芽期);幼胚:4 d的幼胚;籽粒15:发育中的籽粒(授粉15 d)INF2: Developing inflorescences (1-1.5 cm); CAR5: Developing grain (5 days after pollination); LEM: Lemma; PAL: Palea; LOD: Lodicule; RAC: Rachis; ROO2: Roots (28 days after pollination); NOD: Developing tillers in the third internode; ETI: Etiolated seedling; EPI: Epidermal strips; SEN: Senescing leaves; ROO1: Roots from seedlings (10 cm shoot stage); LEA: Shoots from seedlings (10 cm shoot stage); EMB: 4-day embryos; CAR15: Developing grain (15 days after pollination).
基因号 Gene ID | 置信度Confidence | 基因注释 Gene annotation | 突变型 cal-d | 野生型 Wild type | 变异类型 Variant type |
---|---|---|---|---|---|
HORVU3Hr1G032750 | HC_U | 未知功能 | GGCCGGT | G | 移码插入 |
HORVU3Hr1G035840 | HC_G | 蛋白激酶超家族蛋白 | G | C | 错义突变 |
HORVU3Hr1G035880 | HC_G | 磷脂酶A1-II | T | A | 错义突变 |
HORVU3Hr1G037280 | HC_G | RNA结合蛋白1 | A | G | 错义突变 |
HORVU3Hr1G038870 | HC_G | 核糖核酸酶I | C | G | 错义突变 |
HORVU3Hr1G039400 | HC_G | 葡萄糖苷酶2亚基 | A | AACAAT | 移码突变/可变剪切 |
HORVU3Hr1G040750 | HC_U | 未知功能 | T | A | 错义突变 |
HORVU3Hr1G045410 | HC_G | 2-氧葡萄糖酸酯(2OG)和铁(II)依赖的加氧酶超家族蛋白 | T | G | 错义突变 |
HORVU3Hr1G047040 | HC_G | HASTY 1蛋白 | T | C | 错义突变 |
大麦突变体cal-d的芒型变异明显,其芒基部具有倒钩形、与外稃相似的组织异化凸起,但与外稃生长极性相反,是来自外稃和芒之间过渡区组织的异位结构,呈现为基部钩芒形态,其钩形凸起结构的着生位置与常见的顶端钩芒刚好相反。且与顶端钩芒基因型不同的是,突变体cal-d芒的钩形异化组织不会形成额外的小花。与野生型相比,突变体cal-d除了芒型变化外,芒长缩短了1/2,株高降低近1/4,抽穗期延迟一周左右,籽粒变小,千粒重降低近1/3,叶片卷曲,穗长缩短,结实率下降,穗粒数减少。由此可见,隐性突变基因cal-d不仅影响大麦芒的形态建成,同时对茎叶及穗部其他性状发育具有多重影响。
Nils Stein教授利用EST标记,通过另一个相对独立的较小的F2群体Morex × BW106,将cal-d基因锁定在标记GBM1413和IP7125之间1.5 cM的距离,GBM1413和IP7125标记分别在大麦Morex V1参考基因组3H染色体的169 Mb和430 Mb(该实验数据未发表)。这一结果显然大于本研究关于cal-d基因定位在大麦3H染色体153~329 Mb的区间。
在减数分裂过程中,染色体着丝粒及其周围区域的重组交换几乎被完全抑制,这已在大多数物种中研究证实,这种重组抑制与物种基因组大小和复杂度无
本研究报道了1个由隐性单基因cal-d控制的大麦基部钩芒突变体。该突变体芒长变短,且芒基部具有钩状的不完全花器结构,株高变矮、穗长缩短、穗粒数减少,抽穗期推迟,产量降低。构建BW106 (cal-d) × Bowman分离群体进行基因定位,将cal-d基因定位在大麦3H染色体近着丝粒区域176 Mb区间内。通过转录组混池测序结合基因功能注释分析,预测到9个在大麦花序或外稃中表达较高的基因为cal-d的潜在候选基因。本研究为cal-d基因的克隆与功能研究奠定了基础,为大麦芒形态建成及分子机制解析提供了参考。
致谢
感谢德国莱布尼茨植物遗传与作物研究所(IPK)的Nils Stein教授提供的突变体cal-d材料和前期工作基础。
参考文献
卢良恕. 中国大麦学. 北京:中国农业出版社,1996 [百度学术]
Lu L S. Chinese barley studies. Beijing: China Agricultural Press, 1996 [百度学术]
Wang Z, Gu Y J. Structure and photosynthetic characteristics of awn of wheat and barley. Journal of Integrative Plant Biology, 1993, (12):921-928 [百度学术]
Sato S, Ishikawa S, Shimono M, Shinjyo C. Genetic studies on an awnness gene An-4 on chromosome 8 in rice Oryza sativa L. Breeding Science, 2010, 46(4):321-327 [百度学术]
陈培元, 李英. 小麦芒的功能及去芒对籽粒重的影响. 作物学报, 1981 (4):279-282 [百度学术]
Chen P Y, Li Y. The effect of wheat awns on grain weight and their physiological function. Acta Agronomica Sinica, 1981(4):279-282 [百度学术]
李玲, 刘盼, 张蕾, 张浩, 贾继增, 高丽锋. 小麦芒基因定位及其与农艺性状的相关性分析. 植物遗传资源学报, 2021, 22(1):102-114 [百度学术]
Li L, Liu P, Zhang L, Zhang H, Jia J Z, Gao L F. Awn genes mapping and correlation analysis for agronomic traits in wheat. Journal of Plant Genetic Resources, 2021, 22(1):102-1141 [百度学术]
Pozzi C, Faccioli P, Terzi V, Stanca A M, Salamini F. Genetics of mutations affecting the development of a barley floral bract. Genetics, 2000, 154(3): 1335-1346 [百度学术]
Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, Radovic S, Shahinnia F, Vendramin V, Morgante M, Stein N, Waugh R. Genetic dissection of barley morphology and development. Plant Physiology, 2011, 155(2):617-627 [百度学术]
徐东东. 大麦穗部性状功能基因单倍型分析及其遗传演化研究. 北京:中国农业科学院, 2018 [百度学术]
Xu D D. Haplotypes and evolution analysis of barley ear trait domestication genes. Beijing: Chinese Academy of Agricultural Sciences, 2018 [百度学术]
Stein N, Muehlbauer G J. The barley genome. Compendium of plant genomes. Cham, Switzerland: Springer, 2018:171-208 [百度学术]
Ustafsson K. Mutations in agricultural plants. Hereditas, 1947, 33(1-2):1-100 [百度学术]
Price H J, Stebbins G L. The developmental genetics of the calcaroides gene in barley. II. Peroxidase activity in mutant and normal plants at progressive stages of development. Genetics, 1971, 68(4):539-546 [百度学术]
Castiglioni P, Pozzi C, Heun M, Terzi V, Müller K J, Rohde W, Salamini F. An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley. Genetics, 1998, 149(4):2039-2056 [百度学术]
Muller K J, Romano N, Gerstner O, Garcia-maroto F, Pozzi C, Salamini F, Rohde W. The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature, 1995, 374(6524):727-730 [百度学术]
Taketa S, Yuo T, Sakurai Y, Miyake S, Ichii M. Molecular mapping of the short awn 2 (lks2) and dense spike 1 (dsp1) genes on barley chromosome 7H. Breeding Science, 2011, 61(1):80-85 [百度学术]
Milner S G, Jost M, Taketa S, Mazon E R, Himmelbach A, Oppermann M, Weise S, Knupffer H, Basterrechea M, Guo G G, Xu D D, Stein N. Genebank genomics highlights the diversity of a global barley collection. Nature Genetics, 2018, 51(2):319-326 [百度学术]
Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A, Lundqvist U, Fujimura T, Matsuoka M, Matsumoto T, Yano M. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(4):1424-1429 [百度学术]
张京. 大麦种质资源描述规范和数据标准. 北京:中国农业出版社, 2006 [百度学术]
Zhang J. Descriptions and data standard for barley (Hordeum vulgare L.). Beijing:China Agricultural Press, 2006 [百度学术]
Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(21): 9828-9832 [百度学术]
赵海鹏, 赵雪芳, 孙建, 窦婷语, 张仁旭, 阿卜来提·阿力木, 郭爱奎, 王春超, 王化俊, 张京, 孟亚雄, 郭刚刚. 基于诊断标记的LOX-1活性缺失大麦种质鉴定评价. 植物遗传资源学报,2021,22(1):115-120 [百度学术]
Zhao H P, Zhao X F, Sun J, Dou T Y, Zhang R X, Ablat A, Guo A K, Wang C C, Wang H J, Zhang J, Meng Y X, Guo G G. Diagnostic marker based null LOX-1 barley germplasm identification. Journal of Plant Genetic Resources, 2021, 22(1):115-120 [百度学术]
Mascher M, Richmond T A, Gerhardt D J, Himmelbach A, Clissold L, Sampath D, Ayling S, Steuernagel B, Pfeifer M, D'Ascenzo M, Akhunov E D, Hedley P E, Gonzales A M, Morrell P L, Kilian B, Blattner F R, Scholz U, Mayer K F, Flavell A J, Muehlbauer G J, Waugh R, Jeddeloh J A, Stein N. Barley whole exome capture: A tool for genomic research in the genus Hordeum and beyond. The Plant Journal, 2013, 76(3):494-505 [百度学术]
Rio D C, Ares M J, Hannon G J, Nilsen T W. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harbor Protocols, 2010(6):pdb.prot5439 [百度学术]
Jensen-seaman M I, Furey T S, Payseur B A, Lu Y, Roskin K M, Chen C F, Thomas M A, Haussler D, Jacob H J. Comparative recombination rates in the rat, mouse, and human genomes. Genome Research, 2004,14(4): 528-538 [百度学术]
Drouaud J, Camilleri C, Bourguigno N P Y, Canaguier A, Vezon D, Giancola S, Brunel D, Colot V, Prum B, Quesneville H, Mezard C. Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination “hot spots”. Genome Research, 2006, 16(1):106-114 [百度学术]
Drouaud J, Mercier R, Chelysheva L, Berard A, Falque M, Martin O, Zanni V, Brunel D, Mezard C. Sex-specific crossover distributions and variations in interference level along Arabidopsis thaliana chromosome 4. PLoS Genetics, 2007, 3(6): e106 [百度学术]
Lian J, Yin Y, Oliver-bonet M, Liehr T, Ko E, Turek P, Sun F, Martin R. Variation in crossover interference levels on individual chromosomes from human males. Human Molecular Genetics, 2008, 17(17):2583-2594 [百度学术]
Saintenac C, Falque M, Martin O C, Paux E, Feuillet C, Sourdille P. Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat (Triticum aestivum L.). Genetics, 2009, 181(2):393-403 [百度学术]
Xue S L, Xu F, Tang M Z, Zhou Y, Li G Q, Xia A, Lin F, Xu H B, Jia H Y, Zhang L X, Kong Z X, Ma Z Q. Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011, 123(6): 1055-1063 [百度学术]
Brinton J, Simmonds J, Minter F, Leverington W M, Snape J, Uauy C. Increased pericarp cell length underlies a major quantitative trait locus for grain weight in hexaploid wheat. New Phytologist, 2017, 215(3):1026-1038 [百度学术]
Wan W T, Xiao J, Li M L, Tang X, Wen M X, Cheruiyot A K, Li Y B, Wang H Y, Wang X. Fine mapping of wheat powdery mildew resistance gene Pm6 using 2B/2G homoeologous recombinants induced by the ph1b mutant. Theoretical and Applied Genetics, 2020,133(4):1265-1275 [百度学术]
Jamar C, Loffet F, Frettinger P, Ramsay L, Fauconnier M L, Jardin P D. NAM-1 gene polymorphism and grain protein content in Hordeum. Journal of Plant Physiology, 2010, 167(6): 497-501 [百度学术]