摘要
连翘(Forsythia suspensa (Thunb.) Vahl)为多年生木本植物,花柱二型具有自交不亲和性。挖掘连翘异型花柱发育候选基因,利于揭示连翘异型花柱的进化与发育机理。对40株长花柱型与短花柱型连翘植株进行全基因组重测序,检测样本基因组的SNP变异位点,开展选择清除分析。利用遗传分化系数Fst和核苷酸多态性π ratio结合的方法筛选候选区域(前5%水平),对差异基因进行GO数据库和KEGG数据库功能注释分析,采用qRT-PCR对候选基因在花柱发育不同时期的表达量进行检测。选择清除分析显示受选择基因295个,主要在植物的生长发育以及代谢调控方面发挥重要作用。分析植物激素调节相关的部分通路,确定连翘异型花柱候选基因CYP734A1(EVM0010386)、BRI1(EVM0011829)、CYCD3(EVM0018316),基因表达结果显示CYP734A1基因在连翘短花柱发育的关键时期持续高表达,露冠期BRI1与CYCD3基因表达水平在短花柱型中显著高于长花柱型。本研究挖掘的候选基因在连翘长花柱与短花柱中存在差异表达,油菜素甾醇参与了连翘异型花柱的发育,是产生连翘花柱异型的原因之一。本研究为连翘异型花柱的进化以及遗传发育调控机制解析奠定基础并提供思路。
连翘(Forsythia suspensa (Thunb.) Vahl),又名黄花杆、黄寿丹,为木犀科连翘属植物,具有清热解毒,消肿散结,疏散风热的功
异型花柱是被子植物中一种特殊的花多态现象和雌雄异位形式,在避免自交、促进异交传粉方面具有重要的进化意义,可提高亲本适合
新一代测序技术(NGS,next generation sequencing)因其成本较低在作物育种和遗传进化等方面得到广泛应用,其中全基因组重测序技术(WGRS,whole genome resequencing study)是常用的技术手段之一,对已知基因组序列的物种进行不同个体的基因组测序,并在此基础上对个体或群体进行差异性分析,获得单核苷酸多态性(SNP,single nucleotide polymorphisms)位点。SNP作为良好的遗传分子标记,在物种遗传多样性分析、全基因组关联分析方面应用广
本研究选择连翘长花柱型与短花柱型植株的叶片混样进行全基因组重测序,采用遗传分化系数Fs
试验所选材料长花柱型(L)与短花柱型(S)连翘植株均来自山西农业大学太谷校区植物园,不同类型的连翘各选20株采集新鲜叶片,每组设置3个重复,酒精擦拭叶片消毒后暂存于-80 ℃冰箱。材料送往北京百迈客生物科技有限公司进行连翘全基因组重测序。
样品基因组DNA检测合格后,用机械打断的方法(超声波)将DNA片段化,然后对片段化的DNA进行片段纯化、末端修复、3′端加A、连接测序接头,用琼脂糖凝胶电泳进行片段大小选择,PCR扩增形成测序文库,建好的文库先进行文库质检,质检合格的文库用Illumina进行测序。
对测序得到的原始Reads进行质量评估并过滤得到Clean Reads,用于后续生物信息学的分析。将Clean Reads与参考基因
SNP的检测主要使用GAT
使用遗传分化系数Fst和核苷酸多态性π ratio方法进行选择清除分析。选择显著高的Fst值(前5%的部分,即Fst > 0.095)和具有极端低或高π ratio (πL/πS)(5%左尾和95%右尾,即π ratio ≤ 0.78和π ratio ≥ 1.29)作为基因组具有强选择性扫描信号区域的筛选标准。用于参数计算的窗口大小为100 kb,步长10 kb。
针对连翘不同花柱类型筛选到的强选择区域,进行GO(gene ontology)注释和相应的GO富集分析。同时进行了KO(KO,KEGG orthoolog and pathway)注释,KO被映射到相应的KEGG通路途径,从而得到被选择基因对应的显著功能富集信息。
使用华越洋RNA提取试剂盒对连翘花柱发育的3个关键时期(鳞片脱落期、现蕾期、露冠期
筛选得到的目的基因序列经公司提取,利用Primer 5.0设计qRT-PCR引物,引物序列见
基因名称 Gene name | 引物名称 Primer name | 引物序列(5′-3′) Primer sequence (5′-3′) | 产物长度(bp) Product length |
---|---|---|---|
HIS | HIS-F | ACAAAGGCGGCGAGAAA | 114 |
HIS-R | CTCTGTGCTCTTCTGGTACTTC | ||
CYP734A1 | EVM0010386-F | CCACCAGCAGTAGCCATAAT | 101 |
EVM0010386-R | ACGGCTAGGATCGGTATTAGA | ||
BRI1 | EVM0011829-F | CTCTTGATCTCGCCGGTAATAG | 119 |
EVM0011829-R | AGCCGGAATTTCACCAGTAA | ||
CYCD3 | EVM0018316-F | GGTTCTGTCCACCCTTGAAT | 97 |
EVM0018316-R | TGATAGGCGGTTCTTCAATCC |
反转录后的连翘花柱cDNA统一稀释10倍,使用TOLOBIO荧光定量试剂盒2×Q3 SYBR qPCR Master Mix对候选基因表达量进行检测。荧光定量反应体系为2×Q3 SYBR qPCR Master Mix 5 μL,正向引物和反向引物(10 μmol/L)各0.2 μL,cDNA 1 μL,ddH2O补足至10 μL。反应程序为预变性95 ℃ 3 min;循环反应95 ℃ 10 s,60 ℃ 30 s,72 ℃ 30 s进行40次;熔解曲线使用仪器(Bio-Rad CFX-96)默认程序。试验数据根据
对测序得到的原始序列进行过滤获得Clean Reads,用于后续信息分析。连翘不同分组植株的测序数据评估(
类型 Type | 测序数据质量统计 Statistics of the sequencing data quality | 与参考基因组比对统计 Alignment statistics with the reference genome | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
过滤后reads数Clean reads | 过滤后 碱基数 Clean bases | Q20含量(%) Q20 content | Q30含量(%) Q30 content | GC含量(%) GC content | 比对后reads数 Total reads | 匹配率(%) Mapped | 平均测序 深度Average sequencing depth | 覆盖度比例1X(%) Coverage ratio of 1X | 覆盖度比例5X(%) Coverage ratio of 5X | 覆盖度比例10X(%) Coverage ratio of 10X | |
长花柱型 L | 78997461 | 23670292756 | 97.55 | 92.97 | 33.80 | 157994922 | 83.36 | 35 | 94.59 | 91.53 | 88.79 |
短花柱型 S | 73924156 | 22150916646 | 97.38 | 92.59 | 34.06 | 147848312 | 82.96 | 33 | 94.54 | 91.42 | 88.58 |
L: Long style morph; S: Short style morph;The same as below
SNP类型的变异分为转换和颠换两种,同种类型碱基之间突变称为转换(Ti,transition),如嘌呤与嘌呤之间、嘧啶与嘧啶之间的变异,不同类型碱基之间的突变称为颠换(Tv,transversion),如嘌呤与嘧啶之间的变异。通常转换比颠换更容易发生,故转换/颠换(Ti/Tv)的比例一般大于1,具体数值和所测物种有关。
类型 Type | SNP数目 SNP number | 转换 Transition | 颠换 Transversion | 转换/颠换 Ti/Tv | 非同义编码Nonsynonymous coding | 同义编码Synonymous coding | 非同义编码/同义编码比率 Nonsynonymous coding / synonymous coding ratio |
---|---|---|---|---|---|---|---|
长花柱型 L | 3461450 | 2290570 | 1170880 | 1.95 | 78942 | 62449 | 1.26 |
短花柱型 S | 3393630 | 2245497 | 1148133 | 1.95 | 78417 | 62125 | 1.26 |
全基因组SNP突变可分成6类,分别是C∶G>A∶T;C∶G>G∶C;C∶G>T∶A;T∶A>A∶T;T∶A>C∶G;T∶A>G∶C。以T∶A>C∶G为例,此种类型SNP突变包括T突变为C和A突变为G,当T突变为C类型出现在参考基因组正链上,A突变为G类型即在参考基因组负链的相同位置。如

图1 连翘长花柱型与短花柱型SNP变异类型分布图
Fig.1 Distribution of SNP variation types of long style morph and short style morph in F. suspensa
∶代表互补配对;>代表突变
∶ represent complementary pairing; > represent mutated
基于重测序数据对SNP变异位点的分析及注释,对不同花柱类型连翘植株进行选择清除分析,遗传分化系数Fst曼哈顿图(

图2 连翘长花柱型与短花柱型遗传分化系数Fst曼哈顿图
Fig.2 F. suspensa long style morph and short style morph genetic differentiation coefficient Fst Manhattan graph
散点代表每个窗口内的相应指标的值;蓝色水平线代表前5%对应的值,红色水平线代表前1%对应的值;超过阈值线以上的部分即为候选区域;下同
Scatter points represent the values of the corresponding indicators in each window; The blue horizontal line represents the value corresponding to top 5%, and the red horizontal line represents the value corresponding to top1%;The region above the threshold line is the candidate region ;The same below
核苷酸多态性π ratio主要衡量遗传多样性,通常按照π野生/π驯化的方式计算,受驯化群体的π ratio更低。以πL/πS分组计算,

图3 连翘长花柱型与短花柱型核苷酸多态性π ratio(πL/πS)曼哈顿图
Fig.3 F. suspensa long style morph and short style morph nucleotide polymorphism π ratio ( πL / πS ) Manhattan graph
利用遗传分化系数Fst与核苷酸多态性π ratio(前5%水平)结合的方法筛选受选择区域的基因,

图4 连翘长花柱型与短花柱型的受选择区域
Fig.4 The selection region of long style morph and short style morph of F. suspensa
横坐标代表π ratio,纵坐标为Fst值,分别对应上方的频率分布图和右侧的频率分布图,中部的点图则代表不同窗口内的相应的Fst和π ratio。其中最上方红色和蓝色区域为π ratio选出来的前5%区域,绿色区域为Fst所选择前5%区域,中间蓝色和红色区域为Fst和π ratio的交集,即为候选的位点。频数对应图中呈正态分布的部分,代表对应的SNP频数分布。累积趋势对应图中黑色曲线,代表小于等于该区域数值的SNP的比例
The abscissa represents π ratio and the ordinate is the Fst value, corresponding to the upper frequency distribution plot and the right, and the dot plot in the middle represents the corresponding value of Fst and π ratio in different windows. The top red and blue regions are the top 5% regions selected by π ratio, the green regions are the top 5% regions selected by Fst, and the middle blue and red regions are the intersection of Fst and π ratio, which are the candidate loci. The frequency corresponds to the part of the normal distribution in the figure, representing the corresponding SNP frequency distribution. The cumulative trend corresponds to the black curve in the figure, representing the proportion of SNPs less than or equal to the value of the region
为进一步分析受选择基因的功能,对GO和KEGG数据库的注释结果进行分析。GO数据库主要分为3大类:生物学过程(BP,biological process)、细胞组件(CC,cellular component)、分子功能(MF,molecular function)。

图5 受选择信号GO富集分析
Fig.5 GO enrichment analysis of selected signal
A:生物学过程类目;B:细胞成分类目;C:分子功能类目
A: Biological process category; B: Cellular component category; C: Molecular function category
KEGG有助于把基因及表达信息作为一个整体的网络进行研究。连翘不同花柱类型受选择区域注释到50个通路,受选择区域的KEGG通路富集结果显示,细胞进程(Cellular processes)类目富集在胞吞作用(Endocytosis)中;新陈代谢(Metabolism)方面光合作用(Photosynthesis)最显著;环境信息过程(Environmental information processing)只富集到植物激素信号转导通路(Plant hormone signal transduction);在遗传信息过程(Genetic information processing)中,核糖体(Ribosome)功能最显著;在有机系统(Organismal systems)中,植物病原体相互作用(Plant-pathogen interaction)最显著(

图6 受选择信号KEGG富集分析
Fig.6 KEGG enrichment analysis of selected signals
A:KEGG通路富集结果;图A中数字表示富集的基因数目;频率:富集到该条目的基因数目占总富集基因数目的比例;B:富集显著排名前10的通路结果
A: KEGG pathway enrichment results; The numbers in figure A indicate the number of enriched genes; Frequency: The proportion of the number of genes enriched to this item in the total number of enriched gene; B: Top 10 significant pathway enrichment results
基于筛选标准对受选择区域所有基因的功能注释与分析进行统计,发现连翘异型花柱发育与植物激素调控、细胞生长发育等有关,选择相关通路油菜素甾醇生物合成通路(ko00905)、植物激素信号转导通路(ko04075)中所有注释到的差异基因,包括CYP734A1(EVM0010386)、BRI1(EVM0011829)、CYCD3(EVM0018316),对以上3个候选基因进行基因表达量检测。
候选基因表达结果如

图7 候选基因不同花期表达水平分析
Fig.7 Expression level analysis of candidate genes at different flowering stages
A、B、C分别表示CYP734A1、BRI1、CYCD3在花柱发育不同时期的基因表达量;小写字母表示P<0.05水平下的显著性分析;下同
A、B、C represent the gene expression levels of CYP734A1, BRI1, and CYCD3 at different stages of style development; Lowercase letters represent the significance analysis at the P < 0.05 level ;The same as below
油菜甾醇(Campesterol)首先转化为6-氧油菜甾烷醇(6-Oxocampestanol),通过早期C-6氧化途径和晚期C-6氧化途径转化为栗甾酮,进而形成油菜素内酯(BL,brassinolide

图8 候选基因热图分析
Fig.8 Candidate gene heat map analysis
圆角矩形代表连接的隔壁通路;矩形代表基因、蛋白或mRNA;虚线箭头代表连接到另外一个通路;实线箭头代表互作;虚线代表中间步骤;空心圆圈代表化合物;+p代表磷酸化;——|代表抑制。L0、L1、L2分别代表长花柱型的鳞片脱落期、现蕾期、露冠期,S0、S1、S2分别代表短花柱型的鳞片脱落期、现蕾期、露冠期;734A1为CYP734A1类基因
Round rectangles represent the connected adjacent pathway;Rectangles represent genes, proteins, or mRNA; Dotted arrows represent connections to another pathway; Solid arrows represent interactions; Dotted lines represent intermediate steps; Hollow circles represent compounds; + p represents phosphorylation; ——| represents inhibition. L0, L1 and L2 represent the scale shedding stage, squaring stage and dew crown stage of long style morph, respectively. S0, S1 and S2 represent the scale shedding stage, squaring stage and dew crown stage of short style morph, respectively. 734A1 serves as a class CYP734A1 gene
植物花柱异型系统的演化及其适应性是植物进化生态学领域关注的主要问题,花柱二型是一类受遗传控制的花多态现
选择清除分析可以检测物种在进化中受选择的区域,对其系统进化研究具有重要意义。常采用的方法有基于突变频率分布的Tajima’s D检
植物形态建成特别是花芽分化是在基因控制下营养与内源激素综合作用的结
本研究对连翘长花柱型与短花柱型进行选择清除分析,短花柱型受选择时的基因功能注释显示植物生长发育、光合作用等作用显著,连翘异型花柱形成受植物激素的调控,针对油菜素甾醇合成与信号转导途径,筛选到CYP734A1(EVM0010386)、BRI1(EVM0011829)、CYCD3(EVM0018316),CYP734A1基因在短花柱中持续高表达,BRI1、CYCD3基因在露冠期的表达量短花柱型高于长花柱型,促进短花柱型连翘的细胞分裂。候选基因对连翘花柱发育具有重要作用,但其遗传调控机制仍需深入研究。
参考文献
国家药典委员会. 中华人民共和国药典: 一部. 2020年版. 北京: 中国医药科技出版社, 2020:177 [百度学术]
National Pharmacopoeia Commission. Pharmacopoeia of the People′s Republic of China : Volume I. 2020 Edition. Beijing : China Pharmaceutical Science and Technology Press, 2020:177 [百度学术]
阎新佳, 温静, 项峥, 杨波, 吴健, 江培, 崔琳琳, 赵瑛. 连翘的化学成分研究. 中草药, 2017,48(4):644-647 [百度学术]
Yan X J, Wen J, Xiang Z, Yang B, Wu J, Jiang P, Cui L L, Zhao Y. Chemical constituents from fruits of Forsythia suspensa. Chinese Traditional and Herbal Drugs, 2017,48(4):644-647 [百度学术]
夏伟, 董诚明, 杨朝帆, 陈浩. 连翘化学成分及其药理学研究进展. 中国现代中药, 2016,18(12):1670-1674 [百度学术]
Xia W, Dong C M, Yang Z F, Chen H. Research progress on chemical constituents and pharmacology of Forsythia suspensa. Modern Chinese Medicine, 2016,18(12):1670-1674 [百度学术]
Yang H X, Liu Q P, Zhou Y X, Chen Y Y, An P, Xing Y Z, Zhang L, Jia M, Zhang H. Forsythiasides: A review of the pharmacological effects. Frontiers in Cardiovascular Medicine, 2022,25(9):971491 [百度学术]
Hu K, Guan W J, Bi Y, Zhang W, Li L, Zhang B, Liu Q, Song Y, Li X, Duan Z, Zheng Q, Yang Z, Liang J, Han M, Ruan L, Wu C, Zhang Y, Jia Z H, Zhong N S. Efficacy and safety of Lianhuaqingwen capsules, a repurposed Chinese herb, in patients with coronavirus disease 2019: A multicenter, prospective, randomized controlled trial. Phytomedicine, 2021,85:153242 [百度学术]
郭彬, 史晗, 封海波, 刘群. 复方双黄连制剂体外抗菌抗病毒活性研究. 中国畜牧兽医, 2022,49(12):4832-4842 [百度学术]
Guo B, Shi H, Feng H B, Liu Q. Study on in vitro antibacterial and antiviral activity of compound Shuanghuanglian preparation. China Animal Husbandry & Veterinary Medicine, 2022,49(12):4832-4842 [百度学术]
廖强, 罗达龙, 韦日伟, 梁艺坚. 在线二维液相色谱法同时测定银翘解毒丸中5种成分. 中药材, 2017,40(12):2888-2890 [百度学术]
Liao Q, Luo D L, Wei R W, Liang Y J. Simultaneous determination of 5 components in Yinqiao Jiedu Pills by on-line two-dimensional liquid chromatography. Journal of Chinese Medicinal Materials, 2017,40(12):2888-2890 [百度学术]
陈冉, 王婷婷, 李开铃, 尚锐峰, 宋杰, 张景勍. 免疫调节抗病毒中药的特性与应用. 中草药, 2020,51(6):1412-1426 [百度学术]
Chen R, Wang T T, Li K L, Shang R F, Song J, Zhang J Q. Characteristics and application of immune-regulating and antiviral Chinese materia medica. Chinese Traditional and Herbal Drugs, 2020,51(6):1412-1426 [百度学术]
吴凌云. 荞麦属植物二型花柱的进化及适应性意义研究. 武汉: 武汉大学, 2017 [百度学术]
Wu L Y. A study of evolution and adaptive significance of distyly in Fagopyrum species. Wuhan: Wuhan University, 2017 [百度学术]
任鸿雁, 王莉, 马青秀, 吴光. 油菜素内酯生物合成途径的研究进展. 植物学报, 2015,50(6):768-778 [百度学术]
Ren H Y, Wang L, Ma Q X, Wu G. Progress in biosynthetic pathways of brassinosteroids. Chinese Bulletin of Botany, 2015,50(6):768-778 [百度学术]
Huu C N, Kappel C, Keller B, Sicard A, Takebayashi Y, Breuninger H, Nowak M D, Bäurle I, Himmelbach A, Burkart M, Ebbing-Lohaus T, Sakakibara H, Altschmied L, Conti E, Lenhard M. Presence versus absence of CYP734A50 underlies the style-length dimorphism in primroses. eLife, 2016,5:e17956 [百度学术]
Matzke C M, Shore J S, Neff M M, McCubbin A G. The Turnera style S-locus gene TsBAHD possesses brassinosteroid-inactivating activity when expressed in Arabidopsis thaliana. Plants (Basel), 2020,9(11):1566 [百度学术]
Matzke C M, Hamam H J, Henning P M, Dougherty K, Shore J S, Neff M M, McCubbin A G. Pistil mating type and morphology are mediated by the brassinosteroid inactivating activity of the S-locus gene BAHD in heterostylous Turnera species. International Journal of Molecular Sciences, 2021,22(19):10603 [百度学术]
李政. 油菜素内酯介导连翘异型花柱发育分子机制的研究. 太谷: 山西农业大学, 2022 [百度学术]
Li Z. Research of the molecular mechanism of heterostyly development mediated by BR of Forsythia suspensa. Taigu: Shanxi Agricultural University, 2022 [百度学术]
范競升, 谢和霞, 谢小东, 周海宇, 程伟东, 覃兰秋, 江禹奉. 基于SNP标记揭示广西糯玉米地方品种的遗传多样性与群体遗传结构. 植物遗传资源学报, 2023,24(3):661-670 [百度学术]
Fan J S, Xie H X, Xie X D, Zhou H Y, Cheng W D, Qin L Q, Jiang Y F. Exploring the genetic diversity and population structure of guangxi waxy maize landraces based on SNP markers. Journal of Plant Genetic Resources, 2023,24(3):661-670 [百度学术]
孟歌, 朱更瑞, 方伟超, 陈昌文, 王新卫, 王力荣, 曹珂. 桃的花型性状相关SNP位点挖掘与候选基因分析. 植物遗传资源学报, 2022,23(2):505-517 [百度学术]
Meng G, Zhu G R, Fang W C, Chen C W, Wang X W, Wang L R, Cao K. Genome-wide association study identified SNP alleles and candidate genes for flower shape trait in peach (Prunus persica). Journal of Plant Genetic Resources, 2022,23(2):505-517 [百度学术]
Varshney R K, Terauchi R, Mccouch S R. Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biology, 2014,12(6):e1001883 [百度学术]
Gross B L, Olsen K M. Genetic perspectives on crop domestication. Trends in Plant Science, 2010,15(9):529-537 [百度学术]
Smith J M, Haigh J. The hitch-hiking effect of a favourable gene. Genetics Research, 2007,89(5-6):391-403 [百度学术]
张学勇, 童依平, 游光霞, 郝晨阳, 盖红梅, 王兰芬, 李滨, 董玉琛, 李振声. 选择牵连效应分析:发掘重要基因的新思路. 中国农业科学, 2006,39(8):1526-1535 [百度学术]
Zhang X Y, Tong Y P, You G X, Hao C Y, Gai H M, Wang L F, Li B, Dong Y C, Li Z S.Hitchhiking effect mapping: A new approach for discovering agronomic important genes. Scientia Agricultura Sinica, 2006,39(8):1526-1535 [百度学术]
Weir B S, Cockerham C C. Estimating F-statistics for the analysis of population structure. Evolution, 1984,38(6):1358-1370 [百度学术]
Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, 1979,76(10):5269-5273 [百度学术]
Li L F, Cushman S A, He Y X, Li Y. Genome sequencing and population genomics modeling provide insights into the local adaptation of weeping forsythia. Horticulture Researchs, 2020,7(1):130 [百度学术]
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010,20(9):1297-1303 [百度学术]
Cingolani P, Platts A, Wang L L, Coon M, Nguyen T, Wang L, Land S J, Lu X, Ruden D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) , 2012,6(2):80-92 [百度学术]
乔永刚, 曹亚萍, 贾孟君, 王勇飞, 贺嘉欣, 张鑫瑞, 王文斌, 宋芸. 连翘异型花柱植株花芽生长发育与传粉习性研究. 园艺学报, 2020,47(4):699-707 [百度学术]
Qiao Y G, Cao Y P, Jia M J, Wang Y F, He J X, Zhang X R, Wang W B, Song Y. Research on flower buds growth development and pollination habits of Forsythia suspensa heterostyly. Acta Horticulturae Sinica, 2020,47(4):699-707 [百度学术]
曹亚萍, 王勇飞, 贾孟君, 贺嘉欣, 张鑫瑞, 李政, 乔永刚, 宋芸. 连翘花器官生长阶段内参基因筛选与评估. 山西农业科学, 2020,48(3):298-303 [百度学术]
Cao Y P, Wang Y F, Jia M J, He J X, Zhang X R, Li Z, Qiao Y G, Song Y. Selecting and evaluation of reference genes during flower organ growth phase in Forsythia suspensa (Thunb.) Vahl. Journal of Shanxi Agricultural Sciences, 2020,48(3):298-303 [百度学术]
孙淑范, 李佳欣, 孙霞玲, 郭杰, 张勃. 连翘花柱二型的繁育系统特征研究. 西北植物学报, 2021,41(2):317-322 [百度学术]
Sun S F, Li J X, Sun X L, Guo J, Zhang B. Study on characteristics of breeding system in distylous Forsythia suspensa. Acta Botanica Boreali Occidentalia Sinica, 2021,41(2):317-322 [百度学术]
许小涵, 唐志强, 刘谦, 李佳, 刘振华, 张永清, 蒲高斌. 干旱胁迫下忍冬全基因组DNA甲基化和转录组分析. 中草药, 2023,54(16):5339-5349 [百度学术]
Xu X H, Tang Z Q, Liu Q, Li J, Liu Z H, Zhang Y Q, Pu G B. Whole genome DNA methylation and transcriptome analysis of Lonicera Japonica in response to drought stress. Chinese Traditional and Herbal Drugs, 2023,54(16):5339-5349 [百度学术]
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 1989,123(3):585-595 [百度学术]
Flintgarcia S A, Thornsberry J M, Buckler E S, Buckler I V. Structure of linkage disequilibrium in plants. Annual Review of Plant Biology, 2003,54(4):357-374 [百度学术]
Li M Z, Tian S L, Jin L, Zhou G Y, Li Y, Zhang Y, Wang T, Yeung C K, Chen L, Ma J D, Zhang J B, Jiang A A, Li J, Zhou C W, Zhang J, Liu Y K, Sun X Q, Zhao H W, Niu Z X, Lou P, Xian L J, Shen X Y, Liu S Q, Zhang S H, Zhang M W, Zhu L, Shuai S R, Bai L, Tang G Q, Liu H F, Jiang Y Z, Mai M M, Xiao J, Wang X, Zhou Q, Wang Z Q, Stothard P, Xue M, Gao X L, Luo Z G, Gu Y R, Zhu H M, Hu X X, Zhao Y, F Plastow G S, Wang J Y, Jiang Z, Li K, Li N, Li X W, Li R Q. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nature Genetics, 2013,45(12):1431-1438 [百度学术]
杨柳. 基于选择清除鉴定影响枣果实大小候选基因. 北京: 北京林业大学, 2019 [百度学术]
Yang L. Identification of candidate genes related with jujube fruit size based on selective sweep analysis. Beijing: Beijing Forestry University, 2019 [百度学术]
朱红莲, 杜娟, 刘正位, 孙亚林, 李明华, 彭静, 周凯, 柯卫东. 我国野生莼菜考察及遗传多样性研究. 植物遗传资源学报, 2020,21(6):1586-1595 [百度学术]
Zhu H L, Du J, Liu Z W, Sun Y L, Li M H, Peng J, Zhou K, Ke W D. Investigation and genetic diversity of wild water shield ( Brasenia schreberi ) in China. Journal of Plant Genetic Resources, 2020,21(6):1586-1595 [百度学术]
曾芳, 高娅, 潘鑫, 邬晓勇, 孙雁霞. 调控穗发芽的植物内源激素研究进展. 江苏农业学报, 2023,39(3):848-858 [百度学术]
Zeng F, Gao Y, Pan X, Wu X Y, Sun Y X. Research progress on plant endogenous hormones regulating pre-harvest sprouting. Jiangsu Journal of Agricultural Sciences, 2023,39(3):848-858 [百度学术]
孙超, 黎家. 油菜素甾醇类激素的生物合成、代谢及信号转导. 植物生理学报, 2017,53(3):291-307 [百度学术]
Sun Z, Li J. Biosynthesis, metabolism and signaling of brassinosteroids. Plant Physiology Journal, 2017,53(3):291-307 [百度学术]
胡嘉琪. 油菜素内酯对荔枝成花的调控及其与LcSVP关系研究. 广州: 华南农业大学, 2017 [百度学术]
Hu J Q. Regulation of brassinosteroids on flowering of Litchi and its relationship with LcSVP. Guangzhou: South China Agricultural University, 2017 [百度学术]
Turk E M, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Wang H, Torres Q I, Ward J M, Murthy G, Zhang J, Walker J C, Neff M M. BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. The Plant Journal, 2005,42(1):23-34 [百度学术]
刘彩霞, 郑唐春, 张鑫鑫, 葛晓兰, 曲冠证. 小黑杨CYCD3;3基因启动子序列分析及其在拟南芥中的表达. 东北林业大学学报, 2016,44(8):29-33 [百度学术]
Liu C X, Zheng T C, Zhang X X, Ge X L, Qu G Z. Promoter sequence analysis of the CYCD3; 3 gene and its expression in Arabidopsis. Journal of Northeast Forestry University, 2016,44(8):29-33 [百度学术]
Liu L, Chen G, Li S, Gu Y, Lu L, Qanmber G, Mendu V, Liu Z, Li F, Yang Z. A brassinosteroid transcriptional regulatory network participates in regulating fiber elongation in cotton. Plant Physiology, 2023,191(3):1985-2000 [百度学术]