摘要
籽粒硬度和高分子量谷蛋白亚基(HMW-GS)对小麦品质起决定作用,为发掘和利用硬度Puroindoline基因和HMW-GS优异等位变异,提升长江中下游麦区中强筋小麦品质,对长江中下游麦区推广品种以及其他麦区优质推广品种和地方品种共计94份材料进行分子检测和品质分析。结果表明,硬度变幅7.21~72.91,软质类型42份、占44.68%,硬质类型42份、占44.68%,混合类型10份、占10.64%。硬度突变基因型共有5种,包括Pina-D1b/Pinb-D1a、Pina-D1r/Pinb-D1a、Pina-D1s/Pinb-D1a、Pina-D1a/Pinb-D1b和Pina-D1a/Pinb-D1p,数量分别为8份、3份、1份、29份和9份,籽粒硬度表现依次为Pina-D1r/Pinb-D1a>Pina-D1s/Pinb-D1a>Pina-D1b/Pinb-D1a>Pina-D1a/Pinb-D1p>Pina-D1a/Pinb-D1b。HMW-GS分析表明,Glu-A1位点1和Null亚基材料比例分别为53.33%和45.56%,此外有
籽粒硬度是小麦分类和市场分级的重要性状之一,严重影响润麦加水量、出粉率、破损淀粉含量和面粉颗粒度,决定磨粉品质和食品加工品质。硬质麦面粉颗粒度大、破损淀粉含量高,具有较强吸水能力,适合制作面包和优质面条等食
高分子量麦谷蛋白亚基(HMW-GS, high-molecular-weight glutenin subunit)解释45%~70%小麦品质的变
陈
长江中下游麦区是我国第二大麦区,以中、弱筋小麦类型为主,同时红皮中强筋小麦也深受市场欢迎。该麦区Pin基因突变类型较少;小麦品种HMW-GS类型以1AxNull、1Bx7+1By8、1Dx2+1Dy12为主,优质HMW-GS比例非常
试验材料包括48份长江中下游麦区小麦推广品种以及46份其他麦区推广品种、地方品种,分别由中国农业科学院作物科学研究所、河南农业大学、云南农业大学、江苏省农业科学院、四川省农业科学院、江苏徐淮地区淮阴农科所、咸阳市农业科学研究院、绵阳市农业科学研究院等单位提供;扬麦23、扬麦29分别有两份,均由江苏里下河地区农业科学研究所育成并提供。2021-2022年度种植于江苏里下河地区农业科学研究所试验基地(32º24′ N, 119º26′ E),前茬为水稻,土壤为沙壤土。3行区,行长1.33 m,行距0.23 m,每行40粒。田间统一管理与大田生产一致,生长期间没受到自然灾害,正常成熟,按小区收获脱粒,晾晒除杂后统一进行试验。
取苗期叶片进行小麦基因组DNA提取。DNA提取参照Murray
根据Chen
标记名称 Marker name | 引物序列(5′-3′) Forward and reverse primers(5′-3′) | 扩增片段(bp) Fragment size | 等位基因 Allele | 参考文献 Reference |
---|---|---|---|---|
Pina-D1 | F:CATCTATTCATCTCCACCTGC | 524 | Pina-D1 |
[ |
R:GTGACAGTTTATTAGCTAGTC | ||||
Pinb-D1 | F:GAGCCTCAACCCATCTATTCATC | 597 | Pinb-D1 |
[ |
R:CAAGGGTGATTTTATTCATAG | ||||
Pina-N1 | F:AATACCACATGGTTCTAGATACTG | 776 | Pina-D1b |
[ |
R:GCAATACAAAGGACCTCTAGATT | ||||
Pina-N2 | F:TCAACATTCGTGCATCATCA | 436 | Pina-D1r |
[ |
R:CTTCATTCGTCAGAGTTCCAT | ||||
Pina-N3 | F:CATCTATTCATCTCCACCTGC | 440 | Pina-D1s |
[ |
R:CACTATATTGCCGGGATTTT | ||||
Pina-N4 | F:AGTGGTCTGATGGAAGCGT | 546 | Pina-D1u |
[ |
R:TGGAAAAAACTAGGTTGGGA | ||||
BsrDI_Pina-D1n | F:TCACCTGGCGTTGGTGGCAAT | 197 | Pina-D1n |
[ |
R:CGGCAGGTTCTTGGCTTCTTGTAT | ||||
Ball_Pina-D1l | F:GAGTGTTGCAGTCGGCTTGG | 143 | Pina-D1l |
[ |
R:GGCAGGTTCTTGGCTTCTTGT |
突变不能得到Pina-D1基因全长,Pinb-D1位点无论野生基因型还是突变基因型均能扩增到Pinb-D1基因全长。对于只扩增到Pinb-D1基因全长而未得到Pina-D1基因全长的小麦种质,分别利用
参照Rasheed
采用张延滨
按照AACC55-31用瑞典波通仪器公司(Perten)单粒谷物测定仪(SKCS-4100)测定籽粒硬度,硬度指数是无量纲单位。选取100粒代表性种子进行测定分析,显示每个样品平均值、标准差并绘图,给出小于33、34~46、47~59和大于60四个硬度范围籽粒分布频率,最终硬度级别根据平均硬度指数和4个硬度范围籽粒分布频率而定,每份供试材料测试两次。微量SDS沉淀值参照本团队已发表文献方
首先利用Pina-D1和Pinb-D1引物进行PCR扩增获得Pina和Pinb全长,其中南农06Y86、云麦42、云麦80等12份材料未扩增到Pina基因全长,所有材料均扩增到Pinb基因全长(

图1 部分材料Pin-D1基因分子标记鉴定
Fig.1 Identification of Puroindoline-D1 alleles by molecular markers in part tested materials
5:扬麦5号; 13:扬麦14; 21:扬麦22; 29:扬麦30; 37:扬麦38; 40:科兴626; 45:镇麦12; 53:川麦88; 57:绵麦902; 58:绵麦827; 59:山农28; 60:山农29; 61:豫麦18; 62:偃展4110; 63:郑麦9694; 64:红和尚头;65:望水白; 66:三月黄; 67:江东门; 68:白火麦; 69:平原50; 70:蚰子麦; 71:和尚头; 72:周1550; 77:铁壳麦105; 85:淮麦16
5:Yangmai 5 hao; 13: Yangmai 14; 21: Yangmai 22; 29: Yangmai 30; 37: Yangmai 38; 40:Kexing 626; 45:Zhenmai 12; 53:Chuanmai 88; 57:Mianmai 902; 58: Mianmai 827; 59:Shannong 28; 60:Shannong 29; 61:Yumai 18; 62:Yanzhan 4110; 63:Zhenmai 9694; 64:Hongheshangtou;65:Wangshuibai; 66:Sanyuehuang; 67:Jiangdongmen; 68:Baihuomai; 69:Pingyuan 50; 70:Youzimai; 71:Heshangtou; 72:Zhou 1550; 77:Tiekemai 105; 85:Huaimai 16
编号 No. | 名称 Name | 来源 Origin | 硬度 Hardness | 硬度类型 Hardness type | Pina-D1 基因型 Genotype | Pinb-D1 基因型 Genotype | Glu-A1 | Glu-B1 | Glu-D1 | SDS沉淀值(mL) SDS sedi- mentation value |
---|---|---|---|---|---|---|---|---|---|---|
1 | 扬麦1号 | 江苏 | 30.42 | 软质 | a | a | 1 | 7+8 | 2+12 | 6.00 |
2 | 扬麦2号 | 江苏 | 35.50 | 软质 | a | a | Null | 7+9 | 2+12 | 6.00 |
3 | 扬麦3号 | 江苏 | 15.59 | 软质 | a | a | Null | 7+8 | 2+12 | 8.00 |
4 | 扬麦4号 | 江苏 | 45.17 | 混合 | a | b | Null | 7+9 | 5+10 | 6.50 |
5 | 扬麦5号 | 江苏 | 23.66 | 软质 | a | a | Null | 7+9 | 5+10 | 5.75 |
6 | 扬麦6号 | 江苏 | 28.82 | 软质 | a | a | 1 | 7+8 | 2+12 | 6.25 |
7 | 扬麦158 | 江苏 | 56.73 | 硬质 | a | b | Null | 7+8 | 2+12 | 7.50 |
8 | 扬麦9号 | 江苏 | 20.06 | 软质 | a | a | Null | 7+9 | 2+12 | 5.40 |
9 | 扬麦10号 | 江苏 | 50.64 | 硬质 | a | b | Null | 7+8 | 2+12 | 8.00 |
10 | 扬麦11 | 江苏 | 29.52 | 软质 | a | a | Null | 7+8 | 2+12 | 7.25 |
11 | 扬麦12 | 江苏 | 30.68 | 软质 | a | a | Null | 7+8 | 2+12 | 6.00 |
12 | 扬麦13 | 江苏 | 21.09 | 软质 | a | a | Null | 7+8 | 2+12 | 5.50 |
13 | 扬麦14 | 江苏 | 23.41 | 软质 | a | a | 1 | 7+8 | 2+12 | 6.50 |
14 | 扬麦15 | 江苏 | 19.99 | 软质 | a | a | 1 | 7+8 | 2+12 | 5.25 |
15 | 扬麦16 | 江苏 | 57.92 | 硬质 | a | b | Null | 7+9 | 2+12 | 6.50 |
16 | 扬麦17 | 江苏 | 44.06 | 混合 | a | b | 1 | 7+8 | 2+12 | 6.50 |
17 | 扬麦18 | 江苏 | 24.20 | 软质 | a | a | 1 | 7+8 | 2+12 | 4.50 |
18 | 扬麦19 | 江苏 | 22.51 | 软质 | a | a | Null | 7+9 | 2+12 | 4.50 |
19 | 扬麦20 | 江苏 | 32.82 | 软质 | a | a | Null | 7+9 | 2+12 | 4.75 |
20 | 扬麦21 | 江苏 | 19.65 | 软质 | a | a | 1 | 7+8 | 2+12 | 6.50 |
21 | 扬麦22 | 江苏 | 29.93 | 软质 | a | a | Null | 7+9 | 2+12 | 4.75 |
22 | 扬麦23 | 江苏 | 53.33 | 硬质 | a | b | Null | 7+9 | 2+12 | 8.00 |
23 | 扬麦24 | 江苏 | 37.53 | 软质 | a | a | 1 | 7+8 | 2+12 | 5.50 |
24 | 扬麦25 | 江苏 | 28.58 | 软质 | a | a | 1 | 7+8 | 2+12 | 5.75 |
25 | 扬麦26 | 江苏 | 33.31 | 软质 | a | a | Null | 7+9 | 2+12 | 5.50 |
26 | 扬麦27 | 江苏 | 32.12 | 软质 | a | a | Null | 7+9 | 2+12 | 5.00 |
27 | 扬麦28 | 江苏 | 48.70 | 混合 | a | b | 1 | 7+9 | 2+12 | 7.50 |
28 | 扬麦29 | 江苏 | 56.72 | 硬质 | a | b | 1 | 7+9 | 5+10 | 9.00 |
29 | 扬麦30 | 江苏 | 28.68 | 软质 | a | a | 1 | 7+8 | 2+12 | 6.00 |
30 | 扬麦31 | 江苏 | 23.98 | 软质 | a | a | Null | 7+8 | 2+12 | 6.00 |
31 | 扬麦32 | 江苏 | 22.12 | 软质 | a | a | 1 | 7+8 | 2+12 | 5.50 |
32 | 扬麦33 | 江苏 | 26.58 | 软质 | a | a | 1 | 7+8 | 5+10 | 5.00 |
33 | 扬麦34 | 江苏 | 17.84 | 软质 | a | a | 1 | 7+8 | 2+12 | 6.00 |
34 | 扬麦35 | 江苏 | 49.87 | 硬质 | a | b | 1 | 7+9 | 2+12 | 7.50 |
35 | 扬麦36 | 江苏 | 18.82 | 软质 | a | a | 1 | 7+9 | 5+10 | 8.50 |
36 | 扬麦37 | 江苏 | 52.99 | 硬质 | a | b | 1 | 7+9 | 2+12 | 6.50 |
37 | 扬麦38 | 江苏 | 17.74 | 软质 | a | a | Null | 7+9 | 5+10 | 5.75 |
38 | 扬麦39 | 江苏 | 45.46 | 混合 | a | b | 1 | 7+9 | 5+10 | 8.75 |
39 | 扬糯麦1号 | 江苏 | 34.00 | 软质 | a | a | 1 | 7+9 | 2+12 | 5.25 |
40 | 科兴626 | 北京 | 55.73 | 硬质 | a | b | 1 | 7+8 | 5+10 | 9.10 |
41 | 南农06Y86 | 江苏 | 61.20 | 硬质 | b | a | Null | 7+8 | 5+10 | 8.00 |
42 | 镇麦9号 | 江苏 | 62.62 | 硬质 | a | b | 1 | 7+9 | 5+10 | 10.00 |
43 | 镇麦10号 | 江苏 | 69.83 | 硬质 | a | b | 1 | 7+9 | 5+10 | 8.25 |
44 | 镇麦168 | 江苏 | 57.60 | 硬质 | a | p | 1 | 7+9 | 5+10 | 9.50 |
45 | 镇麦12 | 江苏 | 59.22 | 硬质 | a | p | 1 | 7+9 | 5+10 | 8.25 |
46 | 农麦88 | 江苏 | 60.27 | 硬质 | a | b | 1 | 7+9 | 5+10 | 9.00 |
47 | 扬麦29 | 江苏 | 55.64 | 硬质 | a | b | 1 | 7+9 | 5+10 | 9.00 |
48 | 明麦133 | 江苏 | 53.28 | 硬质 | a | p | Null | 7+8 | 5+10 | 8.90 |
49 | 扬麦23 | 江苏 | 50.88 | 硬质 | a | b | Null | 7+9 | 2+12 | 7.75 |
50 |
龙麦26( | 黑龙江 | 59.70 | 硬质 | a | b | Null |
| 5+10 | 11.00 |
51 | 云麦42 | 云南 | 63.41 | 硬质 | b | a | / | / | / | 8.00 |
52 | 云麦80 | 云南 | 57.55 | 硬质 | b | a | 1 | 7+8 | 5+10 | 12.00 |
53 | 川麦88 | 四川 | 28.75 | 软质 | a | a | 1 | 7+8 | 5+10 | 6.50 |
54 | 川麦93 | 四川 | 19.46 | 软质 | a | a | 1 | 7+8 | 2+12 | 6.50 |
55 | 川麦104 | 四川 | 31.67 | 软质 | a | a | 1 | 6+8 | 5+10 | 7.50 |
56 | 绵麦907 | 四川 | 35.53 | 软质 | a | b | 1 | 7+8 | 2+12 | 7.50 |
57 | 绵麦902 | 四川 | 14.06 | 软质 | a | a | 1 | 7+9 | 5+10 | 5.50 |
58 | 绵麦827 | 四川 | 37.28 | 混合 | b | a | / | / | / | 7.25 |
59 | 山农28 | 山东 | 54.96 | 硬质 | a | b | / | / | / | 9.00 |
60 | 山农29 | 山东 | 46.39 | 混合 | a | b | / | / | / | 8.40 |
61 | 豫麦18 | 河南 | 21.23 | 软质 | a | a | Null | 14+15 | 5+10 | 7.00 |
62 | 偃展4110 | 河南 | 14.98 | 软质 | a | a | Null | 14+15 | 5+10 | 6.75 |
63 | 郑麦9694 | 河南 | 40.41 | 软质 | a | b | Null | 14+15 | 5+10 | 5.75 |
64 | 红和尚头 | 8.80 | 软质 | a | a | Null | 7+9 | 2+12 | 11.75 | |
65 | 望水白 | 35.35 | 软质 | a | a | Null | 7+8 | 2+12 | 9.25 | |
66 | 三月黄 | 68.66 | 硬质 | r | a | Null | 7+8 | 2+12 | 9.00 | |
67 | 江东门 | 65.87 | 硬质 | r | a | Null | 7+8 | 2+12 | 9.50 | |
68 | 白火麦 | 55.56 | 硬质 | r | a | Null | 7+8 | 2+12 | 9.25 | |
69 | 平原50 | 63.83 | 硬质 | a | p | Null | 7+8 | 2+12 | 8.00 | |
70 | 蚰子麦 | 61.80 | 硬质 | s | a | Null | 7+8 | 2+12 | 6.75 | |
71 | 和尚头 | 7.21 | 软质 | a | a | Null | 7+8 | 2+12 | 5.00 | |
72 | 周1550 | 河南 | 44.80 | 混合 | a | b | 1 | 7+9 | 5+10 | 9.25 |
73 | 周4013 | 河南 | 43.31 | 混合 | a | b | 1 | 7+9 | 5+10 | 8.25 |
74 | 洛旱2号 | 河南 | 48.73 | 混合 | a | p | 1 | 7+8 | 2+12 | 7.75 |
75 | 铁壳麦103 | 云南 | 56.02 | 硬质 | a | a | Null | 7+8 | 2+12 | 8.35 |
76 | 铁壳麦104 | 云南 | 63.47 | 硬质 | a | a | Null | 7+8 | 2+12 | 5.25 |
77 | 铁壳麦105 | 云南 | 56.48 | 硬质 | a | a | Null | 7+8 | 2+12 | 5.75 |
78 | 铁壳麦106 | 云南 | 58.10 | 硬质 | a | a | Null | 7+8 | 2+12 | 6.25 |
79 | 铁壳麦107 | 云南 | 64.30 | 硬质 | a | a | Null | 7+8 | 2+12 | 8.25 |
80 | 科兴3302 | 北京 | 61.04 | 硬质 | a | b |
| 7+8 | 5+10 | 9.75 |
81 | 淮核12013 | 江苏 | 62.91 | 硬质 | a | b | 1 | 7+9 | 5+10 | 5.50 |
82 | 淮核0838 | 江苏 | 65.39 | 硬质 | b | a | 1 | 7+9 | 2+12 | 8.70 |
83 | 淮核00134 | 江苏 | 62.89 | 硬质 | a | p | 1 | 7+9 | 5+10 | 8.25 |
84 | 淮核0779 | 江苏 | 66.60 | 硬质 | b | a | 1 | 7+9 | 2+12 | 9.00 |
85 | 淮麦16 | 江苏 | 37.16 | 软质 | a | p | Null | 7+9 | 2+12 | 6.00 |
86 | 中麦175 | 北京 | 18.01 | 软质 | a | a | Null | 7+9 | 2+12 | 7.50 |
87 | 中麦578 | 北京 | 46.07 | 混合 | a | b | 1 | 7+8 | 5+10 | 11.00 |
88 | 中麦895 | 北京 | 52.73 | 硬质 | a | b | 1 | 7+9 | 2+12 | 10.00 |
89 | 郑麦379 | 河南 | 64.18 | 硬质 | b | a | 1 | 7+9 | 5+10 | 8.25 |
90 | 淮核12248 | 江苏 | 63.79 | 硬质 | a | p | 1 | 7+9 | 5+10 | 8.25 |
91 | 淮核00130 | 江苏 | 58.08 | 硬质 | a | p | 1 | 7+9 | 5+10 | 7.50 |
92 | 新麦21 | 河南 | 33.33 | 软质 | a | a | 1 | 7+9 | 5+10 | 7.50 |
93 | 陕229 | 陕西 | 67.24 | 硬质 | a | b | 1 | 7+8 | 2+12 | 8.50 |
94 | 陕253 | 陕西 | 72.91 | 硬质 | b | a | 1 | 7+9 | 5+10 | 7.75 |
/:未检测;64~71号材料是地方品种或历史品种,由江苏省农科院小麦种质创新团队提供
/:Undetected;Materials 64 to 71 are landraces or historical cultivars,which prvided by the wheat Gemplasm Innovation Team of Jiangsu Academy of Agricultural Sciences
采用限制性内切酶鉴定Pinb-D1p类型,对Pinb-D1的PCR扩增产物采用内切酶Pf1MI进行酶切,镇麦12、平原50、淮麦16等9份材料电泳谱带没有被切开,属于Pinb-D1p类型;剩余材料均被内切酶Pf1MI所切开,酶切片段分别为332 bp和256 bp,属于Pinb-D1a或Pinb-D1b类型(

图2 供试材料Pinb-D1b硬度基因KASP标记检测结果
Fig.2 Detection for Pinb-D1b of tested materials by KASP marker
绿色为Pinb-D1b等位基因,蓝色为Pinb-D1a等位基因,红色为杂合型
Materials colored green have the Pinb-D1b allele; Materials colored blue have the Pinb-D1b allele ; Materials colored red have the heterozygous genotype
SKCS单粒谷物测定仪测试结果见

图3 不同硬度基因等位变异类型籽粒硬度表现
Fig.3 Hardness of different Puroindoline genotypes
在94份供试材料中,有4份材料未能确定亚基类型,其余90份材料,Glu-A1位点,表达1亚基的材料48份,占检测出亚基材料的53.33%,Null材料41份,占45.56%,1份材料为

图4 部分品种HMW-GS的SDS-PAGE电泳图谱
Fig.4 SDS-PAGE profile of HMW-GS of part test materials
CK1:藁城8901(1, 7+8, 5+10); CK2:扬麦16(Null, 7+9, 2+12); CK3:中国春 (Null, 7+8, 2+12);编号同表2
CK1:Gaocheng 8901(1, 7+8, 5+10); CK2:Yangmai 16(Null, 7+9, 2+12); CK3:Chinese spring (Null, 7+8, 2+12);No. is same as table 2

图5 Glu-1位点不同亚基SDS沉淀值
Fig.5 SDS sedimentation value of Glu-1 different glutenin subunit
**表示0.01水平显著差异,下同
**indicates significant difference at 0.01 level,the same as below
籽粒硬度和SDS沉淀值呈极显著正相关,相关系数为0.51(

图6 硬度基因突变基因型和野生基因型沉淀值
Fig.6 SDS sedimentation value of Pin mutant and wild genotype
组合类型 Combination type | 数量 No. | 硬度 Hardness | SDS沉淀值(mL) SDS sedimentation value | |||
---|---|---|---|---|---|---|
变幅Range | 平均值Mean | 变幅Range | 平均值Mean | |||
Pin野生基因型/2+12 Pin wild genotype /2+12 | 29 | 7.21~37.53 | 25.21 | 4.50~11.75 | 6.13 | |
Pin野生基因型/5+10 Pin wild genotype /5+10 | 10 | 14.06~33.33 | 23.08 | 5.00~8.50 | 6.58 | |
Pin突变基因型/2+12 Pin mutant genotype /2+12 | 21 | 35.53~68.66 | 54.96 | 6.00~10.00 | 7.89 | |
Pin突变基因型/5+10 Pin mutant genotype /5+10 | 25 | 40.41~72.91 | 56.82 | 5.50~12.00 | 8.67 |
刘红美
研究结果表明Glu-1三个位点品质效应为Glu-D1>Glu-B1>Glu-A
硬度和HMW-GS是影响小麦品质的重要因素,本研究不同Pin基因和Glu-D1位点等位变异组合沉淀值依次为Pin突变基因型/5+10>Pin突变基因型/2+12>Pin野生基因型/5+10>Pin野生基因型/2+12,表明硬度对SDS沉淀值影响大于HMW-GS组成。25份Pin突变基因型/5+10亚基组合材料可以用来进行中强筋小麦品质改良,以镇麦9号、科兴3302、农麦88、龙麦26(
参考文献
陈锋,李根英, 耿洪伟, 夏兰芹, 夏先春, 何中虎. 小麦籽粒硬度及其分子遗传基础研究回顾与展望. 中国农业科学, 2005, 38(6): 1088-1094 [百度学术]
Chen F, Li G Y, Geng H W, Xia L Q, Xia X C, He Z H. Review and prospect of wheat kernel hardness and its molecular genetics basis. Scientia Agricultura Sinica, 2005,38(6): 1088-1094 [百度学术]
Chen F, Li H H, Cui D Q. Discovery, distribution and diversity of Puroindoline-D1 genes in bread wheat from five countries (Triticum aestivum L.). BMC Plant Biology, 2013, 13: 125 [百度学术]
Ma X, Sajjad M, Wang J, Yang W, Sun J, Li X, Zhang A, Liu D. Diversity, distribution of Puroindoline genes and their effect on kernel hardness in a diverse panel of Chinese wheat germplasm. BMC Plant Biology, 2017, 17(1): 158 [百度学术]
Li X Y, Li Y, Zhang M Y, Yu X F, Hu R, Chang J L, Yang G X, Wang Y S, He G Y. Diversity of Puroindoline genes and their association with kernel hardness in Chinese wheat cultivars and landraces. Molecular Breeding, 2019, 39(4): 61 [百度学术]
Morris C F. Puroindolines: The molecular genetic basis of wheat grain hardness. Plant Molecular Biology, 2002, 48(5-6): 633-647 [百度学术]
Ikeda T M, Cong H, Suzuki T, Takata K. Identification of new Pina null mutations among Asian common wheat cultivars. Journal of Cereal Science, 2010, 51(3): 235-237 [百度学术]
Chen F, He Z H, Xia X C, Xia L Q, Zhang X Y, Lillemo M, Morris C F. Molecular and biochemical characterization of puroindoline a and b alleles in Chinese landraces and historical cultivars. Theoretical and Applied Genetics, 2006, 112(3): 400-409 [百度学术]
Giroux M J, Morris C F. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theoretical and Applied Genetics, 1997, 95(5-6): 857-864 [百度学术]
Xia L Q, Chen F, He Z H, Chen X M, Morris C F. Occurrence of puroindoline alleles in Chinese winter wheats. Cereal Chemistry, 2005, 82(1): 38-43 [百度学术]
Lillemo M, Morris C F. A leucine to proline mutation in puroindoline b is frequently present in hard wheats from Northern Europe. Theoretical and Applied Genetics, 2000, 100(7): 1100-1107 [百度学术]
Morris C F, Lillemo M, Simeone M C, Giroux M J, Kidwell K K. Prevalence of puroindoline grain hardness genotypes among historically significant North American spring and winter wheats. Crop Science, 2001, 41(1): 218-228 [百度学术]
Branlard G, Dardevet M. Diversity of grain protein and bread wheat quality:II. Correlation between high molecular weight subunits of glutenin and flour quality characteristics. Journal of Cereal Science, 1985, 3(4): 345-354 [百度学术]
Weegels P L, Hamer R J, Schofield J D. Functional properties of wheat glutenin. Journal of Cereal Science, 1996, 23(1): 1-17 [百度学术]
Shewry P R, Halford N G. Cereal seed storage proteins: Structures, properties and role in grain utilization. Journal of Experimental Botany, 2002, 53(370): 947-958 [百度学术]
Payne P I. Genetics of wheat storage proteins and the effect of allelic variation of bread‒making quality. Annual Review of Plant Physiology, 1987, 38(1): 141-153 [百度学术]
Shewry P R, Tatham A S. The prolamin storage proteins of cereal seeds: Structure and evolution. Biochemical Journal, 1990, 267(1): 1-12 [百度学术]
Shewry P R, Halford N G, Tatham A S. High molecular weight subunits of wheat glutenin. Journal of Cereal Science, 1992, 15(2): 105-120 [百度学术]
Du X Y, Hu J M, Ma X, He J F, Hou W Q, Guo J, Bo C Y, Wang H W, Li A F, Kong L R. Molecular characterization and marker development for high molecular weight glutenin subunit 1Dy12** from Yunnan hulled wheat. Molecular Breeding, 2019, 39(4): 1-9 [百度学术]
刘会云, 刘畅, 王坤杨, 杜丽璞, 王轲, 佘茂云, 叶兴国. 小麦高分子量麦谷蛋白亚基鉴定及其品质效应研究进展. 植物遗传资源学报, 2016, 17(4): 701-709 [百度学术]
Liu H Y, Liu C, Wang K Y, Du L P, Wang K, She M Y, Ye X G. Review on the identification and bread‒making quality of high molecular weight glutenin subunits in wheat. Journal of Plant Genetic Resources, 2016, 17(4): 701-709 [百度学术]
温亮, 龙小玲, 周正富, 雷振生. 小麦高分子量麦谷蛋白亚基基因功能标记研究进展. 分子植物育种, 2020, 18(17): 5813-5819 [百度学术]
Wen L, Long X L, Zhou Z F, Lei Z S. Review on functional markers for HMW-GS genes in wheat. Molecular Plant Breeding, 2020, 18(17): 5813-5819 [百度学术]
Rasheed A, Jin H, Xiao Y G, Zhang Y, Hao Y F, Zhang Y, Hickey L T, Morgounov A I, Xia X C, He Z H. Allelic effects and variations for key bread-making quality genes in bread wheat using high-throughput molecular markers. Journal of Cereal Science, 2019, 39(4): 1-9 [百度学术]
陈锋. 中国和CIMMYT普通小麦puroindoline基因分子基础研究及其对加工品质的影响. 北京: 中国农业科学院, 2006 [百度学术]
Chen F. Molecular characterization of puroindoline alleles in Chinese and CIMMYT common wheats and their effect on processing quality. Beijing: Chinese Academy of Agricultural Sciences, 2006 [百度学术]
张福彦. 小麦籽粒硬度相关基因分子鉴定及PINA蛋白缺失分子机制研究.郑州: 河南农业大学, 2011 [百度学术]
Zhang F Y. Molecular identification of hardness-related genes and analysis of molecular mechanism of PINA null in bread wheat. Zhengzhou: Henan Agricultural University, 2011 [百度学术]
李根英, 夏先春, 何中虎, 孙其信, 黄承彦. 山东小麦籽粒硬度演变规律研究. 作物学报, 2007, 33(8): 1372-1374 [百度学术]
Li G Y, Xia X C, He Z H, Sun Q X, Huang C Y. Distribution of grain hardness and puroindoline alleles in landraces, historical and current wheats in Shandong province. Acta Agronomica Sinica, 2007, 33(8): 1372-1374 [百度学术]
王亮, 穆培源, 桑伟, 徐红军, 庄丽, 邹波. 新疆小麦品种籽粒硬度及puroindoline基因等位变异的分子检测. 麦类作物学报, 2010, 30(1): 17-22 [百度学术]
Wang L, Mu P Y, Sang W, Xu H J, Zhuang L, Zou B. Kernel hardness and allelic variations of puroindoline genes in Xinjiang wheat cultivars. Journal of Triticeae Crops, 2010, 30(1): 17-22 [百度学术]
张晶, 张晓科, 王可珍, 梁强, 付晓洁, 冯毅, 王瑞. 陕西小麦籽粒硬度及其基因型分析. 麦类作物学报, 2011, 31(4): 666-671 [百度学术]
Zhang J, Zhang X K, Wang K Z, Liang Q, Fu X J, Feng Y, Wang R. Distribution of grain hardness in Shanxi wheats and puroindoline genotypes of hard wheats. Journal of Triticeae Crops, 2011, 31(4): 666-671 [百度学术]
刘红美, 祝梓博, 田秋珍, 王永彦, 张灵然, 董中东, 赵磊, 崔党群, 陈锋. 中国黄淮麦区小麦籽粒硬度Puroindoline基因等位变异检测. 分子植物育种, 2016, 14(10): 2700-2715 [百度学术]
Liu H M, Zhu Z B, Tian Q Z, Wang Y Y, Zhang L R, Dong Z D, Zhao L, Cui D Q, Chen F. Detection of allelic variation of Puroindoline genes in collections of bread wheat from yellow and Huai wheat region. Molecular Plant Breeding, 2016, 14(10): 2700-2715 [百度学术]
王化敦, 高春蕾, 张鹏, 张瑜, 张平平, 马鸿翔. 长江中下游麦区小麦品种籽粒硬度及puroindoline基因等位变异的分子检测. 麦类作物学报, 2017, 37(4): 438-444 [百度学术]
Wang H D, Gao C L, Zhang P, Zhang Y, Zhang P P, Ma H X. Allelic variation of puroindoline alleles in bread wheats from lower-middle reaches of the Yangtze river. Journal of Triticeae Crops, 2017, 37(4): 438-444 [百度学术]
杨子博, 顾正中, 周羊梅, 王安邦, 高平中, 熊正海, 刘畅, 蒋学祥, 沈业松. 江苏淮北地区小麦品种资源籽粒硬度基因等位变异的KASP检测. 麦类作物学报, 2017, 37(2): 153-161 [百度学术]
Yang Z B, Gu Z Z, Zhou Y M, Wang A B, Gao P Z, Xiong Z H, Liu C, Jiang X X, Shen Y S. Detection of allelic variation for grain hardness in Huaibei region of Jiangsu province by KASP markers. Journal of Triticeae Crops, 2017, 37(2): 153-161 [百度学术]
郭嫔, 赵惠贤, 张敏娟, 崔巍, 王爱娜, 郭蔼光. 国内外部分小麦品种HMW-GS组成的比较分析. 麦类作物学报, 2007, 27(4): 649-653 [百度学术]
Guo P, Zhao H X, Zhang M J, Cui W, Wang A N, Guo A G. Comparative analysis on the composition of high molecular weight glutenin subunits (HMW-GS) in some wheat cultivars from China and overseas. Journal of Triticeae Crops, 2007, 27(4): 649-653 [百度学术]
张玲丽, 李秀全, 杨欣明, 李洪杰, 王辉, 李立会. 小麦优良种质资源高分子量麦谷蛋白亚基组成分析. 中国农业科学, 2006, 39(12): 2406-2414 [百度学术]
Zhang L L, Li X Q, Yang X M, Li H J, Wang H, Li L H. High‒Molecular‒Weight glutenin subunit composition of Chinese wheat germplasm. Scientia Agricultura Sinica, 2006, 39(12): 2406-2414 [百度学术]
伍玲,董亚超,戴常军,李式昭,朱华忠.长江上游小麦新品种(系)品质分析. 麦类作物学报,2020,40(4):444-454 [百度学术]
Wu L, Dong Y C, Dai C J, Li S Z, Zhu H Z. Quality analysis of new wheat cultivars(lines) in the Upper Reaches of Yangtze River. Journal of Triticeae Crops,2020,40(4):444-454 [百度学术]
单子龙, 班进福, 赵彦坤, 曹巧, 田国英, 何明琦, 高振贤. 河北省小麦品质相关基因的KASP标记检测. 作物杂志, 2020, 197(4): 64-71 [百度学术]
Shan Z L, Ban J F, Zhao Y K, Cao Q, Tian G Y, He M Q, Gao Z X. Detection of quality‒related genes in the wheat varietiesauthorized in Hebei province by KASP markers. Crops, 2020, 197(4): 64-71 [百度学术]
权威, 马锦绣, 华正蓉, 左静红, 王伟伟, 王俊稳, 张立平, 庞斌双, 赵昌平. 我国部分审定小麦品种的品质性状及基因型分析. 植物遗传资源学报, 2023, 24(3): 701-718 [百度学术]
Quan W, Ma J X, Hua Z R, Zuo J H, Wang W W, Wang J W, Zhang L P, Pang B S, Zhao C P. Quality analysis in a collection of wheat varieties approved in China. Journal of Plant Genetic Resources, 2023, 24(3): 701-718 [百度学术]
张晓, 张伯桥, 江伟, 吕国锋, 张晓祥, 李曼, 高德荣. 扬麦系列品种品质性状相关基因的分子检测. 中国农业科学, 2015, 48(19): 3779-3793 [百度学术]
Zhang X, Zhang B Q, Jiang W, Lv G F, Zhang X X, Li M, Gao D R. Molecular detection for quality traits‒related genes in Yangmai series wheat cultivars. Scientia Agricultura Sinica, 2015, 48(19): 3779-3793 [百度学术]
Murray M G, Thompson C L, Wendel J F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8(19): 4321-4326 [百度学术]
Li G, He Z, Lillemo M, Sun Q, Xia X. Molecular characterization of allelic variations at Pina and Pinb loci in Shandong wheat landraces, historical and current cultivars. Journal of Cereal Science, 2008, 47(3): 510-517 [百度学术]
张延滨, 祁适雨, 肖志敏, 辛文利, 高智, 韩方普. 适用于我国小麦品质育种的SDS-PAGE方法. 哈尔滨师范大学自然科学学报, 1997, 13(5): 60-63 [百度学术]
Zhang Y B, Qi S Y, Xiao Z M, Xin W L, Gao Z , Han F P. A practical SDS-PAGE method of HMW subunits of wheat gluten for quality breeding of wheat in China. Natural Sciences Journal of Harbin Normal University, 1997, 13(5): 60-63 [百度学术]
Payne P I, Lawrence G J. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Research Communications, 1983, 11(1):29-35 [百度学术]
张晓, 李曼, 江伟, 朱冬梅, 高德荣. 小麦三个品质性状微量检测方法的应用与评价. 麦类作物学报, 2014, 34(12):1651-1655 [百度学术]
Zhang X, Li M, Jiang W, Zhu D M, Gao D R. Application and evaluation of three micro detection methods for process quality in wheat breeding. Journal of Triticeae Crops, 2014, 34(12):1651-1655 [百度学术]
Martin J M, Frohberg R C, Morris C F, Talbert L E, Giroux M J. Milling and bread baking traits associated with puroindoline sequence type in hard red spring wheat. Crop Science, 2001, 41(1): 228-234 [百度学术]
Cane K, Spackman M, Eagles H A. Puroindoline genes and their effects on grain quality traits in southern Australian wheat cultivars. Australian Journal of Agricultural Research, 2004, 55(1): 89-95 [百度学术]
陈锋, 董中东, 程西永, 詹克慧, 许海霞, 崔党群. 小麦puroindoline及其相关基因分子遗传基础研究进展. 中国农业科学, 2010, 43(6): 1108-1116 [百度学术]
Chen F, Dong Z D, Cheng X Y, Zhan K H, Xu H X, Cui D Q. Advances in research of molecular genetics of Puroindoline and its related genes in wheat. Scientia Agricultura Sinica, 2010, 43(6): 1108-1116 [百度学术]
Ma D , Zhang Y , Xia X C, Morris C F, He Z H. Milling and Chinese raw white noodle qualities of common wheat near-isogenic lines differing in puroindoline b alleles. Journal of Cereal Science, 2009, 50(1):126-130 [百度学术]
Yang Y S, Li S M, Zhang K P, Dong Z Y, Li Y W, An X L, Chen J, Chen Q F, Jiao Z, Liu X, Qin H J, Wang D W. Efficient isolation of ion beam-induced mutants for homoeologous loci in common wheat and comparison of the contributions of Glu-1 loci to gluten functionality. Theoretical and Applied Genetics, 2014, 127(2): 359-372 [百度学术]
何中虎, 晏月明, 庄巧生, 张艳, 夏先春, 张勇, 王德森, 夏兰芹, 胡英考, 蔡民华, 陈新民, 阎俊, 周阳. 中国小麦品种品质评价体系建立与分子改良技术研究. 中国农业科学, 2006, 39(6): 1091-1101 [百度学术]
He Z H, Yan Y M, Zhuang Q S, Zhang Y, Xia X C, Zhang Y, Wang D S, Xia L Q, Hu Y K, Cai M H, Chen X M, Yan J, Zhou Y. Establishment of quality evaluation system and utilization of molecular methods for the improvement of Chinese wheat quality. Scientia Agricultura Sinica, 2006, 39(6): 1091-1101 [百度学术]