摘要
WRKY转录因子是高等植物中成员数量较多的转录因子之一,在植物的生长发育和衰老、非生物和生物胁迫等过程中发挥着重要的作用。疣粒野生稻是栽培稻的近缘野生种,具有耐荫、耐旱和高抗白叶枯病等特性,是改良栽培稻的重要种质资源。本研究利用HMMER、Pfam 、SMART 、TBtools、NCBI软件和网站,在疣粒野生稻基因组中鉴定了94个编码WRKY转录因子的基因(OgWRKYs),不均一分布在12条染色体上,根据其所含WRKY 结构域的数量和锌指结构的特征,分为Ⅰ、Ⅱ、Ⅲ和Ⅳ组,II组成员最多(52个),与其他物种相似。除含有保守的WRKYGQK七肽序列外,还鉴定到6种变异类型,其中WRKYGHK、WRRYGQK、WRKYAKK和WRKYSQK是植物中首次报道的新变异类型。根据保守结构域分析, OgWRKY61、OgWRKY71和OgWRKY77a可能与植物抗病相关。KEGG pathway富集分析发现,有14个OgWRKY转录因子富集在植物-病原互作通路,其中10个同时富集在MAPK信号通路中。进一步结合顺式作用元件分析结果,推测OgWRKY30b、OgWRKY53、OgWRKY88、OgWRKY96和OgWRKY111可能在疣粒野生稻响应生物和非生物胁迫中发挥重要作用。qRT-PCR 分析结果表明,OgWRKY30b、OgWRKY53、OgWRKY88和OgWRKY111基因的表达均受白叶枯病菌PXO99诱导,而OgWRKY96表达受白叶枯病菌侵染抑制。研究结果对疣粒野生稻中优异OgWRKYs基因资源的挖掘具有重要参考价值。
WRKY转录因子是高等植物中成员数量较多的转录因子之一, 在植物的生长发育和衰老、非生物和生物胁迫等过程中发挥着重要的作
WRKY 转录因子含有1~2个WRKY结构域,为DNA结合域,由约 60 个氨基酸残基组成,N 端包含典型的WRKYGQK七肽序
稻属有24个种,其中9个种(11个基因组)中的WRKY 转录因子被鉴定和分析
从Genome Warehouse(http://bigd.big.ac.cn/gwh)下载疣粒野生稻的基因组数
利用RagTag工具
利用MEGA 11软件中的MUSCLE进行疣粒野生稻WRKY转录因子的WRKY结构域和全长氨基酸序列比对。基于疣粒野生稻的WRKY结构域(包括N-末端和C-末端结构域)和预测的完整蛋白序列,利用MEGA 11构建邻接系统发育树,bootstrap复制为1000。最后使用ggtree对进化树进行美
通过在线工具eggNOG(http://eggnog-mapper.embl.de/)获取疣粒野生稻的注释文件,使用AnnotationForge构建了疣粒野生稻的Orgdb包org.Oryza granulata.eg.db,然后使用clusterProfiler进行KEGG (Kyoto Encyclopedia of Genes and Genomes)富集分析。
提取OgWRKYs基因 5'端上游 2000 bp的序列,利用 Plant CARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) 网站进行顺式作用元件信息分析,并用 TBtools v1.098769软件的 Simple BioSequence Viewer 工具进行可视化。
利用MiniBEST Plant RNA Extraction Kit试剂盒(TaKaRa 公司)提取接种H2O(对照)和白叶枯病菌PXO99后0 h、24 h、48 h和72 h的疣粒野生稻叶片总RNA,然后用TOYOBO公司的ReverTra Ace qPCR RT Master Mix RNA反转录试剂盒将总RNA反转录成cDNA。以Actin基因(LOC_Os11g06390)作为内参,使用Promega公司的GoTaq qPCR Master Mix荧光定量试剂盒进行qRT-PCR检测。反应体系10 μL:5 μL qPCR Master Mix,0.25 μL正向引物,0.25 μL反向引物,2 μL cDNA, 2.5 μL ddH2O。扩增程序:95 ℃预变性10 min;95 ℃变性15 s,60 ℃退火60 s,40个循环;熔解程序:95 ℃,15 s;60 ℃,15 s;95 ℃,15 s。使用
引物名称 Primer name | 引物序列 (5'-3') Primer sequence(5'-3') | |
---|---|---|
正向 Forword | 反向 Reverse | |
Actin | GAGTATGATGAGTCGGGTCCAG | ACACCAACAATCCCAAACAGAG |
OgWRKY30b | ATGCTTCATCTGCACCACAGGC | TGGTTTCTTGGTGGGAGAATGAAG |
OgWRKY53 | CGAGTAGTAGAGGCGAGCAAGA | GCTTCCCTTCACCTGCTTCT |
OgWRKY88 | AGGATTGATGATGGATCTGCTGG | TCGCCACCTATAACCATCATCC |
OgWRKY96 | ACCACGTCTGGTCTGTCAGGTG | TTCGTGTGGCCTTGATTCACC |
OgWRKY111 | AGCACCGAATCGTGCTCCATG | TCCAAGAACTCCGTCGTCGTC |
利用软件HMMER 3.0在疣粒野生稻基因组中搜索到98条编码WRKY蛋白的候选DNA序列,其中有4条序列(GWHTAAEL007838、GWHTAAEL017314、GWHTAAEL017324和GWHTAAEL038547)不含编码WRKY结构域的序列(Genome Warehouse(http://bigd.big.ac.cn/gwh) )。最终,在疣粒野生稻基因组中鉴定了94个编码WRKY蛋白的基因(
基因名称 Gene name | MSU基因座 MSU locus | 编码区ID CDS ID | 氨基酸数量 Number of amino acid | WRKY基序 WRKY motif | 锌指类型 Zinc finger type | 组/亚组 Group/Subgroup | 染色体 Chromosome |
---|---|---|---|---|---|---|---|
OgWRKY1 | LOC_Os01g14440 | GWHTAAEL025149 | 560 | WRKYGQK | C-X5-C-X23-HXH | Ⅱb | 1 |
OgWRKY2 | LOC_Os10g42850 | GWHTAAEL017997 | 307 | WRKYGQK | C-X5-C-X23-HXH | Ⅱe | 10 |
OgWRKY3 | LOC_Os03g55080 | GWHTAAEL008180 | 193 | WRKYGQK | C-X4-C-X23-HXH | Ⅱc | 3 |
OgWRKY4 | LOC_Os03g55164 | GWHTAAEL008165 | 423 | WRKYGQK/WRKYGQK | C-X4-C-X22-HXH/C-X4-C-X23-HXH | Ⅰa | 3 |
OgWRKY5 | LOC_Os05g04640 | GWHTAAEL018663 | 505 | WRKYGQK | C-X5-C-X23-HXH | Ⅱb | 5 |
OgWRKY6 | LOC_Os03g58420 | GWHTAAEL049835 | 388 | WRKYGQK | C-X5-C-X23-HXH | Ⅱd | 3 |
OgWRKY7 | LOC_Os05g46020 | GWHTAAEL027725 | 228 | WRKYGKK | C-X4-C-X23-HXH | Ⅱc | 5 |
OgWRKY8 | LOC_Os05g50610 | GWHTAAEL012915 | 326 | WRKYGQK | C-X4-C-X23-HXH | Ⅱc | 5 |
OgWRKY9 | LOC_Os01g18584 | GWHTAAEL003764 | 559 | WRKYGQK | C-X5-C-X23-HXH | Ⅱb | 1 |
OgWRKY10 | LOC_Os01g09100 | GWHTAAEL016201 | 208 | WRKYGKK | C-X4-C-X23-HXH | Ⅱc | 1 |
OgWRKY11 | LOC_Os01g43650 | GWHTAAEL042449 | 365 | WRKYGQK | C-X4-C-X23-HXH | Ⅱc | 1 |
OgWRKY12 | LOC_Os01g43550 | GWHTAAEL042440 | 346 | WRKYGQK | C-X5-C-X23-HXH | Ⅱe | 1 |
OgWRKY13 | LOC_Os01g54600 | GWHTAAEL009521 | 328 | WRKYGQK | C-X5-C-X23-HXH | Ⅱe | 1 |
OgWRKY14 | LOC_Os01g53040 | GWHTAAEL020175 | 311 | WRKYGQK | C-X5-C-X23-HXH | Ⅱe | 1 |
OgWRKY15 | LOC_Os01g46800 | GWHTAAEL039613 | 355 | WRKYGQK | C-X7-C-X23-HXC | Ⅲ | 1 |
OgWRKY16 | LOC_Os01g47560 | GWHTAAEL009341 | 366 | WRKYGQK | C-X4-C-X23-HXH | Ⅱc | 1 |
OgWRKY17 | LOC_Os01g74140 | GWHTAAEL021294 | 366 | WRKYGQK | C-X4-C-X23-HXH | Ⅱc | 1 |
OgWRKY18 | LOC_Os10g18099 | GWHTAAEL003187 | 262 | WRKYGEK | C-X7-C-X24-HXC | Ⅲ | 10 |
OgWRKY19 | LOC_Os05g49620 | GWHTAAEL051876 | 134 | WRKYGQK | C-X7-C-X23-HXC | Ⅲ | 5 |
OgWRKY20 | LOC_Os01g60540 | GWHTAAEL035800 | 366 | WRKYGQK | C-X7-C-X24-HXC | Ⅲ | 1 |
OgWRKY21 | LOC_Os01g60640 | GWHTAAEL035798 | 283 | WRKYGQK | C-X7-C-X23-HXC | Ⅲ | 1 |
OgWRKY22 | LOC_Os01g60490 | GWHTAAEL035802 | 245 | WRKYGQK | C-X7-C-X24-HXC | Ⅲ | 1 |
OgWRKY23a | LOC_Os01g53260 | GWHTAAEL020198 | 246 | WRKYGQK | C-X4-C-X23-HXH | Ⅱc | 1 |
OgWRKY23b | LOC_Os01g53260 | GWHTAAEL011964 | 185 | WRKYGQK | C-X4-C-X23-HXH | Ⅱc | 5 |
OgWRKY24 | LOC_Os01g61080 | GWHTAAEL007473 | 546 | WRKYGQK/WRKYGQK | C-X4-C-X22-HXH/C-X4-C-X23-HXH | Ⅰa | 1 |
OgWRKY25 | LOC_Os08g13840 | GWHTAAEL007440 | 281 | WRKYGQK | C-X5-C-X23-HXH | Ⅱd | 8 |
OgWRKY26 | LOC_Os01g51690 | GWHTAAEL013662 | 224 | WRKYGKK | C-X4-C-X23-HXH | Ⅱc | 1 |
OgWRKY27 | LOC_Os01g40430 | GWHTAAEL014181 | 162 | WRKYGQK | C-X5-C-X23-HXH | Ⅱb | 1 |
OgWRKY28 | LOC_Os06g44010 | GWHTAAEL042148 | 336 | WRKYGQK | C-X5-C-X23-HXH | Ⅱa | 6 |
OgWRKY29 | LOC_Os07g02060 | GWHTAAEL008658 | 303 | WRKYGQK | C-X4-C-X23-HXH | Ⅱc | 7 |
OgWRKY30a | LOC_Os08g38990 | GWHTAAEL023546 | 692 | WRKYGQK/WRKYGQK | C-X4-C-X22-HXH/C-X4-C-X23-HXH | Ⅰa | 8 |
OgWRKY30b | LOC_Os08g38990 | GWHTAAEL032254 | 699 | WRKYGHK/WRKYGQK | C-X4-C-X22-HXH/C-X4-C-X23-HXH | Ⅰa | 9 |
OgWRKY30c | LOC_Os08g38990 | GWHTAAEL023550 | 433 | WRKYGQK | NO | Ⅳ | 8 |
OgWRKY31 | LOC_Os06g30860 | GWHTAAEL010974 | 383 | WRKYGQK | C-X5-C-X23-H-X2-H | Ⅱe | 6 |
OgWRKY32 | LOC_Os02g53100 | GWHTAAEL017354 | 555 | WRKYGQK | C-X5-C-X23-HXH | Ⅱb | 2 |
OgWRKY34 | LOC_Os02g43560 | GWHTAAEL010736 | 236 | WRKYGQK | C-X4-C-X23-HXH | Ⅱc | 2 |
OgWRKY35 | LOC_Os04g39570 | GWHTAAEL040303 | 602 | WRKYGQK | C-X4-C-X23-HXH | Ⅱc | 4 |
OgWRKY36 | LOC_Os04g46060 | GWHTAAEL006992 | 244 | WRKYGQK | C-X4-C-X23-HXH | Ⅱc | 4 |
OgWRKY37 | LOC_Os04g50920 | GWHTAAEL016377 | 458 | WRKYGQK | C-X5-C-X23-HXH | Ⅱe | 4 |
OgWRKY39 | LOC_Os02g16540 | GWHTAAEL019838 | 347 | WRKYGQK | C-X5-C-X23-HXH | Ⅱe | 2 |
OgWRKY42 | LOC_Os02g26430 | GWHTAAEL048897 | 256 | WRKYGQK | C-X5-C-X23-HXH | Ⅱd | 2 |
OgWRKY43 | LOC_Os05g49210 | GWHTAAEL011863 | 601 | WRKYGQK | C-X5-C-X23-HXH | Ⅱb | 5 |
OgWRKY45 | LOC_Os05g25770 | GWHTAAEL048986 | 318 | WRKYGQK | C-X7-C-X23-HXC | Ⅲ | 5 |
OgWRKY46a | LOC_Os11g02480 | GWHTAAEL040814 | 226 | WRKYGEK | C-X7-C-X24-HXC | Ⅲ | 12 |
OgWRKY46b | LOC_Os11g02480 | GWHTAAEL009148 | 224 | WRKYGEK | C-X7-C-X24-HXC | Ⅲ | 11 |
OgWRKY47 | LOC_Os07g48260 | GWHTAAEL014235 | 293 | WRKYGQK | C-X7-C-X23-HXC | Ⅲ | 7 |
OgWRKY48 | LOC_Os05g40060 | GWHTAAEL042918 | 247 | WRKYGQK | C-X7-C-X23-HXC | Ⅲ | 5 |
OgWRKY49 | LOC_Os05g49100 | GWHTAAEL042365 | 418 | WRKYGQK | C-X4-C-X23-HXH | Ⅱc | 5 |
OgWRKY51 | LOC_Os04g21950 | GWHTAAEL034539 | 326 | WRKYGQK | C-X5-C-X23-HXH | Ⅱd | 4 |
OgWRKY53 | LOC_Os05g27730 | GWHTAAEL032827 | 503 | WRKYGQK/WRKYGQK | C-X4-C-X23-HXH/C-X4-C-X23-HXH | Ⅰa | 5 |
OgWRKY54 | LOC_Os05g40080 | GWHTAAEL042921 | 322 | WRKYGQK | C-X7-C-X26-HXC | Ⅲ | 5 |
OgWRKY55 | LOC_Os03g20550 | GWHTAAEL025612 | 210 | WRKYGEK | C-X7-C-X24-HXC | Ⅲ | 3 |
OgWRKY56 | LOC_Os01g62514 | GWHTAAEL024338 | 342 | WRKYGQK | C-X4-C-X23-HXH | Ⅱc | 1 |
OgWRKY57 | LOC_Os12g01180 | GWHTAAEL037899 | 441 | WRKYGQK | C-X4-C-X22-HXH | Ⅱc | 11 |
OgWRKY61 | LOC_Os11g45850 | GWHTAAEL033777 | 1434 | WRRYGQK/WRKYGQK | C-X7-C-X23-HXC/C-X7-C-X23-HXC | Ⅰb | 11 |
OgWRKY62 | LOC_Os09g25070 | GWHTAAEL040421 | 298 | WRKYGQK | C-X5-C-X23-HXH | Ⅱa | 9 |
OgWRKY64a | LOC_Os12g02450 | GWHTAAEL040816 | 315 | WRKYGQK | C-X7-C-X34-HXC | Ⅲ | 12 |
OgWRKY64b | LOC_Os12g02450 | GWHTAAEL007837 | 309 | WRKYGQK | C-X7-C-X33-HXC | Ⅲ | 12 |
OgWRKY65 | LOC_Os12g02470 | GWHTAAEL034479 | 333 | WRKYGQK | C-X7-C-X30-HXC | Ⅲ | 12 |
OgWRKY66a | LOC_Os02g47060 | GWHTAAEL006945 | 477 | WRKYGQK | C-X5-C-X23-HXH | Ⅱe | 2 |
OgWRKY66b | LOC_Os02g47060 | GWHTAAEL043471 | 227 | WRKYSQK | NO | Ⅳ | 9 |
OgWRKY67 | LOC_Os05g09020 | GWHTAAEL005696 | 215 | WRKYGKK | C-X4-C-X23-HXH | Ⅱc | 5 |
OgWRKY68 | LOC_Os04g51560 | GWHTAAEL027974 | 305 | WRKYGQK | C-X5-C-X23-HXH | Ⅱd | 4 |
OgWRKY69a | LOC_Os08g29660 | GWHTAAEL035782 | 315 | WRKYGQK | C-X7-C-X23-HXC | Ⅲ | 8 |
OgWRKY69b | LOC_Os08g29660 | GWHTAAEL015346 | 405 | WRKYGQK | C-X7-C-X23-HXC | Ⅲ | 5 |
OgWRKY70 | LOC_Os05g39720 | GWHTAAEL050973 | 573 | WRKYGQK/WRKYGQK | C-X4-C-X22-HXH/C-X4-C-X23-HXH | Ⅰa | 5 |
OgWRKY71 | LOC_Os02g08440 | GWHTAAEL038027 | 342 | WRKYGQK | C-X5-C-X23-HXH | Ⅱa | 2 |
OgWRKY72 | LOC_Os11g29870 | GWHTAAEL015332 | 238 | WRKYGQK | C-X4-C-X23-HXH | Ⅱc | 11 |
OgWRKY73 | LOC_Os06g05380 | GWHTAAEL031376 | 531 | WRKYGQK | C-X5-C-X23-HXH | Ⅱb | 6 |
OgWRKY74 | LOC_Os09g16510 | GWHTAAEL025256 | 342 | WRKYGQK | C-X7-C-X23-HXC | Ⅲ | 9 |
OgWRKY76 | LOC_Os09g25060 | GWHTAAEL040423 | 330 | WRKYGQK | C-X5-C-X23-HXH | Ⅱa | 9 |
OgWRKY77a | LOC_Os01g40260 | GWHTAAEL034111 | 1021 | WRKYAKK | C-X4-C-X23-HXH | Ⅱc | 8 |
OgWRKY77b | LOC_Os01g40260 | GWHTAAEL014193 | 213 | WRKYGKK | C-X4-C-X23-HXH | Ⅱc | 1 |
OgWRKY79 | LOC_Os03g21710 | GWHTAAEL014699 | 357 | WRKYGQK | C-X7-C-X23-HXC | Ⅲ | 3 |
OgWRKY80 | LOC_Os03g63810 | GWHTAAEL014025 | 372 | WRKYGQK | C-X5-C-X23-HXH | Ⅱe | 3 |
OgWRKY81 | LOC_Os03g33012 | GWHTAAEL013315 | 364 | WRKYGQK/WRKYGQK | C-X4-C-X22-HXH/C-X4-C-X23-HXH | Ⅰa | 3 |
OgWRKY84 | LOC_Os05g40070 | GWHTAAEL042919 | 264 | WRKYGEK | C2XX | Ⅳ | 5 |
OgWRKY87 | LOC_Os07g39480 | GWHTAAEL027488 | 617 | WRKYGQK/WRKYGQK | C-X4-C-X22-HXH/C-X4-C-X23-HXH | Ⅰa | 7 |
OgWRKY88 | LOC_Os07g40570 | GWHTAAEL023512 | 364 | WRKYGQK/WRKYGQK | C-X4-C-X22-HXH/C-X4-C-X23-HXH | Ⅰa | 7 |
OgWRKY89 | LOC_Os08g17400 | GWHTAAEL015781 | 401 | WRKYGQK/WRKYGQK | C-X4-C-X22-HXH/C-X4-C-X23-HXH | Ⅰa | 8 |
OgWRKY94 | LOC_Os12g40570 | GWHTAAEL024415 | 437 | WRKYGQK | C-X5-C-X23-HXH | Ⅱd | 12 |
OgWRKY96 | LOC_Os12g32250 | GWHTAAEL050054 | 442 | WRKYGQK/WRKYGQK | C-X4-C-X22-HXH/C-X4-C-X23-HXH | Ⅰa | 12 |
OgWRKY102 | LOC_Os01g08710 | GWHTAAEL016232 | 279 | WRKYGQK | C-X4-C-X23-HXH | Ⅱc | 1 |
OgWRKY104 | LOC_Os11g02520 | GWHTAAEL009146 | 277 | WRKYGQK | C-X7-C-X27-HXC | Ⅲ | 12 |
OgWRKY107 | LOC_Os01g09080 | GWHTAAEL016202 | 519 | WRKYGQK | C-X5-C-X23-HXH | Ⅱb | 1 |
OgWRKY108 | LOC_Os01g60600 | GWHTAAEL035799 | 337 | WRKYGQK | C-X7-C-X25-HXC | Ⅲ | 1 |
OgWRKY109 | LOC_Os05g03900 | GWHTAAEL018707 | 180 | WRKYGQK | C-X5-C-X23-HXH | Ⅱe | 5 |
OgWRKY111 | LOC_Os05g50700 | GWHTAAEL012910 | 307 | WRKYGQK | C-X5-C-X23-HXH | Ⅱe | 5 |
OgWRKY113 | LOC_Os06g06360 | GWHTAAEL007274 | 385 | WRKYGQK | C-X7-C-X23-HXC | Ⅲ | 6 |
OgWRKY114a | LOC_Os12g02400 | GWHTAAEL009150 | 360 | WRKYGEK | C-X7-C-X24-HXC | Ⅲ | 11 |
OgWRKY114b | LOC_Os12g02400 | GWHTAAEL038377 | 324 | WRKYGEK | C-X7-C-X24-HXC | Ⅲ | 12 |
OgWRKY115 | LOC_Os07g27670 | GWHTAAEL008610 | 218 | WRKYGQK | NO | Ⅳ | 7 |
OgWRKY116 | LOC_Os01g60520 | GWHTAAEL035801 | 275 | WRKYGQK | C-X7-C-X24-HXC | Ⅲ | 1 |
OgWRKY121 | LOC_Os03g53050 | GWHTAAEL000091 | 388 | WRKYGQK | C-X5-C-X23-HXH | Ⅱd | 8 |
疣粒野生稻中有两个或三个预测的WRKY基因搜索到日本晴中同一个WRKY基因时,按相似性高低,分别在基因名后加a、b、c,进行区分
When two or three predicted WRKY genes in O.granulata search for the same WRKY gene in Nipponbare, they are distinguished by adding a, b, and c after the gene name according to the similarity
参考Xie等


图1 OgWRKYs保守结构域多序列比对(MSA)
Fig.1 OgWRKYs conserved domain multiple sequence alignment (MSA)
蓝色代表100%序列一致性,粉色表示大于75%的序列,青色表示小于75%的序列。红框表示保守的七肽序列,红线表示锌指结构域。Os:水稻;Og:疣粒野生稻
Blue represents 100% sequence consistency, pink represents sequences greater than 75%, cyan represents sequences less than 75%. The red box indicates conserved heptapeptide sequences, and the red line indicates zinc finger domains. Os:Oryza sativa;Og:Oryza granulata
本研究结果表明,Ⅰb亚组也存在于GG染色体组的疣粒野生稻基因组中。疣粒野生稻基因组中绝大多数WRKY成员(78个)都包含保守的WRKYGQK基序,少数为WRKYGHK (1个)、WRKYGKK(5个)、WRKYGEK(7个)、WRRYGQK (1个)、WRKYAKK(1个)和WRKYSQK(1个)变异体,其中WRKYAKK、WRKYGHK 、WRRYGQK 和WRKYSQK,是本研究在疣粒野生稻中鉴定的新变异体(
94个OgWRKY基因不均匀地分布在疣粒野生稻的12条染色体上,分布数量最多的是1号染色体(23个),其次是5号染色体(17个),最少的是10号染色体(2个),一些OgWRKY基因在染色体1、5和12上成簇分布(

图2 OgWRKY基因家族染色体分布及数量
Fig. 2 Chromosome distribution and number of OgWRKY gene family

图3 疣粒野生稻和水稻WRKY基因家族共线性分析
Fig. 3 Collinearity analysis of WRKY gene families in O. granulata and rice
首先利用MUSCLE对94个OgWRKY蛋白的WRKY结构域序列进行比对,并利用MEGA 11构建具有1000个bootstrap重复的邻接进化树(

图4 疣粒野生稻WRKY蛋白的系统发育树
Fig. 4 Phylogenetic tree of WRKY proteins in O.granulata
A:疣粒野生稻WRKY结构域构建的系统发育树;B:疣粒野生稻WRKY蛋白的全长氨基酸序列构建的系统发育树; 不同颜色的演化支代表不同的组/亚组,蛋白名称带橘色标示Ⅳ组成员,淡粉色标示Ⅰb亚组成员,紫色标示Ⅱc亚组成员,绿色标示Ⅱd亚组成员,蓝色标示Ⅱe亚组成员
A: Phylogenetic tree constructed by WRKY domain of O.granulata; B: Phylogenetic tree constructed from full-length amino acid sequence of WRKY protein of O.granulata;Different colors of clades represent different groups/subgroups, the protein names are orange for group IV members, light pink for group Ib members, and purple for group Ⅱc members. Members of the Ⅱd subgroup are identified in green, and members of the Ⅱe subgroup are identified in blue
由WRKY结构域构建的系统发育树可能会遗漏一些基因进化的重要信息。为此,进一步利用OgWRKYs蛋白的氨基酸全长序列构建了邻接系统发育树(
为了进一步了解OgWRKY蛋白基序的相似性和多样性,使用MEME Online软件对OgWRKY蛋白的10个保守基序进行了分析。结果显示,不同OgWRKY蛋白中含有motif数量1~7个不等,同一组或亚组的OgWRKYs具有基本一致的保守基序(

图5 OgWRKYs保守基序(A)和保守结构域(B)
Fig.5 Conserved motif (A) and conserved domain(B) of OgWRKYs
系统发育树中,青色代表Ⅰa亚组,灰色代表Ⅰb亚组,粉色代表Ⅱa亚组,黄色代表Ⅱb亚组,紫色代表Ⅱc,绿色代表Ⅱd亚组,蓝色代表Ⅱe亚组,红色代表Ⅲ组,白色代表Ⅳ组
In phylogenetic trees, cyan shading represents subgroup Ⅰa, gray represents subgroup Ⅰb, pink represents subgroup Ⅱa, yellow represents subgroup Ⅱb, purple represents subgroup Ⅱc, green represents subgroup Ⅱd, blue represents subgroup Ⅱe, red represents group Ⅲ, and white represents group Ⅳ
在疣粒野生稻基因组中鉴定的94个WRKY家族基因中,有90个基因都编码含有至少一个约由60个氨基酸组成的典型WRKY结构域,而OgWRKY30c、 OgWRKY66b、OgWRKY84和OgWRKY115的WRKY结构域不完整,鉴定的WRKY结构域只有19~48个氨基酸。除WRKY结构域之外,有15个OgWRKY蛋白还含有其他结构域(
对94个OgWRKYs基因进行了KEGG通路富集分析,14个OgWRKY富集在基因植物-病原互作(Plant-pathogen interaction)通路,其中OgWRKY12、OgWRKY24、OgWRKY31、OgWRKY39、OgWRKY53、OgWRKY70、OgWRKY81、OgWRKY88、OgWRKY96、和OgWRKY111同时富集在MAPK信号通路(MAPK signaling pathway)(

图 6 OgWRKYs KEGG富集分析
Fig.6 KEGG enrichment analysis of OgWRKYs
A: KEGG富集到的两个通路;B: KEGG 的植物-病原互作通路和MAPK信号通路中富集到的OgWRKYs
A: Two pathways enriched by KEGG; B: OgWRKYs enriched in KEGG's plant-pathogen interaction and MAPK signaling pathway-plant
进一步对上述除OgWRKY30c外的13个基因起始密码子上游2000 bp序列中5个与植物防御应答有关的顺式作用元件进行分析,发现在9个基因中(OgWRKY12、OgWRKY24、OgWRKY30b、OgWRKY53、OgWRKY70、OgWRKY81、OgWRKY88、OgWRKY96和OgWRKY111)鉴定到茉莉酸甲酯应答元件(TGACG/ CGTCA-motif)。在OgWRKY30b、OgWRKY53、OgWRKY88和OgWRKY96 的启动子中还鉴定到乙烯响应元件(ERE),在OgWRKY111中还鉴定到水杨酸应答元件(TCA),OgWRKY53中鉴定到参与防御和应激反应的TC富集区(TC-rich repeats)(

图7 OgWRKYs基因启动子区顺式元件的鉴定
Fig.7 Identification of cis-regulatory elements in the promoter region of the OgWRKYs gene
TGACG-motif: 茉莉酸甲酯响应元件; CGTCA-motif: 茉莉酸甲酯响应元件; TCA元件:水杨酸响应元件;ERE:乙烯响应元件; TC-rich重复序列:防御和应激反应元件
TGACG-motif: MeJA response element; CGTCA-motif: MeJA response element; TCA element :SA response element; ERE: Ethylene response element; TC-rich repeat sequences: Defense and stress response elements
为了进一步研究OgWRKY30b、OgWRKY53、OgWRKY88、OgWRKY96和OgWRKY111在白叶枯病菌(Xanthomonas oryzae pv. Oryzae,Xoo)PXO99胁迫下的表达特征,分别检测这5个基因在接种 H2O(对照)和白叶枯病菌PXO99后0 h,24 h,48 h和72 h的表达水平(

图8 疣粒野生稻OgWRKYs基因接种PXO99后的相对表达水平
Fig. 8 Relative expression level of OgWRKYs gene in O.granulata inoculated with PXO99
不同小写字母表示在 P<0.05 水平上差异显著
Different lowercase letters indicate significant difference at the P<0.05 level
WRKY家族是植物成员数量较多的转录因子家族之一,在植物发育和对生物和非生物胁迫的响应中具有重要作
本研究鉴定了94个 OgWRKYs基因,将其分为4组,Ⅰ(Ia和Ib)、Ⅱ(IIa、IIb、IIc、IId和IIe)Ⅲ、Ⅳ组分别有12、52、26和4个成员。Rinerson
Villacasti
本研究对94个OgWRKYs转录因子进行KEGG富集分析,对其中13个富集在植物-病原互作通路的OgWRKYs进一步结合基因启动子区域进行顺式作用元件分析,推测OgWRKY30b、OgWRKY53、OgWRKY88、OgWRKY 96和OgWRKY111在疣粒野生稻响应生物和非生物逆境中具有重要作用。在水稻植株中过表达OgWRKY30b同源基因OsWRKY30能显著提高水稻植株的耐旱性和白叶枯病抗性
参考文献
Rushton P J, Somssich I E, Ringler P, Shen Q J. WRKY transcription factors. Trends in Plant Science, 2010,15(5):247-258 [百度学术]
黄幸, 丁峰, 彭宏祥, 潘介春, 何新华, 徐炯志, 李琳. 植物WRKY转录因子家族研究进展. 生物技术通报, 2019,35(12):129-143 [百度学术]
Huang X, Ding F, Peng H X, Pan J C, He X H, Xu J Z, Li L. Research progress on family of plant WRKY transcription factors. Biotechnology Bulletin, 2019,35(12):129-143 [百度学术]
Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Molecular & General Genetics, 1994,244(6):563-571 [百度学术]
陈林英, 李佳佳, 王博, 杜婉清, 高梦雪, 刘慧, 檀淑琴, 邱丽娟, 王晓波. WRKY转录因子在大豆响应生物和非生物胁迫中的功能研究进展. 植物遗传资源学报, 2022,23(2):323-332 [百度学术]
Chen L Y, Li J J, Wang B, Du W Q, Gao M X, Liu H, Tan S Q, Qiu L J, Wang X B. Research progress on the function of WRKY transcription factor response to biotic and abiotic stresses in soybean. Journal of Plant Genetic Resources, 2022,23(2):323-332 [百度学术]
Eulgem T, Somssich I E. Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 2007,10(4):366-371 [百度学术]
Ross C A, Liu Y, Shen Q J. The WRKY gene family in Rice (Oryza sativa). Journal of Integrative Plant Biology, 2007,49(6):827-842 [百度学术]
Schmutz J, Cannon S B, Schlueter J, Ma J, Mitros T, Nelson W, Hyten D L, Song Q, Thelen J J, Cheng J, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X, Shinozaki K, Nguyen H T, Wing R A, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker R C, Jackson S A. Genome sequence of the palaeopolyploid soybean. Nature, 2010,463(7278):178-183 [百度学术]
Niu C F, Wei W, Zhou Q Y, Tian A G, Hao Y J, Zhang W K, Ma B, Lin Q, Zhang Z B, Zhang J S, Chen S Y. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant, Cell & Environment, 2012,35(6):1156-1170 [百度学术]
Wang D J, Wang L, Su W H, Ren Y J, You C H, Zhang C, Que Y X, Su Y C. A class III WRKY transcription factor in sugarcane was involved in biotic and abiotic stress responses. Scientific Reports, 2020,10(1):20964 [百度学术]
Dang F F, Wang Y N, She J J, Lei Y F, Liu Z Q, Eulgem T, Lai Y, Lin J, Yu L, Lei D, Guan D Y, Li X, Yuan Q, He S L. Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection. Physiologia Plantarum, 2014,150(3):397-411 [百度学术]
Qiu Y, Yu D. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environmental and Experimental Botany, 2009,65(1):35-47 [百度学术]
Qiu D Y, Xiao J, Ding X H, Xiong M, Cai M, Cao Y L, Li X H, Xu C G, Wang S P. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Molecular Plant-Microbe Interactions®, 2007,20:492-499 [百度学术]
Han M, Ryu H S, Kim C Y, Park D S, Ahn Y K, Jeon J S. OsWRKY30 is a transcription activator that enhances rice resistance to the Xanthomonas oryzae pathovar oryzae. Journal of Plant Biology, 2013,56(4):258-265 [百度学术]
Wang L H, Chen J, Zhao Y Q, Wang S P, Yuan M. OsMAPK6 phosphorylates a zinc finger protein OsLIC to promote downstream OsWRKY30 for rice resistance to bacterial blight and leaf streak. Journal of Integrative Plant Biology, 2022,64(5):1116-1130 [百度学术]
Liu X Q, Bai X Q, Wang X J, Chu C C. OsWRKY71, a rice transcription factor, is involved in rice defense response. Journal of Plant Physiology, 2007,164(8):969-979 [百度学术]
Wang S, Han S Y, Zhou X G, Zhao C J, Guo L N, Zhang J Q, Liu F, Huo Q X, Zhao W S, Guo Z J, Chen X J. Phosphorylation and ubiquitination of OsWRKY31 are integral to OsMKK10-2-mediated defense responses in rice. The Plant Cell, 2023,35(6):2391-2412 [百度学术]
Shi X T, Xiong Y H, Zhang K, Zhang Y S, Zhang J Q, Zhang L L, Xiao Y T, Wang G L, Liu W D. The ANIP1-OsWRKY62 module regulates both basal defense and Pi9-mediated immunity against Magnaporthe oryzae in rice. Molecular Plant, 2023,16(4):739-755 [百度学术]
Eulgem T, Rushton P J, Robatzek S, Somssich I E. The WRKY superfamily of plant transcription factors. Trends in Plant Science, 2000,5(5):199-206 [百度学术]
Zhang Y J, Wang L J. The WRKY transcription factor superfamily: Its origin in eukaryotes and expansion in plants. BMC Evolutionary Biology, 2005,5:1-12 [百度学术]
Wu K L, Guo Z J, Wang H H, Li J. The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Research, 2005,12(1):9-26 [百度学术]
Wang L N, Zhu W, Fang L C, Sun X M, Su L Y, Liang Z C, Wang N, Londo J P, Li S H, Xin H P. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera. BMC Plant Biology, 2014,14:103 [百度学术]
Ulker B, Somssich I E. WRKY transcription factors: from DNA binding towards biological function. Current Opinion in Plant Biology, 2004,7(5):491-498 [百度学术]
Bakshi M, Oelmüller R. WRKY transcription factors. Plant Signaling & Behavior, 2014,9(2):e27700 [百度学术]
王磊, 高晓清, 朱苓华, 周永力, 黎志康. 植物WRKY转录因子家族基因抗病相关功能的研究进展. 植物遗传资源学报, 2011,12(1):80-85 [百度学术]
Wang L, Gao X Q, Zhu H L, Zhou Y L, Li Z K. Advances in Research on Function of WRKY Transcription Factor Genes in Plant Resistance. Journal of Plant Genetic Resources, 2011,12(1):80-85 [百度学术]
傅明川, 李浩, 陈义珍, 王立国, 柳展基, 刘任重. 海岛棉WRKY转录因子的全基因组鉴定及响应黄萎病菌侵染的表达分析. 植物遗传资源学报, 2019,20(5):1289-1300 [百度学术]
Fu M C, Li H, Chen Y Z, Wang L G, Liu Z J, Liu R Z. Genome-wide investigation of WRKY transcription factors in gossypium barbadense and their expression patterns in response to Verticillium dahliae infection. Journal of Plant Genetic Resources, 2019,20(5):1289-1300 [百度学术]
Wu K L, Guo Z J, Wang H H, Li J. The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Research, 2005,12(1):9-26 [百度学术]
Xie Z, Zhang Z L, Zou X L, Huang J, Ruas P, Thompson D, Shen Q J. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiology, 2005,137(1):176-189 [百度学术]
Villacastin A J,Adams K S,Boonjue B,Rushton P,Han M,Shen J Q. Dynamic differential evolution schemes of WRKY transcription factors in domesticated and wild rice. Scientific Reports, 2021,11:14887 [百度学术]
Wu Z G, Fang D M, Yang R, Gao F, An X Y, Zhuo X X, Li Y F, Yi C D, Zhang T, Liang C Z, Cui P, Cheng Z K, Luo Q. De novo genome assembly of Oryza granulata reveals rapid genome expansion and adaptive evolution. Communications Biology, 2018,1(1):84 [百度学术]
Cheng X J, He B, Chen L, Xiao S Q, Fu J, Chen Y, Yu T Q, Cheng Z Q, Feng H. Transcriptome analysis confers a complex disease resistance network in wild rice Oryza meyeriana against Xanthomonas oryzae pv. oryzae. Scientific Reports, 2016,6:38215 [百度学术]
Eulgem T, Rushton P J, Robatzek S, Somssich I, Somssich I E. WRKY superfamily of plant transcription factors. Trends In Plant Science, 2000,5(5):199-206 [百度学术]
Alonge M, Lebeigle L, Kirsche M, Jenike K, Ou S, Aganezov S, Wang X, Lippman Z B, Schatz M C, Soyk S. Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing. Genome Biology, 2022,23:258 [百度学术]
Chao J T, Li Z Y, Sun Y H, Aluko O O, Wu X R, Wang Q, Liu G S. MG2C: A user-friendly online tool for drawing genetic maps. Molecular Horticulture, 2021,1(1):16 [百度学术]
Yu G C. Using ggtree to visualize data on tree-like structures. Current Protocols in Bioinformatics, 2020,69(1):e96 [百度学术]
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods (San Diego, Calif.), 2001,25(4):402-408 [百度学术]
van Loon L C, Rep M, Pieterse C M J. Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 2006,44:135-162 [百度学术]
崔荣秀, 张议文, 陈晓倩, 谷彩红, 张荃. 植物bZIP参与胁迫应答调控的最新研究进展. 生物技术通报, 2019,35(2):143-155 [百度学术]
Cui R X, Zhang Y W, Chen X Q, Gu C H, Zhang Q. The latest research progress on the stress responses of bZIP involved in plants. Biotechnology Bulletin, 2019,35:143-155 [百度学术]
Chen Z, Suzuki H, Kobayashi Y, Wang A C, DiMaio F, Kawashima S A, Walz T, Kapoor T M. Structural insights into Mdn1, an essential AAA protein required for ribosome biogenesis. Cell, 2018,175(3):822-834 [百度学术]
Mickolajczyk K J, Olinares P D B, Niu Y, Chen N, Warrington S E, Sasaki Y, Walz T, Chait B T, Kapoor T M. Long-range intramolecular allostery and regulation in the dynein-like AAA protein Mdn1. Proceedings of the National Academy of Sciences of the United States of America, 2020,117(31):18459-18469 [百度学术]
Elmore Z C, Donaher M, Matson B C, Murphy H, Westerbeck J W, Kerscher O. Sumo-dependent substrate targeting of the SUMO protease Ulp1. BMC Biology, 2011,9:74 [百度学术]
郝炜. 马铃薯抗病蛋白Rx与其辅因子RanGAP2结合机制的结构生物学研究. 北京:中国农业大学, 2014 [百度学术]
Hao W. Structural study of the interaction mechanism between potato disease resistance protein Rx with its cofactor RanGAP2. Beijing : China Agricultural University, 2014 [百度学术]
Jiang C M, Shen Q X J, Wang B, He B, Xiao S Q, Chen L, Yu T Q, Ke X, Zhong Q F, Fu J, Chen Y, Wang L X, Yin F Y, Zhang D Y, Ghidan W, Huang X Q, Cheng Z Q. Transcriptome analysis of WRKY gene family in Oryza officinalis Wall ex Watt and WRKY genes involved in responses to Xanthomonas oryzae pv. oryzae stress. PLoS ONE, 2017,12(11):e188742 [百度学术]
Jiang J J, Ma S H, Ye N H, Jiang M, Cao J S, Zhang J H. WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology, 2017,59(2):86-101 [百度学术]
李定琴, 陈玲, 李维蛟, 柯学, 余腾琼, 李娥贤, 黄兴奇, 程在全. 云南3种野生稻中抗白叶枯病基因的鉴定. 作物学报, 2015,41(3):386-393 [百度学术]
Li D Q, Chen L, Li W J, Ke X, Yu T Q, Li E X, Huang X Q, Cheng Z Q. Identification of bacterial blight resistance gene in Yunnan wild rice. Acta Agronomica Sinica, 2015,41(3):386-393 [百度学术]
Brar D S, Khush G S. Alien introgression in rice. Plant Molecular Biology, 1997,35(1-2):35-47 [百度学术]
Jena K K. The species of the genus Oryza and transfer of useful genes from wild species into cultivated rice, O. sativa. Breeding Science, 2010,60:518-523 [百度学术]
Yang R, Li J, Zhang H, Yang F, Wu Z G, Zhuo X X, An X Y, Cheng Z Q, Zeng Q C, Luo Q. Transcriptome analysis and functional identification of Xa13 and Pi-ta orthologs in Oryza granulata. The Plant Genome, 2018,11(3) [百度学术]
Shi C, Li W, Zhang Q, Zhang Y, Tong Y, Li K, Liu Y, Gao L. The draft genome sequence of an upland wild rice species, Oryza granulata. Scientific Data, 2020,7(1):131 [百度学术]
Rinerson C I, Rabara R C, Tripathi P, Shen Q J, Rushton P J. The evolution of WRKY transcription factors. BMC Plant Biology, 2015,15:66 [百度学术]
Xu H J, Watanabe K A, Zhang L Y, Shen Q X J. WRKY transcription factor genes in wild rice Oryza nivara. DNA research, 2016,23(4):311-323 [百度学术]
Brand L H, Fischer N M, Harter K, Kohlbacher O, Wanke D. Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays. Nucleic Acids Research, 2013,41(21):9764-9778 [百度学术]
Rinerson C I, Rabara R C, Tripathi P, Shen Q J, Rushton P J. The evolution of WRKY transcription factors. BMC Plant Biology, 2015,15:66. [百度学术]
Zhang H, Jin J P, Tang L, Zhao Y, Gu X C, Gao G, Luo J C. PlantTFDB 2.0: Update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Research, 2011,39(Database issue):D1114-D1117 [百度学术]
Palenik B, Grimwood J, Aerts A, Rouzé P, Salamov A, Putnam N, Dupont C, Jorgensen R, Derelle E, Rombauts S, Zhou K, Otillar R, Merchant S S, Podell S, Gaasterland T, Napoli C, Gendler K, Manuell A, Tai V, Vallon O, Piganeau G, Jancek S, Heijde M, Jabbari K, Bowler C, Lohr M, Robbens S, Werner G, Dubchak I, Pazour G J, Ren Q, Paulsen I, Delwiche C, Schmutz J, Rokhsar D, Van de Peer Y, Moreau H, Grigoriev I V. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(18):7705-7710 [百度学术]
Shen H S, Liu C T, Zhang Y, Meng X P, Zhou X, Chu C C, Wang X P. OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Molecular Biology, 2012,80(3):241-253 [百度学术]
Xie W Y, Ke Y G, Cao J B, Wang S P, Yuan M. Knock out of transcription factor WRKY53 thickens sclerenchyma cell walls, confers bacterial blight resistance. Plant Physiology, 2021,187(3):1746-1761 [百度学术]
Ryu H, Han M, Lee S, Cho J, Ryoo N, Heu S, Lee Y, Bhoo S, Wang G L, Hahn T, Jeon J. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Reports,2006,25:836-847 [百度学术]