摘要
油茶(Camellia oleifera Abe.)是我国重要木本油料树种,具有重要的经济价值和社会效益。隐花色素(Cryptochrome)是植物蓝光受体之一,参与植物开花调控、光形态建成等生长发育过程。本研究从油茶华硕中克隆到CoCRY1基因,通过生物信息学分析发现,其CDS序列长度为2262 bp,编码的蛋白质序列包含684个氨基酸,蛋白分子式为C3454H5281N971O1027S18,分子量77.42 kDa,是一种不稳定的疏水蛋白,进一步分析表明其蛋白序列包含3个结构域,分别为DNA_photolyase、FAD_binding_7和Cryptochrome_C,可证明CoCRY1蛋白属于隐花色素家族。同源序列及系统发育树分析发现CoCRY1蛋白与茶树(Camellia sinensis) CsCRY1序列相似性最高。组织表达分析显示,CoCRY1的表达量在茎中最高,在花中最低。通过农杆菌转化得到CoCRY1基因异源表达的拟南芥(Arabidopsis thaliana)植株,并且从DNA水平及RNA水平鉴定到阳性植株,对CoCRY1异源表达的拟南芥进行表型分析发现,CoCRY1基因的过量表达导致拟南芥提前开花,并对下胚轴伸长具有光特异性的抑制作用。本研究通过生物信息学、定量分析及异源表达发现,油茶CoCRY1基因在油茶开花等生物学过程中具有重要作用。
蓝光是植物可利用光中最重要的组成,对植物的生长发育和有机物质合成有重要影响。研究发现蓝光可参与植株的光反应和成花转变,但对不同的植物效果存在差异,多种植物在蓝光条件下的茎节间和下胚轴伸长受到抑
隐花色素(CRY,cryptochrome)是一种黄素类蛋白的蓝紫光受体,其N端由大约500个氨基酸构成,与光裂解酶高度同源,可非共价结合光捕获因子叶酸(MTHF,5,10-methyltetrahydrofolate)和光催化因子黄素腺嘌呤二核苷酸(FAD,flavin adenine dinucleotide)两个生色团,C端序列组成及长度在不同物种中差异明显,存在一个保守但不连续的DAS (DQXVP-acidic-STAESSS)基序。该蛋白广泛存在于真核生物和原核生物之
油茶(Camellia oleifera Abe.)是一种木本油料树种,果实具有较高的综合利用价值,其种子经榨取后得到的茶油,不仅不饱和脂肪酸含量高达90%,还富含角鲨烯、维生素、黄酮等活性物质,具有一定的食疗效果;榨取茶油后剩余的油茶籽粕和果壳,可用于提取多糖、茶皂素、蛋白质等化工生产和制药的原料,是一种拥有广泛应用前景的经济树
油茶总RNA的提取材料取自油茶华硕茎段诱导的无菌苗,选择直径1 cm以上的嫩绿叶片。组织表达分析的样品在2022年7月采集,取长沙市望城区栽植的5年生华硕油茶树的根、茎、叶、花、果实样品,置于液氮中带回中南林业科技大学林学院实验室,贮存在-80 ℃冰箱中。试验所需野生型拟南芥(Col-0)和转基因拟南芥种植在23 ℃,16 h/8 h (光照/黑暗)光照条件的培养室中,待野生型拟南芥生长至花序长度为10~15cm时,即可用于拟南芥转化。
本研究中提取油茶总RNA所用的EZ-10 DNAaway RNA小量提取试剂盒和PCR产物回收所用的SanPrep柱式DNA胶回收试剂盒及大肠杆菌质粒提取所用的SanPrep柱式质粒DNA小量抽提试剂盒均购自生工生物工程(上海)股份有限公司。反转录cDNA的HiScript 1st Strand cDNA Synthesis Kit、普通PCR的Phanta Max Super-Fidelity DNA Polymerase和2×Rapid Taq Master Mix、同源重组连接的ClonExpress II One Step Cloning Kit试剂以及荧光定量qRT-PCR的ChamQ Universal SYBR qPCR Master Mix均购自南京诺唯赞生物科技股份有限公司。大肠杆菌DH5α感受态购自北京擎科生物科技有限公司,农杆菌AGL0感受态为本实验室自制。
在液氮中将油茶无菌苗的叶片研磨成粉后,利用EZ-10 DNAaway RNA小量提取试剂盒提取油茶总RNA,再用HiScript 1st Strand cDNA Synthesis Kit将RNA逆转录合成cDNA,最后将RNA和cDNA保存至-80 ℃冰箱备用。在软件Primer Premier 5中设计CoCRY1的上下游引物(
引物名称 Primer name | 引物序列(5′→3′) Primer sequence (5′→3′) | 用途 Use |
---|---|---|
CoCRY-2300GFP-F | GGTACCCGGGGATCCATGTCAGGAGGTGGGTGTAGC | 克隆 |
CoCRY-2300GFP-R | TCCTCTAGAGGATCCTACAGCAGAGCTACAAATATGGTAC | |
CoCRY-qPCR-F | TCGGAGAATCCGAGGCATTG | qRT-PCR |
CoCRY-qPCR-R | TTCGTTGGCACTTCAGCTCT | |
CoGAPDH-F | CTACTGGAGTTTTCACCGA | 油茶qRT-PCR内参基因 |
CoGAPDH-R | TAAGACCCTCAACAATGCC | |
CoCRY-trans-F | GAAGATGCCTCTGCCGACA | 转基因拟南芥鉴定 |
CoCRY-trans-R | CCTCAAGGAGAGTAGAGACAGTATC | |
AtACTIN 2-trans-F | CACTGTGCCAATCTACGAGGGT | |
AtACTIN 2-trans-R | CCTGCCTCATCATACTCGGC | |
AtACTIN 2-qPCR-F | CACTGTGCCAATCTACGAGGGT | 拟南芥qRT-PCR内参基因 |
AtACTIN 2-qPCR-R | CACAAACGAGGGCTGGAACAAG |
将CDS区的核苷酸序列翻译为蛋白序列,利用在线网站pfam (http://pfam.xfam.org/)分析编码蛋白的结构域,进一步确认分离出的基因属于CRYs家族。通过在线工具ExPASy (https://www.expasy.org/)、SOPMA (http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html)和MEME (https://meme-suite.org/meme/index.html)对CoCRY1蛋白的理化性质、二级、三级结构及motif基序进行分析预测,通过在线网站NCBI (https://www.ncbi.nlm.nih.gov)检索CRY同源蛋白序列,并利用DNAMAN 6.0.40和MEGA 11进行多重序列比对和系统发育树构建,构建方法采用ML最大似然法(Maximal likelihood)。
根据CoCRY1的CDS序列,设计特异性荧光定量引物(
将构建好的pCAMBIA 2300-GFP-CoCRY1过表达载体转化农杆菌AGL0感受态,利用浸花
对从油茶cDNA中克隆获得CoCRY1的CDS片段进行凝胶电泳检测,结果与预期大小一致(

图1 油茶CoCRY1克隆及编码蛋白结构域分析
Fig.1 Cloning of CoCRY1 from C.oleifera and domain analysis of its encoded protein
A:油茶CoCRY1基因的CDS片段检测,Marker为DL5000;B:CoCRY1蛋白结构域
A: Detection of CDS fragment of CoCRY1 gene in C.oleifera, Marker is DL5000; B: CoCRY1 protein domain
对CoCRY1基因编码蛋白进行分析,结果表明:该蛋白分子式为C3454H5281N971O1027S18,分子量77.42 kDa,理论等电点5.54,亲水性-0.458 (

图2 CoCRY1蛋白质理化性质分析
Fig.2 The physicochemical properties analysis of CoCRY1 protein
A:CoCRY1蛋白疏水性分析;B:CoCRY1蛋白三级结构模型;C:CoCRY1蛋白二级结构分析
A: Hydrophobicity analysis of CoCRY1 protein; B: The tertiary structure model of CoCRY1 protein; C: Secondary structure analysis of CoCRY1
将油茶的CoCRY1蛋白序列同茶树(Camellia sinensis)、葡萄(Vitis vinifera)、番茄(Solanum lycopersicum)、龙眼( Dimocarpus longan)、杨梅(Morella rubra)、大豆( Glycine max)的CRY1蛋白序列进行多重序列比对(

图3 CoCRY1多重序列比对及系统进化树分析
Fig.3 Multiple sequence alignment and phylogenetic analysis of CoCRY1
A:多重序列比对,Cs:茶树,Vv:葡萄,Sl:番茄,Dl:龙眼,Mr:杨梅,Gm:大豆,图中黑色线条区域代表保守结构域DNA_photolyase、FAD_binding_7、Cryptochrome_C,红色线条区域代表DAS基序;B:系统发育树构建及motif基序分析,Ah:落花生,Ao:石刁柏,At:拟南芥,Bd:二穗短柄草,Bn:欧洲油菜,Br:白菜,Ca:小粒咖啡,Cb:荠,Cc:木豆,Cs:茶,Dl:龙眼,Gm:大豆,Gs:野大豆,Hs:木槿,Hv:大麦,Mr:杨梅,Mt:穴芭蕉,Os:水稻(日本组),Pf:紫苏,Sb:高粱,Si:芝麻,Sl:番茄,Vu:豇豆,Vv:葡萄,Zm:玉米
A: Multiple sequence alignment, Cs: Camellia sinensis, Vv: Vitis vinifera, Sl: Solanum lycopersicum, Dl: Dimocarpus longan, Mr: Myrica rubra, Gm: Glycine max, in the figure, the black line regions represent the conserved domains DNA_photolyase, FAD_binding_7 and Cryptochrome_C, and the red line regions represent the DAS motif; B: Phylogenetic tree construction and motif analysis, Ah: Arachis hypogaea, Ao: Asparagus officinalis, At: Arabidopsis thaliana, Bd: Brachypodium distachyon, Bn: Brassica napus, Br: Brassica rapa subsp. Pekinensis, Ca: Coffea arabica, Cb: Capsella bursa-pastoris, Cc: Cajanus cajan, Cs: Camellia sinensis, Dl: Dimocarpus longan, Gm: Glycine max, Gs: Glycine soja, Hs: Hibiscus syriacus, Hv: Hordeum vulgare subsp. Vulgare, Mr: Morella rubra, Mt: Musa troglodytarum, Os: Oryza sativa Japonica Group, Pf: Perilla frutescens var. frutescens, Sb: Sorghum bicolor, Si: Sesamum indicum, Sl: Solanum lycopersicum, Vu: Vigna unguiculata, Vv: Vitis vinifera, Zm: Zea mays
为探究CoCRY1基因在油茶不同器官的表达情况,以油茶的根、茎、叶、花、果实和种子的cDNA为模板,利用qRT-PCR对CoCRY1基因在油茶不同器官的表达量进行分析,结果表明(

图4 CoCRY1在油茶中的相对表达量分析
Fig.4 The relative expression analysis of CoCRY1 in C.oleifera
为探究CoCRY1基因的功能,利用浸花法转化得到过表达CoCRY1基因的拟南芥植株35S-CoCRY1-1、35S-CoCRY1-2和35S-CoCRY1-3,鉴定结果如

图5 转基因拟南芥鉴定
Fig.5 Identification of transgenic Arabidopsis
A:拟南芥中CoCRY1基因检测;B:CoCRY1在拟南芥中的相对表达量
A: Detection of CoCRY1 gene in Arabidopsis; B: Relative expression of CoCRY1 in Arabidopsis
将Col-0和3个转基因株系35S-CoCRY1-1、35S-CoCRY1-2和35S-CoCRY1-3同在长日照下培养,观察各株系的开花情况(

图6 转基因拟南芥表型观测
Fig.6 Phenotype observation of transgenic Arabidopsis
A:拟南芥开花图;B:开花时间统计分析;C:在黑暗或弱光下生长5 d后拟南芥下胚轴;D:下胚轴长度统计分析,ns、*分别表示在P < 0.05水平上无显著差异和存在显著差异
A: Flowering of Arabidopsis; B: Statistical analysis of flowering time; C: Hypocotyl of Arabidopsis grew under dark or weak light for 5 days; D: Statistical analysis of hypocotyl length, ns and * respectively represent no significant differences and significant differences at the P < 0.05
隐花色素蛋白是最早被发现的一类蓝紫光受体,目前在多种动植物中的CRY1蛋白均已被鉴定。研究表明,CRYs类蛋白存在两大结构域,N端的PHR (Photolyase-homologous region)结构域和C端的CCE (C-terminal extension)结构域,前者与光裂解酶高度同源但不具备其光活性,进化保
CRY1在拟南芥、甜高粱、苹果(Malus pumila Mill.)、百合(Lilium×formolongi)等物种中的功能及调控过程已有较多报道,研究表明,拟南芥中CRY1是幼苗发生光形态建成的主要蓝光受体,其在蓝光抑制下胚轴伸长及花青素合成中的功能已通过hy4突变体(CRY1基因受损)植株的研究得到支持,CRY2则是开花的主导因子,但二者的缺失均会缓解蓝光对下胚轴的抑制情况,表明二者发挥的功能存在冗
当前已报道的物种中的CRY1s对开花进程的影响存在较大差异,在短日照条件下,拟南芥cry1突变体在短日照条件下的开花时间延迟甚至晚于野生型拟南芥,而过表达AtCRY1则会导致拟南芥的开花时间提
参考文献
刘玉兵, 陈海燕, 王军伟, 黄科, 李洁, 刘明月. LED红蓝光质调控辣椒幼苗生长的光合机制研究. 河南农业科学, 2021, 50(7): 145-153 [百度学术]
Liu Y B, Chen H Y, Wang J W, Huang K, Li J, Liu M Y. Photosynthetic regulation mechanism of red and blue LED light quality on growth of pepper seedlings. Journal of Henan Agricultural Sciences, 2021, 50(7): 145-153 [百度学术]
屈成, 刘芬, 陈光辉, 王悦. LED红蓝光质对水稻幼苗生长及生理特性的影响. 核农学报, 2020, 34(9): 2095-2102 [百度学术]
Qu C, Liu F, Chen G H, Wang Y. Effects of LED red and blue light ratio on growth and physiological characteristics of rice seedlings. Journal of Nuclear Agricultural Sciences, 2020, 34(9): 2095-2102 [百度学术]
Gautam P, Terfa M T, Olsen J E, Torre S. Red and blue light effects on morphology and flowering of Petunia×hybrida. Scientia Horticulturae, 2015, 184: 171-178 [百度学术]
Heo J W, Lee C W, Murthy H N, Paek K Y. Influence of light quality and photoperiod on flowering of Cyclamen persicum Mill. cv. ‘Dixie White’. Plant Growth Regulation, 2003, 40: 7-10 [百度学术]
Terfa M T, Solhaug K A, Gislerød H R, Olsen J E, Torre S. A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa×hybrida but does not affect time to flower opening. Physiologia Plantarum, 2013, 148(1): 146-159 [百度学术]
龚洪恩, 吴鹏飞, 姚小华, 龙伟, 王开良. LED光质对油茶苗生理生化特性的影响. 甘肃农业大学学报, 2018, 53(5): 52-57 [百度学术]
Gong H E, Wu P F, Yao X H, Long W, Wang K L. Effects of LED light on the physiological and biochemical characteristics of Camellia oleifera seedlings. Journal of Gansu Agricultural University, 2018, 53(5): 52-57 [百度学术]
朱春利, 张桂荣, 蔡爱军, 杜金友. 植物隐花色素结构与功能研究进展. 基因组学与应用生物学, 2009, 28(1): 174-178 [百度学术]
Zhu C L, Zhang G R, Cai A J, Du J Y. Advances in the structure and function of cryptochrome in plant. Genomics and Applied Biology, 2009, 28(1): 174-178 [百度学术]
Ahmad M, Cashmore A R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature, 1993, 366: 162-166 [百度学术]
左泽乘. 拟南芥蓝光受体与SPA1蛋白相互作用和功能的生化分析. 长沙: 湖南大学, 2011 [百度学术]
Zuo Z C. Biochemistry analysis of blue light receptor interaction with SPA1 and the mechanism in Arabidopsis. Changsha: Hunan University, 2011 [百度学术]
Klar T, Pokorny R, Moldt J, Batschauer A, Essen L O. Cryptochrome 3 from Arabidopsis thaliana: Structural and functional analysis of its complex with afolate light antenna. Journal of Molecular Biology, 2007, 366(3): 954-964 [百度学术]
Wang Q, Lin C. Mechanisms of cryptochrome-mediated photoresponses in plants. Annual Review of Plant Biology, 2020, 71(1): 103-129 [百度学术]
Lin C, Ahmad M, Cashmore A R. Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development. The Plant Journal, 1996, 10(5): 893-902 [百度学术]
Brudler R, Hitomi K, Daiyasu H, Toh H, Kucho K I, Ishiura M, Kanehisa M, Roberts V A, Todo T, Tainer J A, Getzoff E D. Identification of a new cryptochrome class: Structure, function, and evolution. Molecular Cell, 2003, 11(1): 59-67 [百度学术]
Yu X, Liu H, Klejnot J, Lin C. The cryptochrome blue light receptors. Arabidopsis Book, 2010, 8: e0135 [百度学术]
Hirose F, Shinomura T, Tanabata T, Shimada H, Takano M. Involvement of rice cryptochromes in de-etiolation responses and flowering. Plant and Cell Physiology, 2006, 47(7): 915-925 [百度学术]
李毓, 庄伟建, 庄春红, 王乃元, 戴飞. 干扰隐花色素Cry1a与Cry1b基因的表达对水稻若干农艺性状的影响. 福建农林大学学报: 自然科学版, 2012, 41(2): 153-158 [百度学术]
Li Y, Zhuang W J, Zhuang C H, Wang N Y, Dai F. Effects of interfering the expression of cryptochrome Cry1a/Cry1b genes on several rice agronomic traits. Journal of Fujian Agriculture and Forestry University: Natural Science Edition, 2012, 41(2): 153-158 [百度学术]
Zhou T, Meng L, Ma Y, Liu Q, Zhang Y, Yang Z M, Yang D, Bian M. Overexpression of sweet sorghum cryptochrome 1a confers hypersensitivity to blue light, abscisic acid and salinity in Arabidopsis. Plant Cell Reports, 2018, 37: 251-264 [百度学术]
Zhou T, Zhou L, Ma Y, Gao J, Li W, Piao M, Zeng B, Yang Z M, Bian M. Cryptochrome 1b from sweet sorghum regulates photoperiodic flowering, photomorphogenesis, and ABA response in transgenic Arabidopsis thaliana. Plant Molecular Biology Reporter, 2018, 36: 13-22 [百度学术]
周婷婷. 甜高粱隐花色素CRYPTOCHROME1a和CRYPTOCHROME1b的功能、信号转导机制及胁迫响应分析. 长春: 吉林大学, 2017 [百度学术]
Zhou T T. Function, signaling mechanism and stress response of the CRYPTOCHROME 1a and CRYPTOCHROME 1b in sweet sorghum. Changchun: Jilin University, 2017 [百度学术]
向婷婷, 孔庆博, 郑倩, 丁春邦, 冯士令, 周莉君, 陈涛. 野生油茶资源与引进品种的经济性状及脂肪酸组成对比分析. 中国粮油学报, 2022, 37(8): 253-260 [百度学术]
Xiang T T, Kong Q B, Zheng Q, Ding C B, Feng S L, Zhou L J, Chen T. Comparative analysis of economic characters and fatty acid composition between wild Camellia Oleifera resources and introduced varieties. Journal of the Chinese Cereals and Oils Association, 2022, 37(8): 253-260 [百度学术]
陈素传, 季琳琳, 姚小华, 张文胜, 韩文妍, 殷刘彪. 油茶品种果实主要经济性状和营养成分的差异分析. 经济林研究, 2022, 40(2): 1-9 [百度学术]
Chen S C, Ji L L, Yao X H, Zhang W S, Han W Y, Yin L B. Variation analysis on the main economic characters and nutrients of fruit from Camellia oleifera varieties. Non-wood Forest Research, 2022, 40(2): 1-9 [百度学术]
Zhang X, Henriques R, Lin S S, Niu Q W, Chua N H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols, 2006, 1(2), 641-646 [百度学术]
Wang W, Mao Z, Guo T, Kou S, Yang H Q. The involvement of the N-terminal PHR domain of Arabidopsis cryptochromes in mediating light signaling. aBIOTECH, 2021, 2(2): 146-155 [百度学术]
Liu H, Liu B, Zhao C, Pepper M, Lin C. The action mechanisms of plant cryptochromes. Trends in Plant Science, 2011, 16(12): 684-691 [百度学术]
Hong S H, Kim H J, Ryu J S, Choi H, Jeong S, Shin J, Choi G, Nam H G. CRY1 inhibits COP1-mediated degradation of BIT1, a MYB transcription factor, to activate blue light-dependent gene expression in Arabidopsis. The Plant Journal, 2008, 55(3): 361-371 [百度学术]
Palayam M, Ganapathy J, Guercio A, Tal L, Deck S, Shabek N. Structural insights into photoactivation of plant Cryptochrome-2. Communications Biology, 2020, 4, 28 [百度学术]
唐千惠, 王佳欣, 孙康, 曾亮, 吴致君. 茶树隐花色素基因CsCRY1和CsCRY2的克隆及表达模式分析. 植物资源与环境学报, 2020, 29(6): 11-22 [百度学术]
Tang Q H, Wang J X, Sun K, Zeng L, Wu Z J. Cloning of cryptochrome gene CsCRY1 and CsCRY2 in Camellia sinensis and analysis on expression pattern. Journal of Plant Resources and Environment, 2020, 29(6): 11-22 [百度学术]
甘晓燕, 吴英英, 张丽, 巩檑, 石磊, 陈虞超, 聂峰杰, 刘璇, 宋玉霞. 马铃薯隐花色素基因克隆及表达分析. 分子植物育种, 2019, 17(9): 2785-2790 [百度学术]
Gan X Y, Wu Y Y, Zhang L, Gong L, Shi L, Chen Y C, Nie F J, Liu X, Song Y X. Cloning and expression analysis of cryptochrome gene in potato. Molecular Plant Breeding, 2019, 17(9): 2785-2790 [百度学术]
闫蕾, 杨宗举, 苏亮, 肖阳, 郭林, 宋梅芳, 孙蕾, 孟凡华, 白建荣, 杨建平. 2个玉米ZmCRY1a基因的克隆及其响应光质处理的表达模式. 作物学报, 2016, 42(9): 1298-1308 [百度学术]
Yan L, Yang Z J, Su L, Xiao Y, Guo L, Song M F, Sun L, Meng F H, Bai J R, Yang J P. Molecular cloning of two maize (Zea mays) CRY1a genes and their expression patterns of in response to different light treatments. Acta Agronomica Sinica, 2016, 42(9): 1298-1308 [百度学术]
Mockler T C, Guo H W, Yang H Y, Duong H, Lin C T. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development, 1999, 126 (10): 2073-2082 [百度学术]
Zhai H, Xiong L, Li H, Lyu X, Yang G, Zhao T, Liu J, Liu B. Cryptochrome 1 inhibits shoot branching by repressing the self-activated transciption loop of PIF4 in Arabidopsis. Plant Communications, 2020, 1(3): 100042 [百度学术]
Li Y Y, Mao K, Zhao C, Zhang R F, Zhao X Y, Zhang H L, Shu H R, Zhao Y J. Molecular cloning of cryptochrome 1 from apple and its functional characterization in Arabidopsis. Plant Physiology and Biochemistry, 2013, 67: 169-177 [百度学术]
Wu X M, Wei X R, Li Z, Jia G X, Chen J R, Chen H X, Cao F X, Zheng S X, Li J H, Li Y F. Molecular cloning of cryptochrome 1 from Lilium×formolongi and the characterization of its photoperiodic flowering function in Arabidopsis. Plant Science, 2022, 316: 111164 [百度学术]
Mao Z, Wei X, Li L, Xu P, Zhang J, Wang W, Guo T, Kou S, Wang W, Miao L, Cao X, Zhao J, Yang G, Zhang S, Lian H, Yang H Q. Arabidopsis cryptochrome 1 controls photomorphogenesis through regulation of H2A.Z deposition. Plant Cell, 2021, 33(6): 1961-1979 [百度学术]
Zhong M, Zeng B, Tang D, Yang J, Qu L, Yan J, Wang X, Li X, Liu X, Zhao X. The blue light receptor CRY1 interacts with GID1 and DELLA proteins to repress GA signaling during photomorphogenesis in Arabidopsis. Molecular Plant, 2021, 14(8): 1328-1342 [百度学术]
Yan B, Yang Z, He G, Jing Y, Dong H, Ju L, Zhang Y, Zhu Y, Zhou Y, Sun J. The blue light receptor CRY1 interacts with GID1 and DELLA proteins to repress gibberellin signaling and plant growth. Plant Communications, 2021, 2(6): 100245 [百度学术]
Exner V, Alexandre C, Rosenfeldt G, Alfarano P, Nater M, Caflisch A, Gruissem W, Batschauer A, Hennig L. A gain-of-function mutation of Arabidopsis cryptochrome1 promotes flowering. Plant Physiology, 2010, 154(4): 1633-1645 [百度学术]
Li Y Y, Mao K, Zhao C, Zhang R F, Zhao X Y, Zhang H L, Shu H R, Hao Y J. Molecular cloning of cryptochrome 1 from apple and its functional characterization in Arabidopsis. Plant Physiology and Biochemistry, 2013, 67: 169-177 [百度学术]