摘要
鲜食风味是影响菜用大豆食味品质的关键因素,其形成与有机酸有着密切的关联,研究有机酸合成机制对于菜用大豆的品质改良具有重要的实际意义。本研究利用大豆毛状根系统,探究与苹果酸含量显著相关的候选基因GmALMT8、GmIF7GT5和GmAP在调控苹果酸含量方面的功能,结果表明:在GmALMT8-OE毛状根中,GmALMT8基因表达量与苹果酸的含量均显著高于空载对照毛状根,而GmIF7GT5和GmAP毛状根中苹果酸的含量无显著变化。鉴于已经报道的ALMT家族基因的苹果酸转运功能,推测大豆中GmALMT8基因可能具有相似的功能,在调控苹果酸含量方面发挥重要作用。为验证GmALMT8-OE毛状根中苹果酸含量的变化是否由GmALMT8基因表达的改变所引起,本研究采用蘸花法在拟南芥中过表达GmALMT8基因。与阳性毛状根中苹果酸测定的结果相类似,过表达GmALMT8显著提高了T2代转基因拟南芥株系种子中的苹果酸含量,进一步证明GmALMT8的稳定表达能够提高苹果酸含量,明确GmALMT8基因在大豆中具有调控苹果酸含量的生物学功能,丰富了大豆有机酸的理论研究,对菜用大豆优质育种具有参考价值。
菜用大豆(Glycine max(L.)Merr.)又称毛豆、鲜食大豆,是指在R6(鼓粒盛期)至R7(初熟期)生育期间采青食用的大豆专用型品
在不同的植物中已报道了许多与有机酸含量相关的QTLs。Liebhard
苹果酸作为主要有机酸之一,具有较好的抗氧化能力,能够加速消除机体自由基,并且具有清热、消炎、促进机体代谢的作
本课题组前期基于GWAS研究结果共挖掘到3个与苹果酸含量显著相关的候选基因,定位于5号染色体上的GmALMT8编码铝激活苹果酸转运家族蛋白,定位于16号染色体上的GmIF7GT5编码异黄酮7-O-葡萄糖基转移酶 (IF7GT,isoflavone 7-O-glucosyltransferase),定位于19号染色体上的GmAP编码天冬氨酸蛋白酶家族蛋白(AP,aspartic proteinase 36)。本研究利用菜用大豆毛状根系统探究上述候选基因在调控苹果酸含量方面的功能;并通过拟南芥(Arabidopsis thaliana (L.) Heynh.)遗传转化获得GmALMT8基因过表达拟南芥株系T2代,进一步明确GmALMT8基因在调控菜用大豆苹果酸含量方面的生物学功能,旨在初步解析菜用大豆苹果酸含量的遗传学基础,为调控菜用大豆苹果酸含量的分子机制研究提供理论基础。
以大豆栽培品种Williams 82作为大豆毛状根系统转化材料,拟南芥(Arabidopsis thaliana,Columbia-0型)作为遗传转化材料,以上植物材料均由江苏省农业科学院豆类作物研究室提供。
在NCBI(https://www.ncbi.nlm.nih.gov/)获取GmALMT8、GmIF7GT5和GmAP基因的CDS序列和过表达载体pCAMBIA1305(本实验室保存)的酶切位点,利用诺唯赞的引物设计软件CE Design V1.04设计包含Xba I和BamH I位点的特异性扩增引物,引物序列见
引物名称 Primer name | 引物序列(5'-3') Primer sequence (5'-3') |
---|---|
GmALMT8-OE-F | CGGAGCTAGCTCTAGAATGGAAATGGCAATGGCTGAT |
GmALMT8-OE-R | TGCTCACCATGGATCCTTCTGCTCCACGAGTAGGT |
GmIF7GT5-OE-F | CGGAGCTAGCTCTAGAATGAAAGAAGCTGTAGTTTTC |
GmIF7GT5-OE-R | TGCTCACCATGGATCCACTGACACACACTTTGTCTC |
GmAP-OE-F | CGGAGCTAGCTCTAGAATGCGGGGTGGTGTTTCCCTG |
GmAP-OE-R | TGCTCACCATGGATCCCAAAAATTGGCACTCCATG |
将pCAMBIA1305质粒使用Xba I和BamH I限制性内切酶进行双酶切,对酶切后的载体进行纯化回收。通过同源重组法将目的基因和线性化载体构建重组表达载体,反应体系:2 μL pCAMBIA1305线性化载体,1 μL目的基因片段,4 μL 5×CE II Buffer,2 μL Exnase II,11 μL ddH2O,总体系20 μL。将得到的重组载体转化大肠杆菌DH5α(TIANGEN),菌检正确后的菌液送至南京生工生物工程有限公司进行测序,通过BioXM2.7序列比对软件进行序列比对,将测序结果正确的菌液过夜摇菌12 h后按照AxyPrep质粒DNA小量试剂盒(CORNING,吴江)说明书步骤提取。利用冻融法将构建好的载体GmALMT8、GmIF7GT5、GmAP和空载pCAMBIA1305分别转化到发根农杆菌(Agrobacterium rhizogenes)K599和根癌农杆菌(Agrobacterium tumefaciens)EHA105感受态细胞中(TIANGEN),转化方法见说明书。
根据Kereszt
转入pCAMBIA1305-GmALMT8、pCAMBIA1305-GmIF7GT5和pCAMBIA 1305-GmAP质粒作为阳性毛状根,转入pCAMBIA1305空载质粒作为空载对照,将转化得到的毛状根放在共聚焦显微镜(Zeiss, LSM 780, 德国)下观察,将观察到绿色荧光的毛状根取其中一部分毛状根采用CTAB
为检测阳性毛状根中候选基因表达水平,分别提取GmALMT8-OE、GmIF7GT5-OE、GmAP-OE和只转入空载体质粒的菜用大豆毛状根的总RNA并进行反转录,方法同1.2.1。采用ABI 7500系统(Applied Biosystems)进行实时荧光定量PCR(qRT-PCR ,quantitative real-time PCR)检测,设置3次生物学重复,3次技术重复。候选基因检测所用的引物及内参基因Tubulin的引物序列见
引物名称 Primer name | 引物序列(5'-3') Primer sequence (5'-3') |
---|---|
GmALMT8-qRT-F GmALMT8-qRT-R GmIF7GT5-qRT-F GmIF7GT5-qRT-R GmAP-qRT-F GmAP-qRT-R Tubulin-F Tubulin-R |
CCATCGGTTCGAGTCCTGTT GGCGACGGTTCCTTATGCTA GTGCTGGGGTGCCCATGATAGCATG CGATTCCATCAACTCCCTAA GAATTGGATGGGCCGATTAT GAAAGTGCCTATGTGGGAGC CACCTCTGTTGGCATTGCAC ACAGTGTAGTGTCCCCTTGC |
将用于苹果酸含量测定的毛状根用烘箱105 ℃杀青30 min,再75 ℃烘干至恒重后用研钵研磨成粉末(过0.45 mm筛)。苹果酸的提取参考Li
为了进一步验证GmALMT8的稳定表达是否能够正向调控苹果酸的积累,将pCAMBIA1305-GmALMT8过表达载体转化至根癌农杆菌EHA105,通过蘸花法转化拟南芥,培育植株至结荚,收获T0代种子
将T0代拟南芥种子置于2 mL离心管中,加入75%酒精消毒5 min,用无菌水洗涤2次。再加入10%次氯酸钠(活性氯≥5.5%)对种子消毒5 min后,用无菌水洗涤5次。将清洗好的1 g种子均匀播种在1/2 MS固体培养基上(含15 mg/L 潮霉素和16 mg/L特美汀),置于4 °C冰箱中3 d后移至光照培养箱培养14 d左右进行移苗。对筛选出的10株具有潮霉素和特美汀抗性的拟南芥,在培养至真叶长出4~5片时,提取叶片DNA,以pCAMBIA1305-GmALMT8质粒作为阳性对照,以空载对照作为阴性对照进行PCR检测,方法同1.2.1。对8株PCR检测均呈阳性的株系收种,即得到T1代种子。将T1代种子按上述方法继续进行阳性筛选获得拟南芥T2代转基因植株,收获T2代种子用于苹果酸含量检测。
分别提取野生型拟南芥与转基因拟南芥T2代叶片中的总RNA并反转录,方法同1.2.1。qRT-PCR试验反应体系及程序同1.2.4,3次生物学重复,3次技术重复,候选基因检测所用的引物及内参基因AtTUB的引物序列见
引物名称 Primer name | 引物序列(5'-3') Primer sequence (5'-3') |
---|---|
GmALMT8-qRT-F | TATTTCCCTGAACTTTCCCTCTG |
GmALMT8-qRT-R | TAGGCTTCATAATCATGTCACCC |
AtTUB-F | GTTCTCGATGTTGTTCGTAAG |
AtTUB-R | TGTAAGGCTCAACCACAGTAT |
分别提取转基因毛状根与空载对照毛状根的基因组DNA,进行PCR检测,结果显示,转基因毛状根中分别有GmALMT8、GmIF7GT5和GmAP基因的存在(

图1 大豆转基因阳性毛状根鉴定
Fig. 1 Identification of transgenic positive hairy roots of soybean
A:GmALMT8-OE,M:DL2000 Marker;B:GmIF7GT5-OE,M:DL5000 Marker;C:GmAP-OE,M:DL5000 Marker;1:空载对照;2~4:阳性毛状根
1: Negative control;2-4: Positive clones
qRT-PCR结果显示,与空载对照相比,在GmALMT8-OE、GmIF7GT5-OE和GmAP-OE毛状根中GmALMT8、GmIF7GT5和GmAP基因的表达量均显著增加(

图2 候选基因在阳性毛状根中的基因表达量及苹果酸含量
Fig. 2 Gene expression and malic acid content of candidate genes in positive hairy roots
A~D中的对照为空载对照;1:GmALMT8-OE;2:GmIF7GT5-OE;3:GmAP-OE;**、 ***分别表示在P < 0.01、P < 0.001水平上差异显著,下同
The controls in A-D are negative controls;**,*** indicated significant difference at P < 0.01,P < 0.001 respectively,the same as below
苹果酸含量检测结果表明,GmALMT8-OE毛状根中苹果酸含量为112.8 μg/g,显著高于空载对照毛状根,是空载对照毛状根的3.77倍。而GmIF7GT5-OE和GmAP-OE毛状根中苹果酸含量和空载对照毛状根相比均无显著性差异(
对反复筛选后获得的T2代转基因拟南芥株系进行PCR检测,结果显示,扩增条带大小与目的基因GmALMT8片段大小一致(

图3 T2代转基因拟南芥GmALMT8基因的PCR检测
Fig. 3 PCR analysis of GmALMT8 transgenic Arabidopsis thaliana from T2 transgenic lines
M:DL2000 Marker;+: pCAMBIA1305-GmALMT8质粒;-:空载对照;OE-1~5:GmALMT8基因成功插入的5株阳性拟南芥株系
+: Positive control, pCAMBIA1305-GmALMT8 plasmid; -: Negative control,blank control; OE-1-OE-5: Different GmALMT8 transgenic Arabidopsis thaliana
qRT-PCR结果显示,与野生型相比,T2代转基因拟南芥株系中GmALMT8基因的表达量显著提高(

图4 过表达GmALMT8对苹果酸含量的影响
Fig. 4 Effect of overexpression of GmALMT8 on malic acid content
A:GmALMT8在野生型拟南芥与过表达拟南芥中的相对表达水平,1~3:GmALMT8基因在T2代转基因拟南芥株系中的表达量;B:拟南芥株系种子中苹果酸含量,1:T2代转基因株系;*表示在P < 0.05水平上差异显著
A: Relative expression levels of wild type Arabidopsis Thaliana and GmALMT8 overexpressed Arabidopsis Thaliana, 1-3: Expression levels of GmALMT8 in T2 transgenic Arabidopsis Thaliana;B: Malic acid content in seeds of Arabidopsis thaliana,WT:Wild type,1:T2 transgenic plant; *indicated significant difference at P < 0.05
果实中有机酸的积累程度在很大程度上取决于有机酸代谢过程中的合成、降解和转化,因此,有机酸转运体的研究对于果实中有机酸积累的机制研究具有重要的意义。
最初研究发现多数ALMT家族基因与植物耐铝性相关,例如小麦中TaALMT1和拟南芥中的AtALMT1等均与耐铝性相
Peng
为验证GmALMT8-OE毛状根中苹果酸含量的变化是否由GmALMT8基因表达的改变所引起,本研究采用蘸花法在拟南芥中过表达GmALMT8基因。与阳性毛状根中苹果酸测定的结果相类似,过表达GmALMT8显著提高了T2代转基因拟南芥株系种子中的苹果酸含量。
以上结果表明,GmALMT8与大豆有机酸有显著关联,可能通过提高苹果酸积累而影响大豆品质。此外,拟南芥中的AtALMT12可以调控苹果酸的运输,并且参与调节气孔运
参考文献
Zhang G W, Xu S C, Mao W H, Hu Q Z, Gong Y M. Determination of the genetic diversity of vegetable soybean (Glycine max(L.)Merr.) using EST-SSR markers. Journal of Zhejiang University Science B, 2013, 14(4): 279-288 [百度学术]
Hu R, Zhang Y, Chen Y, Lin G Q. Dynamic metabolic profiling in vegetable soybean seed development. Emirates Journal of Food and Agriculture, 2018, 30(2): 90-98 [百度学术]
Liebhard R, Koller B, Gianfranceschi L, Gessler C. Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theoretical and Applied Genetics, 2003, 106(8): 1497-1508 [百度学术]
Maliepaard C, Alston F H, Arkel G V, Brown L M, Chevreau E, Dunemann F, Evans K M, Gardiner S, Guilford P, Heusden A W V, Janse J, Laurens F, Lynn J R, Manganaris A G, den Nijs A P M, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh J J, Vrielink-van Ginkel M, King G J. Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers.Theoretical and Applied Genetics, 1998, 97: 60-73 [百度学术]
Zhang X, Guan Z, Wang L, Fu J, Zhang Y, Li Z, Ma L, Liu P, Zhang Y, Liu M, Li P, Zou C, He Y, Lin H, Yuan G, Gao S, Pan G, Shen Y. Combined GWAS and QTL analysis for dissecting the genetic architecture of kernel test weight in maize. Molecular Genetics and Genomics, 2020, 295(2): 409-420 [百度学术]
Zhang Y, Liu Z, Wang X, Li Y, Li Y, Gou Z, Zhao X, Hong H, Ren H, Qi X, Qiu L. Identification of genes for drought resistance and prediction of gene candidates in soybean seedlings based on linkage and association mapping. The Crop Journal, 2022, 10(3): 830-839 [百度学术]
丁杰荣, 孙炳蕊, 于航, 江立群, 张静, 吕树伟, 陈文丰, 范芝兰, 潘大建, 李晨, 刘清. 广东水稻核心种质耐冷萌发全基因组关联分析. 植物遗传资源学报, 2022, 23(5):1425-1437 [百度学术]
Ding J R, Sun B R, Yu H, Jiang L Q, Zhang J, Lyu S W, Chen W F, Fan Z L, Pan D J, Li C, Liu Q. Genome-wide association analysis of cold tolerance germination in rice core germplasm of Guangdong province in China. Journal of Plant Genetic Resources, 2022, 23(5):1425-1437 [百度学术]
梁腾月, 谷勇哲, 马英杰, 王辉, 杨光, 敖雪, 邱丽娟. 大豆耐低磷性全基因组关联分析. 植物遗传资源学报, 2023, 24(1):237-251 [百度学术]
Liang T Y, Gu Y Z, Ma Y J, Wang H, Yang G, Ao X, Qiu L J. Genome wide association study of low phosphorus tolerance in soybean (Glycine max L.). Journal of Plant Genetic Resources, 2023, 24(1):237-251 [百度学术]
程宇坤, 董一帆, 耿洪伟, 任毅, 王睿, 张志辉. 小麦籽粒相关性状全基因组关联分析. 植物遗传资源学报, 2023, 24(4), 993-1006 [百度学术]
Cheng Y K, Dong Y F, Geng H W, Ren Y, Wang R, Zhang Z H. Genome-wide association analysis of wheat grain related traits. Journal of Plant Genetic Resources, 2023, 24(4), 993-1006 [百度学术]
南龙伟, 闫小玉, 门靖, 邓洪丽, 李娟, 宋洋.苹果酸的生理功能及在食品中的应用研究进展. 精细化工中间体, 2022, 52(5):26-29, 62 [百度学术]
Nan L W, Yan X Y, Men J, Deng H L, Li J, Song Y. Research progress on physiological function of malic acid and its application in food industry. Fine Chemical Intermediates, 2022, 52(5):26-29, 62 [百度学术]
De Angeli A, Baetz U, Francisco R, Zhang J, Chaves M M, Regalado A. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera. Planta, 2013, 238(2): 283-291 [百度学术]
Ye J, Wang X, Hu T, Zhang F, Wang B, Li C, Yang T, Li H, Lu Y, Giovannoni J J, Zhang Y, Ye Z. An inDel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance. The Plant Cell, 2017, 29(9): 2249-2268 [百度学术]
Xu L L, Qiao X, Zhang M Y, Zhang S L. Genome-Wide analysis of aluminum-activated malate transporter family genes in six rosaceae species, and expression analysis and functional characterization on malate accumulation in Chinese white pear. Plant Science, 2018, 274: 451-465 [百度学术]
巫伟峰. 李果实苹果酸转运体的克隆表达及其有机酸的关联性分析. 福州: 福建农林大学, 2017: 65-67 [百度学术]
Wu W F. Cloning and expression analysis of malate transporter in plum fruit and analysis of the correlation of organic acids. Fuzhou: Fujian Agriculture and Forestry University, 2017: 65-67 [百度学术]
Bai Y, Dougherty L, Li M, Fazio G, Cheng L, Xu K. A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple. Molecular Genetics and Genomics, 2012, 287(8): 663-678 [百度学术]
Li C, Dougherty L, Coluccio A E, Meng D, El-Sharkawy I, Borejsza-Wysocka E, Liang D, Piñeros M A, Xu K, Cheng L. Apple ALMT9 requires a conserved c-terminal domain for malate transport underlying fruit acidity. Plant Physiology, 2020, 182(2): 992-1006 [百度学术]
Kereszt A, Li D, Indrasumunar A, Nguyen C D, Nontachaiyapoom S, Kinkema M, Gresshoff P M. Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nature Protocols, 2007, 2(4): 948-952 [百度学术]
Doyle J. DNA protocols for plants-CTAB total DNA isolation . Molecular Techniques in Taxonomy, 1991 [百度学术]
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods, 2001, 25(4): 402-408 [百度学术]
Li Q, Zhang H H, Claver I P, Zhu K X, Peng W, Zhou H M. Effect of different cooking methods on the flavour constituents of mushroom (Agaricus bisporus(Lange)Sing) soup. International Journal of Food Science and Technology, 2011, 46(5): 1100-1108 [百度学术]
张艳艳, 孙晓康, 张晓元, 袁丹丹, 刘英梅, 赵国敏, 刘飞. 高效液相色谱一步法快速测定10种有机酸. 食品与药品, 2022, 24(1): 44-47 [百度学术]
Zhang Y Y, Sun X K, Zhang X Y, Yuan D D, Liu Y M, Zhao G M, Liu F. Fast and effective determination of ten kinds of organic acids by HPLC. Food and Drug, 2022, 24(1): 44-47 [百度学术]
Clough S J, Bent A F. Floral dip:A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 1998, 16(6): 735-743 [百度学术]
Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn S J, Ryan P R, Delhaize E, Matsumoto H. A wheat gene encoding an aluminum-activated malate transporter. The Plant Journal, 2004, 37(5):645-653 [百度学术]
Hoekenga O A, Maron L G, Piñeros M A, Cançado G M, Shaff J, Kobayashi Y, Ryan P R, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian L V. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(25): 9738-9743 [百度学术]
Liang C, Piñeros M A, Tian J, Yao Z, Sun L, Liu J, Shaff J, Coluccio A, Kochian L V, Liao H.Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiology, 2013, 161(3): 1347-1361 [百度学术]
Sasaki T, Tsuchiya Y, Ariyoshi M, Nakano R, Ushijima K, Kubo Y, Mori I C, Higashiizumi E, Galis I, Yamamoto Y. Two members of the aluminum-activated malate transporter family, SlALMT4 and SlALMT5, are expressed during fruit development, and the overexpression of SlALMT5 alters organic acid contents in seeds in tomato (Solanum lycopersicum). Plant and Cell Physiology, 2016, 57(11): 2367-2379 [百度学术]
Sauvage C, Segura V, Bauchet G, Stevens R, Do P T, Nikoloski Z, Fernie A R, Causse M. Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiology, 2014, 165(3): 1120-1132 [百度学术]
Liu J, Zhou M. The ALMT gene family performs multiple functions in plants. Agronomy, 2018, 8(2): 20 [百度学术]
Peng Y J, Yuan Y Y, Chang W J, Zheng L T, Ma W F, Ren H, Liu P P, Zhu L C, Su J, Ma F W ,Li M J, Ma B Q. Transcriptional repression of MdMa1 by MdMYB21 in Ma locus decreases malic acid content in apple fruit. The Plant Journal, 2023, 115,(5):1231-1242 [百度学术]
Pei Y R, Deng Y N, Zhang H R, Zhang Z G, Liu J, Chen Z B, Cai D R, Li K, Du Y M, Zang J, Xin P Y, Chu J F, Chen Y H, Zhao L, Liu J, Chen H B. EAR APICAL DEGENERATION1 regulates maize ear development by maintaining malate supply for apical inflorescence. The Plant Cell, 2022, 34(6): 2222-2241 [百度学术]
Meyer S, Mumm P, Imes D, Endler A, Weder B, Al-Rasheid K A, Geiger D, Marten I, Martinoia E, Hedrich R. AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. The Plant Journal, 2010, 63(6): 1054-1062 [百度学术]
Sasaki T, Mori I C, Furuichi T, Munemasa S, Toyooka K, Matsuoka K, Murata Y, Yamamoto Y. Closing plant stomata requires a homolog of an aluminum-activated malate transporter. Plant and Cell Physiology, 2010, 51(3): 354-365 [百度学术]
Peng W T, Wu W W, Peng J C, Li J J, Lin Y, Wang Y N, Tian J, Sun L L, Liang C Y, Liao H. Characterization of the soybean GmALMT family genes and the function of GmALMT5 in response to phosphate starvation. Journal of Integrative Plant Biology, 2018, 60(3): 216-231 [百度学术]