摘要
以条纹自交系西瓜(TD)和网条突变体西瓜(WT)为材料,通过分离群体的条纹性状比例探索西瓜的条性状遗传基础;以转录组测序及表达差异分析为基础,探索网条突变体西瓜在不同发育阶段的表达谱变化,筛选出条纹自交系与网条突变体西瓜之间表达差异显著的基因 57 个,主要富集于光合作用天线蛋白通路、生物碱生物合成通路、氨基酸代谢通路等7种代谢途径;通过加权基因共表达网络对核心基因的进一步分析,初步挖掘出部分网条突变体西瓜中有关生物胁迫抗性的基因变化情况,进一步筛选确定西瓜深绿条纹基因(ClGS,watermelon dark-green stripe)、类半胱氨酸蛋白酶抑制剂5编码基因、UDP-葡萄糖基转移酶编码基因、类长春碱合成酶编码基因、叶绿素a-b结合蛋白编码基因可能是决定西瓜网条果皮性状的核心基因;qRT-PCR验证结果表明,条纹自交系西瓜与网条突变体西瓜在基因表达上存在明显差异。本研究为西瓜不同果皮条纹育种提供了新的种质资源,也为阐明西瓜不同果皮条纹性状形成的分子调控机制提供了一定的理论依据。
关键词
西瓜是葫芦科重要的园艺作物,是世界十大鲜食水果之一。据联合国粮农组织(http:/www.fao/org)统计,2022年我国西瓜产量超过6300万吨,是重要的经济作物之一。西瓜经过长期的自然选择和人工选育,其外形、风味、营养价值各不相同,已形成了多种类型和品种。遗传资源的收集、保存和评价是西瓜遗传学研究的核心,也是西瓜育种和保护的重要基础。目前,全球已收集了约5000份西瓜种质资源,我国拥有的丰富资源涵盖了西瓜的各种品种和类
作为重要外观性状,西瓜果皮不仅影响着西瓜商品价值,也影响着人们的消费选择。西瓜的果皮种类繁多,根据底色不同可分为黄色、墨绿色、淡绿色、白色等;根据条纹图案,可分为条纹、网条、间歇性条纹、斑点
西瓜条纹的遗传基础由一组基因控制,这些基因决定了西瓜果皮的颜色和图案。先前的研究认为3个等位基因(G、gs和g)在g位点决定外皮颜色和条纹的遗传,并提出了西瓜条纹的遗传模型:深绿色(G)>宽条纹(
迄今为止,已有研究对西瓜条纹决定基因进行了遗传定位。通过将具有独特间歇性外皮条纹的WT20与绿色条纹自交系WCZ杂交,发现间歇性条纹由单一显性基因ClIS控制,通过单倍型分析将Cla019202 确定为控制西瓜间歇条纹的ClIS候选基
尽管已经有研究对西瓜条纹决定基因进行了定位,但西瓜条纹形成的分子机制及其相关基因表达谱变化仍不清晰。本研究利用条纹自交系和网条突变体西瓜,通过杂交群体性状分离比调查和转录组测序对西瓜条纹形成机制的进行探索,以期为西瓜的育种和改良提供理论依据和技术支持。
供试材料为条纹自交系(TD)和网条突变体(WT)的西瓜果实,网条突变体(变异株)WT是从条纹自交系(原亲本)TD的扩繁田中发现,经多代鉴定,该突变体除表型存在差异外,抗病性同时变差。杂交群体构建如下:利用网条突变体(WT)做母本,即为P1,用原始自交系条纹亲本(TD)做父本,即为P2,杂交得到F1,利用F1与P1杂交,创制BC1P1,利用F1与P2杂交,创制BC1P2。试验材料于2022年5月在宁夏农林科学院园林场试验基地种植,变异株WT和原亲本TD分别各播种20株,播种行距2 m、株距35 m,进行常规田间管理。于2022年6月,采集果皮样品。
分别采集网条突变体WT和条纹自交系TD雌花开放后10 d、20 d和30 d的西瓜果实的果皮,使用锋利小刀从果实最大横径处,沿条纹或网纹纹路切割果皮样品(长宽均3 cm,深0.5 cm)后立即在液氮中冷冻。突变体样品编号为WT(雌花开放后10 d、20 d和30 d分别为WT1、WT2、WT3),原始自交系编号为TD(雌花开放后10 d、20 d和30 d分别为TD1、TD2、TD3)。每个样品设置3次生物学重复,分别以-1、-2和-3表示。RNA提取、cDNA文库构建和测序由北京百迈客生物科技有限公司完成。
对测序产生的高质量Clean Reads,使用HISAT
转录本或基因表达水平的衡量标准以FPKM的标准化为标准。差异表达分析采用DeSeq2,存在生物重复的差分组分。筛选标准采用FC≥1.5且FDR≤0.05。其中差异倍数(FC,fold change)表示的是条纹自交系TD与网条突变体WT的表达量之比,而错误发现率(FDR,false discovery rate)为对差异显著性P值进行修正后得出。
基因功能注释和富集通过Clusterprofile包完
对转录组同批次样品进行qRT-PCR。首先利用超微量核酸蛋白测定仪(SCANDROP100)检测出RNA的OD值,检测合格的RNA采用AIDLAB公司反转录试剂盒合成cDNA,-80℃保存。用于qRT-PCR的基因及内参Actin基因的引物见
引物名称 Primer name | 引物序列(5'-3') primer sequence(5-3') | 退火温度(℃) TM |
---|---|---|
Actin-F | GTCACACCCTGGGAATTG | 60 |
Actin-R | CGCCAATAAGACCACCAA | |
Cla97C06G126770-F | TTCCAGTTACGGTCACAGA | 60 |
Cla97C06G126770-R | TGATAAGCACGGACAGACT | |
Cla97C06G127330-F | CGTACAAGAATGTGGTGGTT | 60 |
Cla97C06G127330-R | TCAGAATCTCGTTGGAAGGA | |
Cla97C06G122150-F | AGTCTCCACTAACCTCCAA | 60 |
Cla97C06G122150-R | TTCATTCACTACGCCCAAA | |
Cla97C11G213310-F | TAGAGGATTGGGAGGGAAAT | 60 |
Cla97C11G213310-R | CACCCGAAATCGTTCTCATA | |
CA97C08G154390-F | GCGGAAGCATTTGGATTG | 60 |
CA97C08G154390-R | TTCGGTGACAGGCAATAG |
收集原始自交系TD和突变体WT进行杂交(

图1 网条突变体WT(左)和条纹自交系TD(右)西瓜对比
Fig 1 Comparison between netted mutant watermelon WT(left)and striped inbred line watermelon TD(right)
本研究分别针对条纹自交系TD及网条突变体WT不同发育时期的果实构建了18个cDNA文库。原始测序数据经过质量控制后,共获得141.46 Gb的Clean data,各样品Clean data均达到5.89 Gb及以上,Q30碱基百分比在93.69%及以上。分别将各样品的Clean reads与指定的参考基因组进行序列比对,比对效率为92.19%~96.29%。
筛选雌花开放后10 d、20 d和30 d WT和TD之间的差异表达基因(
差异表达基因分组 DEG set | 差异表达基因数量 DEG number | 上调差异表达基因数量 Up-regulated DEG number | 下调差异表达基因数量 Down-regulated DEG number |
---|---|---|---|
WT1_vs_TD1 | 584 | 207 | 377 |
WT2_vs_TD2 | 713 | 286 | 427 |
WT3_vs_TD3 | 1623 | 1209 | 414 |
TD1_vs_TD2 | 8588 | 3889 | 4699 |
TD1_vs_TD3 | 11797 | 5355 | 6442 |
TD2_vs_TD3 | 6623 | 2901 | 3722 |
WT1_vs_WT2 | 9368 | 4119 | 5249 |
WT1_vs_WT3 | 10931 | 5072 | 5859 |
WT2_vs_WT3 | 6132 | 3109 | 3023 |
WT1_vs_TD1:TD1相对于WT1,以此类推
WT1_vs_TD1:TD1 compared with WT1,and so on
筛选西瓜果实不同发育阶段差异表达基因,韦恩图的结果显示(

图2 果实发育相关差异表达基因统计和功能注释
Fig. 2 Statistical analysis and functional annotation of DEGs related to fruit development
A:不同发育阶段差异表达基因韦恩图;B: 所有发育阶段均差异表达基因的COG注释;C: 所有发育阶段均差异表达基因的GO注释;D:所有发育阶段均差异表达基因的KEGG富集
A:Venn diagram of DEGs at different developmental stages;B:COG annotation of all DEGs across developmental stages;C:GO annotation of all DEGs across developmental stages; D:KEGG enrichment analysis of all DEGs across developmental stages
对WT1_vs_TD1、WT2_vs_TD2 、WT3_vs_TD3比较组的57个共同差异表达基因进行功能注释(

图3 果实条纹相关差异表达基因统计和功能注释
Fig. 3 Statistical analysis and functional annotation of DEGs related with stripe
A:不同差异分组差异表达基因韦恩图;B: 差异表达基因的COG注释; C: 差异表达基因的GO注释;D:差异表达基因的KEGG富集 A:Venn plots of different subgroups of DEGs; B:COG annotation of DEGs; C:GO annotation of DEGs; D:The KEGG enrichment of DEGs
GO分析结果显示,差异表达基因富集到3类:生物过程、细胞组分、分子功能(
差异表达基因进行KEGG富集分析后发现(
筛选所有差异表达基因中样品缺失小于50%,平均表达量大于0.5的基因进行加权基因共表达网络分析(WGCNA,weighted correlation network analysis),样品表达聚类树结果显示TD2-1和WT3-3两个样品出现明显离群,为了降低基因表达噪值,后续分析中排除了这两个样品(

图4 加权基因共表达网络和模块基因功能富集
Fig 4 Weighted gene co-expression network and functional enrichment of modular genes
A:样品系统分类树,采用差异表达基因构建进化树;B:基因表达树和模块确定;C:模块和性状相关性热图,相关性采用皮尔逊系数表示;D:Salmon模块基因的KEGG富集
A:Sample phylogenetic classification tree, DEGs were used to construct the evolutionary tree;B:Gene expression tree and module determination;C:Heat map of module and trait correlations,correlations were expressed using Pearson's coefficient;D:KEGG enrichment of salmon module genes
为挖掘关键调控基因,利用加权基因共表达网络分析结果,从Salmon模块中提取富集到植物-病原互作通路和与之共表达的基因,构建基因共表达网络(

图5 基因共表达网络构建和表达量热图
Fig. 5 Gene co-expression network construction and expression heat map
A:Salmon模块中与植物病原互作相关基因及其共表达基因的网络;节点代表基因,线的连接代表基因之间存在共表达关系,节点的大小代表基因在共表达网络中的重要性,红色的节点代表表达网络核心基因,蓝色代表非核心基因; B: Salmon模块中与植物-病原互作相关基因及其共表达基因的表达量热图,不同生物学重复通过-1、-2和-3标注; C: ClGS及其共表达基因的网络; D:MidnightBlue模块中ClGS及与之共表达基因的表达量热图A:Network of genes related to interaction with plant-pathogens and their co-expression genes in salmon module; Nodes represent genes, the connections of lines represent the existence of co-expression relationships between genes, and the size of nodes represents the importance of genes in the co-expression network,the red nodes represent the core genes of the expression network, and the blue nodes represent the non-core genes;B:Expression calorimetric map of genes related to interaction with plant pathogens and their co-expressed genes in salmon module,different biology is repeatedly labeled by -1, -2, and -3 ;C:Network of ClGS and its co-expressed genes;D:Expression calorimetric map of ClGS and its co-expressed genes in MidnightBlue module
ClGS(Cla019205)被定位为调控西瓜深绿色条纹形成的候选基

对核心基因表达及转录组结果进行验证,从共表达网络中挑选了5个基因进行实时荧光定量PCR(

图 6 实时荧光定量及相关性分析
Fig. 6 Real-time fluorescence quantification and correlation analysis
A~E:5个候选基因在不同样品中的相对表达量;G:转录组与实时荧光定量间一般线性回归分析
A-E:Relative expression of 5 candidate genes in different samples; G: General linear regression analysis between transcriptome and real-time fluorescence quantification
西瓜作为一种重要的园艺作物,在农业和食品产业中扮演重要角色,对西瓜生长特征和园艺性状的研究具有重要的理论和实际价值。本研究利用网条突变体材料探索了西瓜果皮条纹形成的遗传机理和分子机制,以期更全面地解释和理解这一复杂过程。
近几年有研究报道了西瓜皮条纹种类的遗传结构为单基因遗传。本研究中BC1P1和BC1P2性状分离比符合孟德尔单基因遗传定律,表明西瓜果皮上的条纹和网条性状由一对等位基因控制且条纹对网条是显性的,这与先前不同条纹西瓜品系的杂交实验得出的结论是一致
本研究利用转录组测序和数据分析,广泛筛选出了在不同发育阶段的网条突变体和条纹自交系西瓜之间的差异表达基因,其中2147个差异基因与果实发育相关,这些基因主要被注释和富集在与信号转导相关的功能或通路中,他们可能协调控制果实发育过程中复杂的信号网络;57个差异基因与果实条纹形成相关,这些基因涉及生物过程、细胞组分体和分子功能、光合作用相关、生物碱合成等多个GO条目和KEGG通路。在黄瓜条纹突变体中,光合作用和叶绿素合成基因的表达模式降低引起未成熟的果实显示绿色不规则条
尽管此前有关西瓜条纹遗传定位的研究已经定位了调控西瓜条纹变化的多个候选基因(ClGS、ClSP、ClIS等),但条纹形成机制仍不清晰,如西瓜墨绿色条纹性状由西瓜6号染色体上某个未知单基因控制。本研究的表达谱中只鉴定了ClGS,该基因在两种西瓜中的表达存在显著差异。在74个自然群体西瓜品系中,ClGS第8个外显子上存在一个3 bp插入的个体表现出浅绿色纹
此外,在之前的研究中,西瓜条纹性状的形成被认为与钙离子在西瓜果皮和果实中的重定位相
本研究以西瓜条纹自交系TD与网条自交系WT为材料,揭示了条纹与网条性状为一对显性基因控制的质量性状,条纹对网条是显性遗传。通过对两种品系不同发育时间的果皮进行转录组测序,筛选出了在不同发育阶段的突变体和自交系之间的差异表达基因。这些基因主要富集于GO条目的生物过程、细胞组分及分子功能,以及KEGG通路中的光合天线蛋白、托品烷、哌啶和吡啶类生物碱的生物合成。通过共表达分析挖掘出与西瓜条纹形成相关的核心基因ClGS、类半胱氨酸蛋白酶抑制剂5编码基因、UDP-葡糖糖基转移酶编码基因、类长春碱合成酶编码基因和叶绿素a-b结合蛋白编码基因。此外本研究结果表明西瓜条纹和网条的决定可能伴随着抗病性的变化。本研究探索了西瓜不同类型果实条纹形成的分子机制,为了解西瓜果皮条纹决定提供了遗传学依据,并为改良西瓜品种提供了新的策略和资源。
参考文献
Levi A, Jarret R, Kousik S, Patrick Wechter W, Nimmakayala P, Reddy U K. Genetic resources of watermelon. Genetics and genomics of Cucurbitaceae, 2017(20), 87-110 [百度学术]
王准,许勇,张海英,范建光,郭绍贵,任毅,宫国义,张洁,翁益群,Angela Davis. 1197份西瓜种质资源遗传多样性和群体结构分析及核心种质构建. 中国瓜菜, 2019, 32(8): 210 [百度学术]
Wang Z,Xu Y, Zhang H Y, Fan J G,Guo S G,Ren Y, Gong G Y,Zhang J, Weng Y Q, Angela D. Genetic diversity, population structure, and formation of a core collection of 1197 citrullus accessions. China Cucurbits and Vegetables, 2019, 32(8): 210 [百度学术]
Jaiswar A, Rai N, Arora D, Malhotra M, Jaiswal S, Iquebal M A. Recent advances in genomics, genetic resources of watermelon. The Watermelon Genome, 2023, 131-142 [百度学术]
Wu S, Wang X, Reddy U, Sun H, Bao K, Gao L, Mao L, Patel T, Ortiz C, Abburi V L, Nimmakayala P, Branham S, Wechter P, Massey L, Ling K S, Kousik C, Hammar S A, Tadmor Y, Portnoy V, Gur A, Katzir N, Guner N, Davis A, Hernandez A G, Wright C L, McGregor C, Jarret R, Zhang X, Xu Y, Wehner T C, Grumet R, Levi A, Fei Z. Genome of ‘Charleston Gray’, the principal American watermelon cultivar, and genetic characterization of 1365 accessions in the U.S. National Plant Germplasm System watermelon collection. Plant Biotechnology Journal, 2019, 17(2): 2246-2258 [百度学术]
Tian S, Ge J, Ai G, Jiang J, Liu Q, Chen X, Liu M, Jianqiang Y, Zhang X, Yuan L. A 2.09 Mb fragment translocation on chromosome 6 causes abnormalities during meiosis and leads to less seed watermelon. Horticulture Research, 2021, 8, 1-13 [百度学术]
Guner N, Wehner T C. The genes of watermelon. Hortscience, 2004, 39(6): 1175-1182 [百度学术]
Poole C F. Genetics of cultivated cucurbits. Journal of Heredity, 1944, 35(4): 122-128 [百度学术]
Mengbo W, Xin X, Xiaowei H, Yudong L, Haohao C, Helen C, Zehao G, Yujin Y, Yingqing L, Bihong F, Zhengguo L, Wei D. SlMYB72 regulates the metabolism of chlorophylls, carotenoids, and flavonoids in tomato fruit. Plant Physiology, 2020, 183(3): 854-868 [百度学术]
Telias A, Linwang K, Stevenson D E, Cooney J M, Hellens R P, Allan A C, Hoover E E, Bradeen J M. Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biology, 2011, 11: 93 [百度学术]
Vrebalov J, Pan I L, Arroyo A J M, McQuinn R, Chung M, Poole M, Rose J, Seymour G, Grandillo S, Giovannoni J, Irish V F. Fleshy fruit expansion and ripening are regulated by the tomato shatterproof gene TAGL1. The Plant Cell, 2009, 21(10): 3041-3062 [百度学术]
Weetman L. Inheritance and correlation of shape, size and color in the watermelon. Citrullus Vulgaris Schrad, 1937, 20: 224-256 [百度学术]
Wehner T C,Lou L. Qualitative inheritance of external fruit traits in watermelon. Hortscience, 2016, 51(5): 487-496 [百度学术]
Yang H B, Park S W, Park Y, Lee G P, Kang S C, Kim Y K. Linkage analysis of the three Loci determining rind color and stripe pattern in watermelon. Korean Journal of Horticultural Science and Technology, 2015, 33(4): 559-565 [百度学术]
Park S W, Kim K T, Kang S C, Yang H B. Rapid and practical molecular marker development for rind traits in watermelon. Horticulture, Environment, and Biotechnology, 2016, 57: 385-391 [百度学术]
Wang Y, Duan S, Kang Q, Liu D, Yang S, Niu H, Zhu H, Sun S, Hu J, Dou J, Yang L. Genetic mapping of a candidate gene ClIS controlling intermittent stripe rind in watermelon. Horticulturae, 2023, 9(2): 263 [百度学术]
Yue Z, Ma R, Cheng D, Yan X, He Y, Wang C, Pan X, Yin L, Zhang X, Wei C. Candidate gene analysis of watermelon stripe pattern locus ClSP ongoing recombination suppression. Theoretical and Applied Genetics, 2021, 134(10): 3263-3277 [百度学术]
Liang X, Gao M, Amanullah S, Guo Y, Xu H, Liu X, Liu J, Gao Y, Yuan C, Wang X, Luan F. Molecular mapping of candidate gene regulating fruit stripe trait in watermelon. Euphytica, 2022, 218(12): 174 [百度学术]
Wang D, Zhang M, Xu N, Yang S, Dou J, Liu D, Zhu L, Zhu H, Hu J, Ma C, Yang L, Sun S. Fine mapping a ClGS gene controlling dark-green stripe rind in watermelon. Scientia Horticulturae, 2022, 291, 110583 [百度学术]
Wang Y, Duan S, Kang Q, Liu D, Yang S, Niu H, Zhu H, Sun S, Hu J, Dou J, Yang L. Genetic mapping of a candidate gene ClIS controlling intermittent stripe rind in watermelon. Horticulturae, 2023, 9(2): 263 [百度学术]
Kim D, Langmead B, Salzberg S L. HISAT: A fast spliced aligner with low memory requirements.Nature Methods, 2015, 12(4): 357-360 [百度学术]
Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 2015, 33(3): 290-295 [百度学术]
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, Bo X, Yu G. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation, 2021, 2(3): 100141 [百度学术]
Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9, 559 [百度学术]
Su G, Morris J H, Demchak B, Bader G D. Biological network exploration with Cytoscape 3. Current Protocols in Bioinformatics, 2014, 47, 8(13): 1-24 [百度学术]
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202 [百度学术]
Swift M L. GraphPad Prism, data analysis, and scientific graphing. Journal of Chemical Information and Modeling, 1997, 37: 411-412 [百度学术]
Jaakola L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science, 2013, 18(9): 477-483 [百度学术]
Song M, Zhang M, Cheng F, Wei Q, Wang J, Davoudi M, Chen J, Lou Q. An irregularly striped rind mutant reveals new insight into the function of PG1β in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 2020, 133: 371-382 [百度学术]
Liu G, Li C, Yu H, Tao P, Yuan L, Ye J, Chen W, Wang Y, Ge P, Zhang J, Zhou G, Zheng W, Ye Z, Zhang Y. GREEN STRIPE, encoding methylated tomato AGAMOUS-LIKE 1, regulates chloroplast development and Chl synthesis in fruit. New Phytologist, 2020, 228(1): 302-317 [百度学术]
Yue Z, Ma R, Cheng D, Yan X, He Y, Wang C, Pan X, Yin L, Zhang X, Wei C. Candidate gene analysis of watermelon stripe pattern locus ClSP ongoing recombination suppression. Theoretical and Applied Genetics, 2021, 134(10): 3263-3277 [百度学术]
Yue Z, Ma R, Cheng D, Yan X, He Y, Wang C, Pan X, Yin L, Zhang X, Wei C. Candidate gene analysis of watermelon stripe pattern locus ClSP ongoing recombination suppression. Theoretical and Applied Genetics, 2021, 134(10): 3263-3277 [百度学术]
Morris E R, Walker J C. Receptor-like protein kinases: The keys to response. Current Opinion in Plant Biology, 2003, 6(4): 339-342 [百度学术]
Kaupp U B, Seifert R. Cyclic nucleotide-gated ion channels. Physiological Reviews, 2002, 82: 769-824 [百度学术]
Scharnhorst V, Van der Eb A J,Jochemsen A G. WT1 proteins:Functions in growth and differentiation. Gene, 2001, 273(2): 141-161 [百度学术]
Grenzi M, Bonza M C, Costa A. Signaling by plant glutamate receptor-like channels: What else! Current Opinion in Plant Biology, 2022, 68: 102253 [百度学术]
Kumar G, Arya M, Radhika P, Giridhar P. Genome-wide identification, characterization of Serotonin N-acetyltransferase and deciphering its importance under development, biotic and abiotic stress in soybean. International Journal of Biological Macromolecules, 2022, 220: 942-953 [百度学术]
Jiang W, Tong T, Chen X, Deng F, Zeng F, Pan R, Zhang W, Chen G, Chen Z H. Molecular response and evolution of plant anion transport systems to abiotic stress. Plant Molecular Biology, 2022, 110(4): 397-412 [百度学术]
Ahmed B, Alam M, Aktar N, Hossain M S, Ullah M W, Bashar K K, Kabir S T, Emdad E M, Islam M S. Genome-wide investigation of aquaporin genes in Corchorus spp and their role in organ development and abiotic stress tolerance. Plant Gene, 2023, 34: 100410 [百度学术]