摘要
木犀科白蜡树属椒叶梣组(Fraxinus sect. Sciadanthus)由自然分布于中国中部的对节白蜡(Fraxinus hupehensis S. Z. Qu,C. B. Shang & P. L. Su)、喜马拉雅西部的椒叶梣(Fraxinus xanthoxyloides(G. Don)DC. )和非洲北部的Fraxinus dimorpha 3个物种组成,呈现出特殊的间断分布模式,目前该组的起源和演化过程尚不清楚。利用ITS、psbA-trnH、rpl32-trnL和matK 4个标记对白蜡树属42个物种间的系统发育关系进行分析,结果表明:(1)利用ITS序列构建的贝叶斯系统树支持Wallander的分类方法,即属内再分成6个组,对节白蜡、椒叶梣和F. dimorpha都属于椒叶梣组,且该组与欧梣组(sect. Fraxinus)的亲缘关系最近,形成姐妹组;(2)椒叶梣可能是F. dimorpha与欧亚种的杂交后代;(3)BEAST分化时间图显示,白蜡树属最早起源于42.05 Ma,椒叶梣组最早分化于21.86 Ma,对节白蜡最早分化于11.87 Ma。青藏高原的快速隆起可能是导致椒叶组物种间断分布的重要原因,对节白蜡和椒叶梣可能是其影响下的孑遗植物。
植物在北半球的洲际间断分布一直是生物地理学的研究热点之一,目前认为地质事件和气候变化是植物迁移和扩散的重要驱动因素之
白蜡树属(Fraxinus L.)隶属于木犀科(Oleaceae)木犀亚科(Oleoideae)梣族(Fraxineae),目前全球有48种植物,广泛分布于北半球的温带和亚热带地区,北美、东亚是本属的两个主要的多样性中
1855年,Cosson
对节白蜡,落叶大乔木,仅分布于中国湖北省大洪山及周边地

图1 白蜡树属椒叶梣组物种间断分布示意图
Fig. 1 A schematic map showing the unusually wide disjunct distribution of Fraxinus section Sciadanthus
在本研究中,椒叶梣组的两份对节白蜡样本采自中国湖北,两份椒叶梣标本 (G.L. Webster & E. Nasir E. 6503 (A) 采自克什米尔,O.H. Volk 71.678 (A) 采自阿富汗)保存于美国史密斯研究院的自然历史博物馆。椒叶梣组的另一物种F. dimorpha及白蜡树属其他5个组共40个物种的序列来自NCBI的GenBank数据库(http://www.ncbi.nlm.nih.gov/genbank/)。选取木樨(Osmanthus fragrans Lour.)、美洲木樨(O. americanus (L.)Benth. & Hook.f. ex A.Gray)、流苏树(Chionanthus virginicus L.)、美国流苏树(C. retusus Paxton)、腺叶木樨榄(Olea paniculata R.Br.)、总序桂(Phillyrea latifolia L.)、Forestiera acuminata (Michx.) Poir.等7个物种作为椒叶梣组的外类群。除对节白蜡和椒叶梣2个物种4份样本外,其他47个物种共56个样本的 GenBank序列登记号详见
编号 No. | 名称 Name | 拉丁学名 Latin name | GenBank序列登记号 The GenBank accession number | |||
---|---|---|---|---|---|---|
matK | rpl32-trnL | psbA-trnH | ITS | |||
1 | 美国白梣 | Fraxinus americana L. | HM171496 | HM222718 | HM367363 | HQ705201 |
2 | 尖果梣 | F. angustifolia Vahl ssp. oxycarpa (Willd.) Franco & Rocha Afonso | HQ705262 | |||
3 | 叙利亚梣1 | F. angustifolia spp. syriaca (Boiss.) Yalt.1 | HQ705294 | |||
叙利亚梣2 | F. angustifolia spp. syriaca (Boiss.) Yalt.2 | HQ705293 | ||||
4 | 窄叶梣 | F. angustifolia spp. angustifolia | HE602415 | |||
5 | — | F. anomala Torr. ex S.Watson | HM222739 | HM367380 | HQ705209 | |
6 | — | F. apertisquamifera Hara | HM222746 | HM367387 | EU314824 | |
7 | — | F. berlandieriana DC. | HM171521 | HM222750 | HM367391 | HQ705210 |
8 | 小叶梣 | F. bungeana A.DC. | HM171516 | HM222754 | HM367394 | HQ705212 |
9 | 卡罗莱纳梣 | F. caroliniana Mill. | HM222758 | HM367398 | HQ705215 | |
10 | — | F. chiisanensis Nakai | HM171501 | HM222760 | HM367400 | HQ705217 |
11 | 白蜡树1 | F. chinensis Roxb.1 | HM171503 | HM222766 | HM367406 | HQ705220 |
白蜡树2 | F. chinensis Roxb.2 | HM222765 | HM367405 | HQ705225 | ||
12 | 香梣 | F. cuspidata Torr. | HM222772 | HM367412 | EU314838 | |
13 | 加州梣 | F. dipetala Hook. & Arn. | HM222778 | HM367416 | EU314841 | |
14 | — | F. dubia (Willd. ex Schult. & Schult.f.) P.S.Green & M.Nee | EU314843 | |||
15 | 欧梣1 | F. excelsior L.1 | HM171489 | HM222783 | HM367423 | HQ705229 |
欧梣2 | F. excelsior L.2 | HM171524 | HM222784 | HM367421 | HQ705228 | |
16 | 多花梣 | F. floribunda Wall. | HM171492 | HM222781 | HM367424 | HQ705247 |
17 | — | F. gooddingii Little | HM222786 | HM367427 | EU314852 | |
18 | — | F. greggii Little | HM222787 | HM367429 | HQ705231 | |
19 | — | F. holotricha Koehne.1 | HM171518 | HM222796 | HM367441 | HQ705237 |
— | F. holotricha Koehne.2 | HM171517 | HM222795 | HM367440 | HQ705236 | |
20 | 日本小叶梣 | F. lanuginosa Koidz. | HM222799 | HM367445 | EU314858 | |
21 | 阔叶梣 | F. latifolia Benth. | HM171515 | HM222819 | HM367468 | HQ705240 |
22 | 长尖梣 | F. longicuspis Siebold & Zucc. | HM171502 | HM222827 | HM367478 | EU314862 |
23 | 水曲柳1 | F. mandshurica Rupr.1 | HM171500 | HM222835 | HM367490 | EU314864 |
水曲柳2 | F. mandshurica Rupr.2 | HM171499 | HM222832 | HM367487 | HQ705249 | |
24 | — | F. micrantha Lingelsh. | HM222838 | HM367496 | EU314865 | |
25 | 黑梣1 | F. nigra Marshall 1 | HQ593300 | HM222840 | HM367498 | EU314868 |
黑梣2 | F. nigra Marshall 2 | HM222839 | HM367497 | HQ705254 | ||
26 | 花梣1 | F. ornus L.1 | HM171490 | HM222843 | HM367500 | HQ705257 |
花梣2 | F. ornus L.2 | HM171495 | HM222844 | HM367501 | HQ705258 | |
27 | 秦岭梣 | F. paxiana Lingelsh. | HM222850 | HM367510 | HQ705269 | |
28 | 美国红梣 | F. pennsylvanica Marshall | HQ593302 | HM222851 | HM367511 | HQ705270 |
29 | 象蜡树1 | F. platypoda Oliv.1 | HM222860 | HM367524 | HQ705274 | |
象蜡树2 | F. platypoda Oliv.2 | HM222858 | HM367516 | EU314877 | ||
30 | 南瓜梣 | F. profunda (Bush) Bush | HM171508 | HM222862 | HM367526 | HQ705277 |
31 | — | F. purpusii Brandegee | EU314879 | |||
32 | 蓝梣 | F. quadrangulata Michx | HM171514 | HM222867 | HM367532 | EU314881 |
33 | — | F. raibocarpa Rege l | EU314883 | |||
34 | 庐山梣1 | F. sieboldiana Blume 1 | HM171494 | HM222876 | HM367546 | HQ705285 |
庐山梣2 | F. sieboldiana Blume 2 | HM222872 | HM367537 | HQ705284 | ||
35 | 象蜡树(异名) | F. spaethiana Lingelsh. | HM171520 | HM222882 | HM367554 | HQ705291 |
36 | — | F. texensis Sarg. | HM222886 | HM367558 | EU314891 | |
37 | 三叶梣 | F. trifoliolata W.W.Sm. | EU314893 | |||
38 | 墨西哥梣 | F. uhdei (Wenz.) Lingelsh. | HM222894 | HM367568 | HQ705304 | |
39 | 绒毛梣 | F. velutina Torr. | HM171525 | HM222909 | HM367578 | HQ705308 |
40 | — | F. dimorpha Coss. & Durieu | HM171526 | HM222914 | HM367583 | HQ705319 |
41 | 木樨 | Osmanthus fragrans Lour. | EU409428 | GQ294677 | FJ527890 | EU314904 |
42 | 美洲木樨 | O. americanus (L.) Benth. & Hook.f. ex A.Gray | JX863047 | GU929894 | HM999667 | JX862659 |
43 | 总序桂 | Phillyrea latifolia L. | GQ294688 | GU120322 | EU314905 | |
44 | 流苏树 | Chionanthus retusus Paxton | GU929896 | JX862626 | ||
45 | 美国流苏树 | C. virginicus L. | DQ006204 | JX862622 | ||
46 | — | Forestiera acuminate (Michx.) Poir. | EU314903 | |||
47 | 腺叶木樨榄 | Olea paniculata R.Br. | JX862656 |
中文名和拉丁学名后的数字代表同一物种的两个不同样本; —代表该物种尚无对应中文名
The number after the Chinese name and the Latin name represents two different samples of the same species; — indicates that the species does not have a corresponding Chinese name
本研究采用改良的CTAB
分子标记 Molecular marker | 引物名称 Primer name | 引物序列(5′- 3′) Primer sequence (5′- 3′) | 反应条件 Reaction condition |
---|---|---|---|
psbA-trnH | psbAF | GTTATGCATGAACGTAATGCTC | 94 ℃ 5 min;94 ℃ 1 min,55 ℃ 1 min,72 ℃ 1.5 min,30 cycles;72 ℃ 10 min |
trnHR | CGCGCATGGTGGATTCACAAATC | ||
rpl32-trnL |
trn | CTGCTTCCTAAGAGCAGCGT | 94 ℃ 5 min;94 ℃ 1 min,53 ℃ 1 min, 72 ℃ 2 min,35 cycles;72 ℃ 10 min |
rpL32-F | CAGTTCCAA AA AAACGTACTTC | ||
matK | 3F KIM | CGTACAGTACTTTTGTGTTTACGAG | 94 ℃ 5 min;94 ℃ 30 s,53 ℃ 20 s, 72 ℃ 50 s,35 cycles;72 ℃ 5 min |
1R KIM | ACCCAGTCCATCTGGAAATCTTGGTTC | ||
ITS | ITSF1 | TTCCGAACCACCGCGGG | 94 ℃ 5 min;94 ℃ 1 min,53 ℃ 1 min,72 ℃ 1 min,39 cycles;72 ℃ 7 min |
ITS4 | TCCTTCCGCTTATTGATATGC |
椒叶梣和对节白蜡样本的4个分子标记扩增所得的序列使用Geneous 6.1.
采用贝叶斯推论法(BI,Bayesian inference
采用BEAST软件
在60个样品的ITS序列分析中,比对后的分析序列长615 bp,含239个变异位点,其中167个位点为简约性信息位点;在叶绿体基因组的3个分子标记psbA-trnH、rpl32-trnL及matK的序列分析中,分析序列的总长度为2232 bp,含291个变异位点,其中136个位点为简约性信息位点。
ITS和叶绿体基因序列数据集的ILD (Incongruence length difference test)检测值P = 0.01,表明两组数据集之间异质性较高不支持合并,因此分别对其进行探讨。由于两组序列构建的最大简约树和贝叶斯系统树的拓扑结构基本一致,为了便于讨论,本研究采用最大简约法计算后得到的贝叶斯系统树的拓扑结构进行系统发育分析(

图2 利用ITS序列构建的白蜡树属椒叶梣组及相近种的贝叶斯系统树
Fig. 2 The Bayesian tree of Fraxinus section Sciadanthus and its relatives using ITS data
各分支上、下的数值分别代表贝叶斯后验概率和最大简约自展值;--表示自展值小于50%;下同
Numbers above branches are the Bayesian posterior probabilities (PP),and numbers below branches indicate bootstrap values (BS); A dash indicates bootstrap values below 50%;The same as below

图3 利用3个叶绿体标记psbA-trnH、rpl32-trnL、matK构建的白蜡树属椒叶梣组及相近种的贝叶斯系统树
Fig. 3 The Bayesian tree of Fraxinus section Sciadanthus and its relatives using the combined plastid dataset (psbA-trnH,rpl32-trnL,matK)
基于ITS序列构建的贝叶斯系统树(
在由3个叶绿体基因标记psbA-trnH、rpl32-trnL、matK构建的贝叶斯系统树中(

图4 叶绿体psbA-trnH标记的部分比对序列
Fig.4 The plastid psbA-trnH sequence segment
图中彩色所示为椒叶梣与来自欧洲、北美部分物种的14个高度一致的变异位点
The colors in the figure show 14 highly consistent variables sites between F. xanthoxyloides and species from Eurasia and North America
白蜡树属内各节点的分化时间估计显示于BEAST最大置信树中(

图5 基于ITS数据和化石校正的白蜡树属物种BEAST分化时间图
Fig. 5 The estimation of divergence times of Fraxinus based on nrDNA ITS using BEAST with two fossils as calibration points
★代表两块白蜡树属化石的年代;各分化节点的蓝色线条表示分化时间的 95%置信区间。HPD:最高后验概率密度;Ma:百万年前
★ representing the age of two fossils of Fraxinus. The blue horizontal bar of each divergence node indicates 95% confidence interval of divergence time;HPD:Highest posterior density;Ma:Million years ago
基于ITS序列构建的系统发育树(
青藏高原的快速隆起是新生代时期发生的重大地质事件之一,其造成的地理隔离和气候变化对该地区植物的种系分化具有显著影
第四纪更新世周期性的冰期、间冰期的反复循环导致了气候振荡(Climatic oscillations),深刻影响了白蜡树属物种的迁徙、分化过程以及特有种分布格局的形
青藏高原及其邻近山地是北半球植物在第四纪冰期重要的避难所,同时也是冰期后植物重要的扩散来源地之一,分布着许多古老的孑遗植物类
华中地区不仅是我国第三纪植物区系重要的冰期避难所之一,也是亚热带植物区系扩散以及分化的核心地区,使得水杉(Metasequoia glyptostroboides Hu et Cheng)、珙桐(Davidia involucrata Baill.)、银杏(Ginkgo biloba L.)等古老的濒危树种得以保存至
本研究利用ITS和叶绿体基因组中psbA-trnH、rpl32-trnL和matK 等分子标记探讨了白蜡树属椒叶梣组的系统发育及谱系地理格局的成因,结果表明对节白蜡、椒叶梣和F. dimorpha在椒叶梣组中表现出明显的谱系分化,并且与欧梣组形成姐妹组,椒叶梣可能起源于F. dimorpha和欧梣组物种的杂交。椒叶梣组的分化时期在11.87~4.23 Ma之间,恰逢青藏高原的三次隆起,因而推测青藏高原的快速隆起是椒叶梣组物种地理格局形成的重要原因;第四纪全球气候变冷等因素进一步影响了椒叶梣组物种的分布;在地质事件和气候环境改变等因素的影响下,椒叶梣组逐渐形成了华中—西喜马拉雅—北非的间断分布模式。
参考文献
张华杰. 中国山莓草属植物物种界定及广义山莓草谱系地理学研究.武汉:中国科学院大学,2019 [百度学术]
Zhang H J. Species definition of the genus Sibbaldia in China and genealogical geography of Sibbaldia in broad sense. Wuhan:University of the Chinese Academy of Sciences, 2019 [百度学术]
沈超. 特提斯孑遗洲际间断分布植物穗菝葜(Smilax aspera L.)的亲缘地理学研究.杭州:浙江理工大学,2019 [百度学术]
Shen C. Phylogeographical study on the intermittent distribution of the Tethys relict plant Smilax aspera L. Hangzhou:Zhejiang University of Technology, 2019 [百度学术]
孙航,李志敏.古地中海植物区系在青藏高原隆起后的演变和发展.地球科学进展,2003(6):852-862 [百度学术]
Sun H,Li Z M. The evolution and development of the ancient Mediterranean flora after the uplift of the Qinghai Tibet Plateau. Progress in Earth Science,2003 (6): 852-862 [百度学术]
Huang J H,Chen B,Liu C R,Lai J S,J Zhang J L,Ma K P. Identifying hotspots of endemic woody seed plant diversity in China. Diversity and Distributions,2012,18: 673-688 [百度学术]
Wallander E. Systematics of Fraxinus(Oleaceae) and evolution of dioecy. Plant Systematics and Evolution,2008,273: 25-49 [百度学术]
Nikolaev E V. The genus Fraxinus (Oleaceae) in the flora of the USSR. Botanicheskii Zhurnal, 1981, 66: 1419-1432 [百度学术]
Miller G N. The genus Fraxinus, the ashes, in north America, North of Mexico. Cornell University Agricultural Experiment Station Memoir,1955,335: 1-64 [百度学术]
Wallander E. Systematics and floral evolution in Fraxinus (Oleaceae). Belgische Dendrologie Belge,2012, 87:39-58 [百度学术]
Cosson E, Durieu M C. Notes sur quelques especies nouvelles D’Algerie. Bulletin de la Société Botanique de France,1855, 2: 364-368 [百度学术]
Lingelsheim A. Oleaceae-Oleoideae-Fraxineae. Germany: Das Pflanzenreich, 1920: 1-61 [百度学术]
曲式曾,向其柏,苏丕林.白蜡树属一新种对节白蜡.南京林业大学学报:自然科学版, 1979(Z1):146-148 [百度学术]
Qu S Z, Xiang Q B, Su P L. A new species of Fraxinus hupehensis. Journal of Nanjing Forestry University:Natural Science Edition,1979(Z1): 146-148 [百度学术]
Govaerts R.World checklist of seed plants database in ACCESS E-F. Antwerp: Continental Publishing,2001:103-107 [百度学术]
Hinsinger D D, Basak J, Gaudeul M, Cruaud C, Bertolino P, Frascaria-Lacoste N, Bousque J. The phylogeny and biogeographic history of ashes (Fraxinus,Oleaceae) highlight the roles of migration and vicariance in the diversification of temperate trees. PLoS ONE,2013, 8: e80431 [百度学术]
Doyle J J, Doyle J L. A rapid isolation procedure from small quantities of fresh leaf tissue. Phytochemical Bulletin,1987, 19: 11-15 [百度学术]
石乃星,文国松,赵明富.黄精属植物DNA分子鉴定技术应用研究进展.植物遗传资源学报,2021,22(5):1209-1218 [百度学术]
Shi N X, Wen G S, Zhao M F. Research progress on the application of DNA molecular identification technology in Polygonatum plants. Journal of Plant Genetic Resources, 2021,22 (5): 1209-1218 [百度学术]
Sang T, Crawford D J, Stuessy T F. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany,1997, 84: 1120-1136 [百度学术]
Shaw J, Lickey E B, Schilling E E, Small R L. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. American Journal of Botany,2007, 94: 275-288 [百度学术]
Costion C, Ford A, Cross H, Crayn D, Harrington M, Lowe A. Plant DNA barcodes can accurately estimate species richness in poorly known floras. PLoS ONE,2011, 6: e26841 [百度学术]
Wojciechowski M F,Sanderson M J, Baldwin B G, Donoghue M J. Monophyly of Aneuploid Astragalus (Fabaceae): Evidence from nuclear ribosomal DNA internal transcribed spacer sequences. American Journal of Botany,1993,80: 711-722 [百度学术]
王雪,高暝,吴立文,汪阳东,刘红彩,陈益存.峨眉山地区杨叶木姜子群体遗传多样性研究.植物遗传资源学报,2019,20(2):359-369 [百度学术]
Wang X, Gao M, Wu L W, Wang Y D, Liu H C, Chen Y C. A study on population genetic diversity among Litsea populifolia(Hemsl.)gamble in Mount Emei area. Journal of Plant Genetic Resources, 2019,20 (2): 359-369 [百度学术]
祁哲晨. 世界菝葜科(百合目)的分子系统发育及其生物地理学研究.杭州:浙江大学,2013 [百度学术]
Qi Z C. Molecular phylogeny and biogeography of the worldwide Smilacaceae(Liliales). Hangzhou:Zhejiang University, 2013 [百度学术]
孙朝阳. 基于叶绿体基因组和核糖体ITS基因的水麻谱系地理学研究.西安:西北大学,2022 [百度学术]
Sun C Y. Phylogeography study of the species Debregeasia orientalis based on chloroplast genome and ribosomal ITS gene. Xi’an: Northwestern University, 2022 [百度学术]
Fitch W M. Toward defining the course of evolution: Minimum change for a specific tree topology. Systematic Zoology,1971, 20: 406-416 [百度学术]
Posada D, Buckley T R. Model selection and model averaging in phylogenetics: Advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology,2004, 53: 793-808 [百度学术]
Drummond A J,Ho S Y W,Rawlence N,Rambaut A. A rough guide to BEAST 1.4. New Zealand: University of Auckland,2007 [百度学术]
MacGinitie H D. A Middle Eocene flora from the central Sierra Nevada. Carnegie Institution of Washington Publication,1941, 534: 1-178 [百度学术]
Muller J. Fossil pollen records of extant angiosperms. The Botanical Review,1981, 47: 83-84 [百度学术]
Meerow A W, Francisco-Ortega J, Kuhn D N, Schnell R J. Phylogenetic relationships and biogeography within the Eurasian clade of Amaryllidaceae based on plastid ndhF and nrDNA ITS sequences: Lineage sorting in a reticulate area? Systematic Botany,2006, 31: 42-60 [百度学术]
刘硕,Decroocq Veronique,张玉军,刘宁,马小雪,章秋平,徐铭,张玉萍,刘威生.普通杏和西伯利亚杏野生居群遗传多样性与其地理分布关系研究.植物遗传资源学报,2020,21(6):1527-1538 [百度学术]
Liu S, Decroocq V, Zhang Y J, Liu N, Ma X X, Zhang Q P, Xu M, Zhang Y P, Liu W S. Study on the genetic diversity and geographical distribution relationship of wild populations of common apricot and Siberian apricot. Journal of Plant Genetic Resources, 2020,21 (6): 1527-1538 [百度学术]
Changkyun K, Dong-Kap K, Hang S, Joo-Hwan K. Phylogenetic relationship, biogeography, and conservation genetics of endangered Fraxinus chiisanensis (Oleaceae), endemic to South Korea. Plant Diversity,2022, 44(2),170-180 [百度学术]
李景吉. 喜马拉雅地区种子植物分化及其对隆升过程的响应.成都:成都理工大学,2014 [百度学术]
Li J J. Differentiation of seed plants in the Himalayan Region and their response to uplift process. Chengdu:Chengdu University of Technology, 2014 [百度学术]
王磊,解三平,刘珂男.云南临沧晚中新世梣属翅果化石及其古植物地理学意义.吉林大学学报:地球科学版,2012,42(S2):331-342 [百度学术]
Wang L,Xie S P,Liu K N. Late Miocene samara of Fraxinus (Oleaceae) from the Lincang in Yunnan province and its paleophytogeographical significance. Journal of Jilin University:Earth Science Edition,2012,42 (S2): 331-342 [百度学术]
Ohsawa M, Shakya P R, Numata M. Distribution and succession of West Himalayan forest types in the eastern part of the Nepal Himalaya. Mountain Research and Development,1986, 6: 143-157 [百度学术]