2025年6月7日 8:49 星期六
  • 网站首页
  • 期刊简介
  • 投稿指南
    投稿指南
    论文模版
    著作权许可及转让声明
  • 编委会
    植物遗传资源学报编委会
    青年编委
    主编简介
  • OA政策
    OA政策
    情况通报
    高被引论文
  • 出版伦理
    出版伦理声明
  • 遗传资源分会
    遗传资源分会简介
    委员会
    活动公告
    成为会员
  • 欢迎订阅
  • 联系我们
  • English
  • 微信公众号
网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

OsGSK2与OsGLK1互作调控水稻叶绿素合成与叶绿体发育  PDF

    赵楚瑄
    ✉
    纪晓楠
    刘梦雨
    韩丹
    许可可
    刘喜
    ✉
淮阴师范学院生命科学学院,江苏淮安 223300

最近更新:2024-02-27

DOI:10.13430/j.cnki.jpgr.20230821001

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN 引
分享给微信好友或者朋友圈
目录contents
摘要
关键词
1 材料与方法
1.1 试验材料
1.2 叶绿素含量测定与透射电镜观察
1.3 酵母双杂交
1.4 双分子荧光互补(BiFC)
1.5 转录激活活性分析
1.6 RNA提取和荧光定量PCR
2 结果与分析
2.1 OsGSK2过表达植株Go-2表型分析
2.2 透射电镜观察叶绿体形态结构
2.3 OsGSK2与OsGLK1互作
2.4 叶绿素合成基因表达分析
2.5 光合作用相关基因表达分析
3 讨论
参考文献

摘要

叶绿素是水稻光合作用的重要色素,叶绿素的合成决定光合作用的效率,影响植物的产量和品质。在本研究中,发现糖原合成酶激酶OsGSK2过表达植株Go-2成熟期呈现叶片深绿色的表型。相比野生型,Go-2植株叶绿素a、叶绿素b以及类胡萝卜素含量显著升高。透射电镜观察结果显示,相比野生型,Go-2植株叶绿体类囊体片层增多。酵母双杂交“一对一”实验证实OsGSK2与Golden2-Like转录因子OsGLK1存在互作,并进一步通过双分子荧光互补实验确认OsGSK2与OsGLK1存在互作。在水稻原生质体中检测双荧光素酶活性发现,相比单转OsGLK1,OsGSK2与OsGLK1共转显著提高下游靶基因的表达水平。荧光定量PCR结果表明,相比野生型,在Go-2植株中OsGLK1直接调控的靶基因OsPORB、OsCAO1、LHCB6等转录水平显著上调。研究结果初步揭示了OsGSK2与OsGLK1互作调控水稻叶绿素合成和叶绿体发育的分子机理,进一步拓展了水稻糖原合成酶激酶的分子功能,丰富了水稻叶色调控的分子网络,为水稻高光合分子育种提供了理论依据。

关键词

水稻; OsGSK2; OsGLK1; 叶绿素合成; 叶绿体发育

水稻是我国乃至世界上最重要的粮食作物之一,提供了全球近50%人口的食物来源。水稻增产对保障食物安全和人民生活水平具有极其重要的作用[

参考文献 1
百度学术    
1]。稻米的营养价值高,含有碳水化合物、蛋白质、脂肪和灰分等成分。水稻可以适应多种生态环境并且是一种高产作物,它保障了粮食安全、农民收入、经济发展和社会稳定。

叶绿素在水稻中起着重要的调控作用,涉及到光合作用、生长发育和环境适应等方面[

参考文献 2
百度学术    
2]。叶绿素是水稻光合作用的关键色素,能够吸收光能并转化为化学能以支持植物的生长和发育;叶绿素通过吸收光能来保护其他叶绿素和光合色素免受过量光能的损伤;叶绿素的合成和功能需要营养元素的支持,特别是氮、铁和镁等元素。叶绿素对这些元素的吸收、转运和利用起到调控作用,确保水稻植株的正常生长和光合作用的进行[
参考文献 3-4
3-4]。以模式植物拟南芥为研究对象,科学家鉴定克隆了27个参与叶绿素合成的基因,揭示了从谷氨酰-tRNA开始,最终合成叶绿素a、b的完整分子通路[
参考文献 5
百度学术    
5]。叶绿素的合成和调控涉及多个基因的参与:POR(Protochlorophyllide oxidoreductase)、CHLI、GGR(Geranylgeranyl reductase)、CAO(chlorophyll a oxygenase)等[
参考文献 5-6
5-6]。POR基因编码光合体中的一个关键酶,参与叶绿素a的合成过程,它催化光合体中的光合色素前体原叶绿素酸转化为叶绿素a[
参考文献 7
百度学术    
7]。CHLI基因编码镁离子螯合酶复合物I亚基,参与叶绿素合成的第一个关键步骤[
参考文献 8
百度学术    
8]。GGR基因参与叶绿素合成途径中色素的前体还原[
参考文献 9
百度学术    
9]。

OsGSK2编码一个与拟南芥BIN2同源的类GSK3/SHAGGY激酶,广泛参与水稻油菜素内酯(BR,brassinolide)信号转导、株高、籽粒发育、种子萌发、抗病毒等多个细胞信号传导通路和生物学过程[

参考文献 10-12
10-12]。在水稻中,OsGSK2过表达植株Go-1、Go-2均表现出叶色深绿、矮化、叶片直立、分蘖减少、抽穗延迟等表型,而下调OsGSK2及其同源基因转基因植株表现出叶夹角增大、籽粒变大的表型[
参考文献 13
百度学术    
13]。研究者通过生物化学、分子生物学等技术手段筛选到10余个OsGSK2的互作蛋白(DLT、RLA1/SMOS1、OML4、OsBZR1等),揭示了OsGSK2在水稻株型、籽粒大小、抗病毒病等的调控机制[
参考文献 14-15
14-15]。然而,OsGSK2在水稻叶绿素合成和叶绿体发育过程中的作用机制仍是未知的。

相比Go-1,在Go-2植株中OsGSK2的表达水平更高,叶色深绿表型更为显著[

参考文献 13
百度学术    
13]。本研究拟通过OsGSK2过表达植株Go-2叶色表型观察、叶绿素含量测定、叶绿体透射电镜观察、OsGSK2互作蛋白筛选、基因表达分析等方法明确OsGSK2在水稻叶绿素合成和叶绿体发育过程中的作用,初步揭示其调控叶色的分子机理,拓展了OsGSK2的分子功能,为水稻高光合育种提供理论基础。

1 材料与方法

1.1 试验材料

粳稻中花11和OsGSK2过表达植株Go-2[

参考文献 13
百度学术    
13],粳稻中花11由本实验室保存,Go-2由中国农业科学院童红宁研究员赠与。所有水稻材料按照行距20 cm、株距13cm种植于淮阴师范学院生物科技园内,采用常规大田生产管理措施。

1.2 叶绿素含量测定与透射电镜观察

在成熟期,剪取野生型WT(Wild type)和过表达植株Go-2叶片各0.1 g,置于95%无水乙醇中,黑暗放置48 h,利用双通道紫外分光亮度计测定在 663、645、470 nm波长下的吸光值,具体叶绿素含量测定方法参考许子怡等[

参考文献 16
百度学术    
16],设置3个生物学重复。

在成熟期,取田间生长的野生型WT和过表达植株Go-2叶片,置于2.5%戊二醛固定液中,抽真空2 h,而后置于4 ℃保存。将固定好的样品避光送至青岛科创质量检测有限公司进行后续样品的处理和透射电镜观察。

1.3 酵母双杂交

设计引物OsGSK2-BD-F/R、OsGLK1-AD-F/R分别扩增基因OsGSK2与OsGLK1的全长编码区,PCR体系如下:cDNA 2μL,引物共2 μL,KOD Mix 46 μL;PCR程序如下:在98 ℃下变性10 s,在55 ℃下退火30 s,在 68 ℃下延伸90 s,33 个循环。接着利用限制性内切酶EcoR I/BamH I酶切结合结构域载体BD(pGBKT7)与激活结构域载体AD(pGADT7)。限制性内切酶购自Takara生物公司,pGBKT7与pGADT7载体由本实验室自行保存。利用南京诺唯赞生物科技股份有限公司的重组试剂盒(#C112-01)进行目的片段和载体融合,而后转化大肠杆菌,挑菌送安徽通用生物有限公司测序,测序结果利用软件BioXM 2.6进行序列比对,确定阳性克隆OsGSK2-BD、OsGLK1-AD。具体操作参考试剂盒说明书。以OsGSK2-BD+AD、BD+OsGLK1-AD为对照组,OsGSK2-BD+OsGLK1-AD为实验组。

将OsGSK2-BD、OsGLK1-AD、AD、BD等质粒进行组合,利用Takara酵母转化试剂盒分别转入酵母感受态细胞AH109(实验室自行保存)中,涂布于酵母缺陷培养基(SD-Leu/-Trp),置于30 ℃培养2~3 d。每个组合挑选3~5个单克隆置于酵母筛选培养基(SD-Ade/-His/-Leu/-Trp)上3~5 d,观察酵母生长情况。

1.4 双分子荧光互补(BiFC)

以粳稻中花11叶片cDNA为模板,设计引物OsGSK2-nYFP-F/R、OsGLK1-cYFP-F/R,利用KOD高保真性聚合酶 (TOYOBO,#KOD-201)分别扩增基因OsGSK2与OsGLK1的编码区(去除终止密码子),PCR体系与程序同1.3。用限制性内切酶Pac I/Spe I酶切载体nYFP与cYFP(本实验室自行保存),片段与载体融合及转化如上所述,得到重组质粒OsGSK2-nYFP、OsGLK1-cYFP。载体构建所用引用引物序列如表1所示。

表 1  构建载体所用引物
Table 1  Primers used in the construction of vectors

引物名称

Primer name

正向引物 (5′-3′)

Forward primer (5′-3′)

反向引物 (5′-3′)

Revers primer (5′-3′)

OsGLK1-AD GGAGGCCAGTGAATTCATGCTTGCCGTGTCGCCGGC CGAGCTCGATGGATCCTCATCCACACGCTGGAGGAA
OsGSK2-BD CATGGAGGCCGAATTCATGGACCAGCCGGCGCCGGC GCAGGTCGACGGATCCTTAGCTCCCAGTATTGAAGA
OsGLK1-p2YC CATTTACGAACGATAGTTAATTAAATGCTTGCCGTGTCGCCGGC CACTGCCACCTCCTCCACTAGTTCCACACGCTGGAGGAA
OsGSK2-p2YN CATTTACGAACGATAGTTAATTAAATGGACCAGCCGGCGCCGGC CACTGCCACCTCCTCCACTAGTGCTCCCAGTATTGAAGAA
OsGLK1-pAN580 CGGAGCTAGCTCTAGAATGCTTGCCGTGTCGCCGGC TGCTCACCATGGATCCTCCACACGCTGGAGGAA
OsGSK2-pAN580 CGGAGCTAGCTCTAGAATGGACCAGCCGGCGCCGGC TGCTCACCATGGATCCGCTCCCAGTATTGAAGA
OsHEMA-PRO-LUC TTGATATCGAATTCCTGCAGCAACGGCGCGAGAAAGGAAC TAGAACTAGTGGATCCCAGATCAAGAAAGCACCAGC

下划线标出的碱基代表限制性内切酶位点

The underlined bases represent the restriction endonuclease site

将OsGSK2-nYFP、OsGLK1-cYFP等重组质粒转入农杆菌EHA105(本实验室保存)中,进而侵染一月龄的烟草,放置2~3 d,利用激光共聚焦显微镜观察拍照,以OsGSK2-nYFP+cYFP、nYFP+OsGLK1-cYFP为对照组,OsGSK2-nYFP+OsGLK1-cYFP为实验组。BiFC具体操作步骤参考Lan等[

参考文献 17
百度学术    
17]。

1.5 转录激活活性分析

以粳稻中花11叶片cDNA为模板,设计引物(OsGLK1-pAN580-F/R、OsGSK2-pAN580-F/R)分别扩增基因OsGSK2、OsGLK1的编码区(去除终止密码子),PCR与体系程序同1.3。以粳稻中花11叶片DNA为模板,设计引物(OsHEMA-PRO-LUC-F/R)扩增基因OsHEMA的启动子。PCR体系如下:DNA 2 μL,引物2 μL,KOD Mix 46 μL;PCR程序如下:在98 ℃下变性10 s,在55 ℃下退火30 s,在 68 ℃下延伸2 min,33 个循环。利用限制性内切酶Xba I/BamH I酶切载体pAN580(本实验室自行保存)以及用Pst I/Spe I酶切载体pGreen II 0800-LUC(本实验室自行保存),片段与载体融合及转化如上所述,得到重组质粒OsGLK1-pAN580、OsGSK2-pAN580。载体构建所用引物序列如表1所示。

OsGLK1-pAN580、OsGSK2-pAN580、pAN580质粒与LUC报告载体质粒OsHEMA-PRO-LUC进行组合,转化水稻原生质体,利用普洛麦格(北京)生物技术有限公司双荧光素酶测定试剂盒检测荧光素酶(LUC,luciferase)活性,设置3个生物学重复。具体操作参考试剂盒说明书和Zhang等[

参考文献 18
百度学术    
18]。

1.6 RNA提取和荧光定量PCR

在成熟期,取野生型WT和过表达植株Go-2叶片,液氮研磨,置于2.0 mL离心管中,利用天根生化科技(北京)有限公司生产的植物组织 RNA 快速提取试剂盒(RNA Easy Fast kit)提取RNA,置于-80 ℃保存备用。

以野生型WT和过表达植株Go-2叶片cDNA为模板,利用Takara公司生产的TB Green® Premix Ex Taq™ (Tli RNaseH Plus)试剂在伯乐CFX96荧光定量PCR仪进行荧光定量PCR。PCR体系:8.8 µL cDNA,1.2 µL 引物,10 µL Mix;PCR扩增程序:95 ℃预变性15 s,95 ℃变性5 s、60 ℃退火30 s,共进行40次循环;设置3个生物学重复。以水稻内参基因UBQ(LOC_Os03g 13170)作为对照,基因表达所用引物如表2所示。叶绿素合成相关基因(OsHEMA、OsPORB、OsCAO1)与6个光捕获复合体亚基(LHCB6、LHCB2、LHCB4、LHCA1、LHCA2、LHCA3)的表达分析引物参考Zhang[

参考文献 18
百度学术    
18]等和Zeng等[
参考文献 19
百度学术    
19]。

表 2  基因表达水平分析所用引物
Table 2  Primers used for gene expression level analysis

基因名称

Gene name

正向引物(5′-3′)

Forward primer (5′-3′)

反向引物 (5′-3′)

Revers primer(5′-3′)

UBQ ACCCTGGCTGACTACAACATC AGTTGACAGCCCTAGGGTG
LHCB2 ACCATGCGCCGCACCGTCAA ATAGCCCCGCCGTGTCCCAC
LHCA3 ACCAAGAGCGAGGCGGAGATGA TGGAACTTGAGGCTGGTGAGGATGT
LHCA1 TGCTGGCTTTTGTGGGTTTC TCTCGGGATGATGATGTCGC
LHCB6 TGGCTCGCTCCCCGGTGACTT CTCCACGCCTGCCCGACGAA
LHCB4 AGCGCTTCCGCGAGTGCGAGCTCAT TACGACGACCCATCCACCAG
LHCA2 AGAGCTTGCGGTGGAACGTG GGATGCCGATCTTGGTCAGG

2 结果与分析

2.1 OsGSK2过表达植株Go-2表型分析

与野生型相比,Go-2在成熟期叶片深绿色(图1A)。为进一步分析Go-2叶片深绿色的原因,在成熟期分别取野生型和Go-2的叶片,测定光合色素含量。如图1B所示,相比野生型,叶绿素a、叶绿素b以及类胡萝卜素含量在过表达植株Go-2分别提高了72.9%、52.3%、9.8%。

图 1  OsGSK2过表达植株Go-2成熟期叶色表型

Fig.1  Leaf color phenotypes of OsGSK2 overexpressed plant Go-2 at maturity

A:成熟期野生型和Go-2植株表型,比例尺为5 cm;B:成熟期野生型和Go-2植株叶绿素含量测定;*和**分别代表在0.05与0.01水平达到显著与极显著差异,下同

A: At maturity, wild-type and Go-2 plant phenotypes,Bars=5cm; B: Determination of chlorophyll content of wild type and Go-2 plants at maturity;*and ** respectively represent significant and extremely significant differences at the 0.05 and.0.01 levels, the same as below

2.2 透射电镜观察叶绿体形态结构

如图1所示,激酶OsGSK2正调控水稻叶绿素合成。为了解OsGSK2基因是否影响水稻叶绿体发育,通过透射电镜观察成熟期野生型和过表达植株Go-2剑叶叶绿体超微结构。如图2所示,相比野生型,OsGSK2过表达植株叶绿体类囊体增多,基粒片层结构增多。

图 2  叶绿体透射电镜观察

Fig.2  Transmission electron microscopy observation of chloroplasts

A,B:野生型的叶绿体透射电镜观察;C,D:Go-2的叶绿体透射电镜观察;A,C 标尺为5 µm;B,D 标尺为1 µm;黑色箭头指示叶绿体类囊体结构

A,B: Transmission electron microscope observation of wild-type chloroplasts;C,D: Chloroplast observation of Go-2 by transmission electron microscope;Bars=5 µm in A and C; Bars=1 µm in B and D; Black arrows indicate chloroplast thylakoid structure

2.3 OsGSK2与OsGLK1互作

为深入解析OsGSK2调控水稻叶绿体发育和叶绿素合成的分子机理,利用酵母双杂交系统筛选OsGSK2的互作蛋白。如图3所示,转入OsGSK2-BD+OsGLK1-AD质粒的酵母细胞在酵母筛选培养基上生长良好,而对照组不能正常生长。OsGLK1编码一个Golden2-Like转录因子,参与控制叶绿体发育[

参考文献 20
百度学术    
20]。

图 3  酵母双杂交分析

Fig.3  Yeast two hybrid analysis

为进一步验证OsGSK2与OsGLK1互作关系的真实性,构建了OsGSK2与OsGLK1双分子荧光互补载体,侵染烟草,通过激光共聚焦显微镜观察荧光信号,从而确定OsGSK2与OsGLK1的互作。如图4所示,在烟草细胞中,可以观察到OsGSK2与OsGLK1组合的荧光信号,而对照组没有荧光,上述结果显示,OsGSK2与OsGLK1存在互作关系。

图4  双分子荧光互补分析

Fig.4  Bimolecular fluorescence complementary analysis

比例尺为10 µm

GFP: Green fluorescent protein ; DIC: Differential interference contrast; Bars=10 µm

为进一步探究OsGSK2与OsGLK1互作的生物学意义,在水稻原生质体中,通过荧光素酶活性检测分析OsGSK2与OsGLK1互作对其转录活性的影响。如图5所示,相比对照组,OsGLK1可以显著激活OsHEMA的表达;当OsGSK2与OsGLK1同时存在时,OsHEMA(转录活性)的表达水平更高。上述结果表明,OsGSK2与OsGLK1互作增强OsGLK1的转录活性。

图5  OsGLK1转录活性分析

Fig.5  OsGLK1 transcription activity analysis

A:转录活性检测过程中使用的载体构建示意图;B:转录活性检测;a和b分别代表OsGLK1、OsGSK2构建的效应子载体;c代表OsHEMA启动子构建的LUC报告载体;d代表以海肾荧光素酶为内参对照

A: Schematic diagram of vector construction used for transactivation assays; B: Transcription activity detection; a and b represent effector vectors constructed by OsGLK1 and OsGSK2,respectively ; c represents the LUC reporter vector constructed by the OsHEMA promoter; d represents the Renilla luciferas as the internal reference control

2.4 叶绿素合成基因表达分析

前期研究,OsGLK1可以直接结合叶绿素合成基因OsPORB、OsCAO1的启动子,进而正调控其表达[

参考文献 21
百度学术    
21]。利用荧光定量PCR分析了叶绿素合成相关基因OsHEMA、OsPORB、OsCAO1在野生型和过表达植株Go-2中的表达水平。相比野生型,OsHEMA、OsPORB、OsCAO1的表达水平在过表达植株Go-2中显著升高(图6)。这与过表达植株Go-2光合色素含量升高的表型相一致的。上述结果表明,OsGSK2过表达激活了叶绿素合成基因的表达。

图6  叶绿素合成基因表达分析

Fig.6  The expression level of chlorophyll synthesis genes

2.5 光合作用相关基因表达分析

转录因子OsGLK1直接调控6个光捕获复合体亚基(LHCB6、LHCB2、LHCB4、LHCA1、LHCA2、LHCA3)的表达,控制水稻叶绿体发育[

参考文献 21
百度学术    
21]。相比野生型,LHCB6、LHCB4、LHCA2、LHCB2、LHCA3、LHCA1的表达水平在过表达植株Go-2中均显著提高(图7)。

图7  光合作用相关基因表达分析

Fig.7  The expression level of genes related to photosynthesis

3 讨论

叶色相关突变体是研究水稻叶绿素合成和叶绿体发育的理想材料[

参考文献 22-24
22-24]。目前,在水稻中已经克隆鉴定出超过120个叶色相关基因,初步揭示了水稻叶绿素合成和叶绿体发育的分子机制[
参考文献 24-25
24-25]。前期研究表明,糖原合成酶激酶基因OsGSK2过表达植株叶片表现出深绿色的表型[
参考文献 13
百度学术    
13]。OsGSK2是水稻油菜素内酯信号途径的负调控因子,能够磷酸化下游底物蛋白,维持底物蛋白的稳定性或促进底物蛋白的降解,进而参与控制水稻生长发育[
参考文献 14-15
14-15]。在拟南芥中,OsGSK2同源蛋白BIN2与转录因子GLK1和GLK2互作,并磷酸化GLK1和GLK2,影响GLK1蛋白稳定性和DNA结合能力,参与调控黑暗下叶绿体发育[
参考文献 26
百度学术    
26]。然而,OsGSK2参与调控水稻叶色的分子机理仍是未知的。

在本研究中,过表达植株Go-2成熟期叶片呈现深绿色,叶绿素含量显着升高,叶绿体类囊体片层结构增多,证明了OsGSK2正调控水稻叶绿素合成和叶绿体发育。酵母双杂交、双分子荧光互补以及荧光素酶活性检测实验证实OsGSK2与Golden2-Like转录因子OsGLK1互作,并增强OsGLK1的转录活性。此外,OsGLK1下游靶基因(OsPORB、OsCAO1、LHCB6等)的转录水平在过表达植株Go-2体内显著上调。原叶绿素酸酯氧化还原酶B(OsPORB,Protochlorophyllide Oxidoreductase B)催化叶绿素合成中的原叶绿素酸酯光还原成叶绿素酸酯,受高光照诱导迅速上调表达,是维持依赖光的叶绿素合成所必需的[

参考文献 27
百度学术    
27]。OsPORB突变体叶呈淡绿色,叶绿素a、b以及类胡萝卜素含量显著降低,株高矮化,提前衰老[
参考文献 27
百度学术    
27]。OsCAO1是叶绿素a加氧酶基因,催化叶绿素a合成叶绿素b,其突变体表现出叶色变淡、株高变矮的表型[
参考文献 28-29
28-29]。

在水稻中,Golden2 -Like转录因子有OsGLK1与OsGLK2。本研究证实了OsGSK2与OsGLK1互作,但是OsGSK2与OsGLK2互作关系与OsGLK1与OsGLK2在调控叶绿体发育方面是否存在功能冗余是未知的。此外,OsGSK2编码的产物是激酶,一般会磷酸化互作蛋白,OsGLK1是否是OsGSK2直接磷酸化底物蛋白。这些问题都是我们下一步研究的重点。综上,OsGSK2通过与OsGLK1互作,进而增强OsGLK1的转录激活活性,促进下游叶绿素合成和叶绿体发育相关基因的表达,进而调控水稻叶色。

参考文献

1

黄欣乐,郑百龙. 产量及面积视角的中国水稻生产变动. 江苏农业科学, 2020, 48(2):311-316 [百度学术] 

Huang X L, Zheng B L. Changes in rice production in China from the perspective of yield and aea. Jiangsu Agricultural Science, 2020, 48 (2): 311-316 [百度学术] 

2

杨颜榕,黄纤纤,赵亚男,汤佳玉,刘喜. 水稻叶色基因克隆与分子机制研究进展. 植物遗传资源学报, 2020, 21(4):794-803 [百度学术] 

Yang Y R, Huang Q Q, Zhao Y N, Tang J Y, Liu X. Advances on gene isolation and molecular mechanism of rice leaf color genes. Journal of Plant Genetic Resources, 2020, 21(4):794-803 [百度学术] 

3

李佳佳,于旭东,蔡泽坪,吴繁花,罗佳佳,郑李婷,楚文清. 高等植物叶绿素生物合成研究进展. 分子植物育种, 2019, 17(18):6013-6019 [百度学术] 

Li J J, Yu X D, Cai Z P,Wu F H,Luo J J,Zheng L T,Chu W Q. An overview of chlorophyll biosynthesis in higher plants. Molecular Plant Breeding, 2019, 17(18):6013-6019 [百度学术] 

4

于宇璇, 刘储睿, 唐文竹. 利用蛋白质组学技术探究叶绿素含量对植物生长的影响. 质谱学报, 2023, 44(4):545-555 [百度学术] 

Yu Y X, Liu C R,Tang W Z. Exploring the effect of chlorophyll content on plant growth using proteomics techniques. Journal of Chinese Mass Spectrometry Society, 2023, 44 (4): 545-555 [百度学术] 

5

董书琦, 陈达, 秦巧平, 吴国平, 张志国, 倪迪安. 高等植物叶绿素和类胡萝卜素代谢研究进展. 植物生理学报, 2023, 59(5):793-802 [百度学术] 

Dong S Q, Chen D, Qin Q P, Wu G P, Zhang Z G, Ni D A. Advances in metabolism of chlorophylls and carotenoids in higher plants. Plant Physiology Journal, 2023, 59(5):793-802 [百度学术] 

6

李根, 张成, 王强, 王科, 刘思汐, 杨勋, 吴继开, 卿秋静. 植物叶绿素代谢途径及其分子调控. 四川农业科技, 2021(4):41-45 [百度学术] 

Li G, Zhang C, Wang Q, Wang K, Liu S X, Yang X, Wu J K, Qing Q J. Plant chlorophyll metabolism pathway and its molecular regulation. Sichuan Agricultural Science and Technology, 2021 (4): 41-45 [百度学术] 

7

Liang M, Gu D, Lie Z, Yang Y, Lu L, Dai G, Peng T, Deng L, Zheng F, Liu X. Regulation of chlorophyll biosynthesis by light-dependent acetylation of NADPH∶protochlorophyll oxidoreductase A in Arabidopsis. Plant Science, 2023, 330:111641 [百度学术] 

8

Ma Y Y, Shi J C, Wang D J, Liang X, Wei F, Gong C M, Qiu L J, Zhou H C, Folta K M, Wen Y Q, Feng J Y. A point mutation in the gene encoding magnesium chelatase I subunit influences strawberry leaf color and metabolism. Plant Physiology, 2023, 192(4):2737-2755 [百度学术] 

9

Zhou F, Wang C Y, Gutensohn M, Jiang L, Zhang P, Zhang D, Dudareva N, Lu S. A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in rice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114 (26):6866-6871 [百度学术] 

10

He Y, Hong G, Zhang H, Tan X, Li L, Kong Y, Sang T, Xie K, Wei J, Li J, Yan F, Wang P, Tong H, Chu C, Chen J, Sun Z. The OsGSK2 kinase integrates brassinosteroid and jasmonic acid signaling by interacting with OsJAZ4. Plant Cell, 2020, 32(9):2806-2822 [百度学术] 

11

Hu J, Huang J, Xu H, Wang Y, Li C, Wen P, You X, Zhang X, Pan G, Li Q, Zhang H, He J, Wu H, Jiang L, Wang H, Liu Y, Wan J. Rice stripe virus suppresses jasmonic acid-mediated resistance by hijacking brassinosteroid signaling pathway in rice. PLoS Pathogens, 2020, 16(8):e1008801 [百度学术] 

12

Mao J, Li W, Liu J, Li J. Versatile physiological functions of plant GSK3-like kinases. Genes (Basel),2021, 12(5):697 [百度学术] 

13

Tong H, Liu L, Jin Y, Du L, Yin Y, Qian Q, Zhu L, Chu C. DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant Cell,2012, 24(6):2562-2577 [百度学术] 

14

Song Y, Wang Y, Yu Q, Sun Y, Zhang J, Zhan J, Ren M. Regulatory network of GSK3-like kinases and their role in plant stress response. Frontiers in Plant Science, 2023, 14:1123436 [百度学术] 

15

Youn J H, Kim T W. Functional insights of plant GSK3-like kinases: Multi-taskers in diverse cellular signal transduction pathways. Molecular Plant, 2015, 8(4): 552-565 [百度学术] 

16

许子怡, 程行, 沈奇, 赵亚男, 汤佳玉, 刘喜. 水稻黄绿叶突变体ygl3的鉴定与基因功能分析. 中国农业科学, 2021, 54(15):3149-3157 [百度学术] 

Xu Z Y, Cheng H, Shen Q, Zhao Y N, Tang J Y, Liu X. Identification and gene functional analysis of yellow green leaf mutant ygl3 in rice. Scientia Agricultura Sinica, 2021,54(15):3149-3157 [百度学术] 

17

Lan J, Lin Q, Zhou C, Liu X, Miao R, Ma T, Chen Y, Mou C, Jing R, Feng M, Nguyen T, Ren Y, Cheng Z, Zhang X, Liu S, Jiang L, Wan J. Young Leaf White Stripe encodes a P-type PPR protein required for chloroplast development. Journal of Integrative Plant Biology, 2023, 65(7):1687-1702 [百度学术] 

18

Zhang C, Zhang J, Tang Y, Liu K, Liu Y, Tang J, Zhang T, Yu H. DEEP GREEN PANICLE1 suppresses GOLDEN2-LIKE activity to reduce chlorophyll synthesis in rice glumes. Plant Physiology, 2021, 185(2):469-477 [百度学术] 

19

Zeng Z Q, Lin T Z, Zhao J Y, Zheng T H, Xu L F, Wang Y H, Liu L L, Jiang L, Chen S H, Wan J M. OsHemA gene, encoding glutamyl-tRNA reductase (GluTR) is essential for chlorophyll biosynthesis in rice (Oryza sativa). Journal of Integrative Agriculture, 2020, 19(3):612-623 [百度学术] 

20

Nakamura H, Muramatsu M, Hakata M, Ueno O, Nagamura Y, Hirochika H, Takano M, Ichikawa H. Ectopic overexpression of the transcription factor OsGLK1 induces chloroplast development in non-green rice cells. Plant Cell and Physiology, 2009, 50(11):1933-1949 [百度学术] 

21

Sakuraba Y, Kim E Y, Han S H, Piao W, An G, Todaka D, Yamaguchi-Shinozaki K, Paek N C. Rice Phytochrome-Interacting Factor-Like1 (OsPIL1) is involved in the promotion of chlorophyll biosynthesis through feed-forward regulatory loops. Journal of Experimental Botany, 2017, 68(15):4103-4114 [百度学术] 

22

Yu H, Hu M, Hu Z, Liu F, Yu H, Yang Q, Gao H, Xu C, Wang M, Zhang G, Wang Y, Xia T, Peng L, Wang Y. Insights into pectin dominated enhancements for elimination of toxic Cd and dye coupled with ethanol production in desirable lignocelluloses. Carbohydrate Polymers, 2022, 286:119298 [百度学术] 

23

文杜娟, 陈风波. 杂交水稻种植对社会经济的影响. 作物研究, 2014, 28(4):402-405 [百度学术] 

Wen D J, Chen F B. The social and economic impact of hybrid rice planting. Crop Research, 2014, 28 (4): 402-405 [百度学术] 

24

徐明远, 何鹏, 赖伟, 陈梁海, 戈伶俐, 刘世强, 杨寅桂. 植物叶色变异分子机制研究进展. 分子植物育种, 2021, 19(10):3448-3455 [百度学术] 

Xu M Y, He P, Lai W, Chen L H, Ge L L, Liu S Q, Yang Y G. Advances in molecular mechanism of plant leaf color variation. Molecular Plant Breeding, 2021, 19(10):3448-3455 [百度学术] 

25

戴若惠, 钱心妤, 孙静蕾, 芦涛, 贾绮玮, 陆天麒, 路梅, 饶玉春. 水稻叶色调控机制及相关基因研究进展. 植物学报, 2023, 58(5):1-14 [百度学术] 

Dai R H, Qian X Y,Sun J L, Lu T, Jia Q W, Lu T Q, Lu M, Rao Y C. Research progress on the mechanism of leaf color regulation and related genes in rice. Chinese Bulletin of Botany, 2023, 58(5):1-14 [百度学术] 

26

Zhang D, Tan W, Yang F, Han Q, Deng X, Guo H, Liu B, Yin Y, Lin H. A BIN2-GLK1 signaling module integrates brassinosteroid and light signaling to repress chloroplast development in the dark. Development Cell, 2021, 56(3):310-324 [百度学术] 

27

Kang S J, Fang Y X, Zou G X, Ruan B P, Zhao J, Dong G J, Yan M X, Gao Z Y, Zhu L. White-Green Leaf Gene encoding protochlorophyllide oxidoreductase B is involved in chlorophyll synthesis of rice. Crop Science, 2015, 55(1): 284-293 [百度学术] 

28

Yang Y, Xu J, Huang L, Leng Y, Dai L, Rao Y, Chen L, Wang Y, Tu Z, Hu J, Ren D, Zhang G, Zhu L, Guo L, Qian Q, Zeng D. PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice. Journal of Experimental Botany, 2016, 67(5):1297-310 [百度学术] 

29

Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Molecular Biology, 2005, 57(6):805-818 [百度学术] 

copyright © 2018-2020

您是第5901469位访问者
ICP:京ICP备09069690号-23
京ICP备09069690号-23
植物遗传资源学报 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!