摘要
了解植物应对病原物入侵的反应对挖掘抗性基因具有重要意义。通过白粉菌侵染小麦中作9504幼苗,观察侵染后0 h、6 h、1 d、4 d和7 d小麦叶片生长、生理代谢相关指标和基因表达变化,揭示白粉菌侵染对小麦生长、渗透调节物质及活性氧的响应机制。结果表明,随着侵染时间的增加,小麦叶片死细胞数目、过氧化物酶活性和超氧阴离子数量呈上升趋势,白粉菌在7 d后生长出成熟的分生孢子。苯丙氨酸解氨酶和多酚氧化酶分别在4 d和1 d后发挥作用,可溶性蛋白含量随侵染时间增加基本呈上升趋势,叶绿素含量在7 d时显著下降,进而影响植物生长,过氧化氢含量在整个侵染时期变化不大。转录组分析发现侵染初期(0 h到6 h)PTI信号传导部分受抑制下调,侵染前中期(6 h到1 d和1 d到4 d)PTI信号传导积极响应,ETI出现在侵染前期,侵染后期(4 d到7 d)由于白粉菌已经完全定殖于叶片表面,影响小麦的光合作用,PTI和ETI信号传导通路均有下调的趋势。研究结果为进一步了解小麦响应白粉菌侵染的防御机制提供一定参考。
小麦作为重要的主粮作物,在世界上许多地区广泛种植,其生产安全在全球具有重要的意
在植物与病原菌长期协同进化的过程中,植物形成了先天免疫信号传导通路和后天免疫信号传导通路,先天免疫机制病原体相关分子模式激发的免疫反应(PTI,PAMP-triggered immunity)和效应子激发的免疫反应(ETI,effector-triggered immunity)分别充当植物防御病原菌侵染的第一道和第二道防线,分别发生在效应子转运之前和转运之
小麦对真菌感染的反应非常复杂,涉及一系列生物反应和生理过程。以感病品种中作9504为材料,研究中作9504对白粉菌的响应变化情况,了解白粉菌不同侵染阶段表型特征、生理生化的响应和免疫信号传导的动态变化,为解析小麦对白粉菌侵染的防御机制提供理论参考。
普通小麦品种中作9504为感白粉病材料,白粉菌(Bgt,Blumeria graminis f. sp. Tritici)由宁夏大学实验农场采集的分生孢子经分离纯化而来,用灭菌牙签从单个病斑挑取少量孢子在中作9504叶段划线接种,培养5 d后挑取长有单个菌落的叶片的新鲜孢子进行划线接种,反复5次纯化后长出的菌株为单孢子堆菌株。并在宁夏大学农学院作物遗传育种实验室进行繁殖和保存。
选发芽均匀一致的中作9504种子种于直径10 cm、高8 cm的花盆,每盆种植30株,罩以保鲜袋,在小麦幼苗长至一叶一心完全展开时,在叶片中间叶段采取抖落法高密度均匀的接种Bgt分生孢子,接种完成后用保鲜膜罩保湿,放于人工气候培养箱中培养(温度20 ℃/18 ℃,光照14 h/黑暗10 h)。在接种后0 h、6 h、1 d、2 d、3 d、4 d、5 d、6 d和7 d共9个时间点剪取接种叶段,每个时间点取3株,每株选取一个叶片的叶片中部,将其分为3段,共9次重复。组织观察:主要观察不同侵染时期叶片和白粉菌的生长状况,将叶片正面用玻片压平后拍照观察表型;将台盼蓝染色的叶片置于玻片上压平,盖上盖玻片,在10×40倍光学显微镜下观察白粉菌在不同时间点的生长状态。在接种后0 h、6 h、1 d、4 d和7 d共5个时间点,对叶段中部进行取样,每个时间点3个重复,样本用液氮速冻后放于-80 ℃冰箱保存。
对接种0 h、6 h、1 d、2 d、3 d、4 d、5 d、6 d和7 d共9个时间点的叶段进行染色观察。台盼蓝染色:将叶片用脱色液脱色完全,使用固定液固定,滴加0.4 %台盼蓝染色5 min后显微镜观察。二氨基联苯胺(DAB,3,3’-diaminobenzidine)染色:将叶片放入配制好的1 mg/mL二氨基联苯胺反应液中,避光处理6 h,将叶片取出冲洗,放入90 %乙醇70 ℃沸水浴脱色,显微镜观察。NBT染色:用pH7.8的磷酸缓冲液配制0.5 mg/mL氮蓝四唑(NBT,nitroblue tetrazolium)反应液,叶片放入反应液中处理1 h,用90 %乙醇70 ℃沸水浴脱色,显微镜观察。
对接种0 h、6 h、1 d、4 d和7 d共5个时间点的叶片进行生理指标测定。苯丙氨酸解氨酶活性:参照Zucke
数据采用SPSS 19.0 (IBM Corp., Armonk, NY, USA)进行单因素方差分析(ANOVA,one-way analysis of variance),以检测不同侵染时间的差异显著性(P<0.05)。使用R的cor()函数计算相关性系数,使用corrplot包进行pearson相关系数的可视化。
将收集到的15个样本(0 h、6 h、1 d、4 d和7 d每个时间点各3个重复)送至广州基迪奥生物科技有限公司(中国广东)。使用Omega Bio-Tek公司的Omega Plant RNA kit 试剂盒(R6827)提取RNA,在测试样品后,使用Illumina平台构建cDNA文库并测序。参考基因组和基因组注释文件于ensembl plants数据库(http://plants.ensembl.org/Triticum_aestivum/Info/Index)下载。测序所得的Raw reads经过质量处理后得到高质量Clean reads。利用DEGseq
与对照(侵染0 h)相比,小麦叶片在接种白粉菌4 d表现出现肉眼可见的变化,接种7 d表面出现大量成熟的菌丝和白粉菌分生孢子(

图1 白粉菌侵染后的小麦叶片表型观察
Fig.1 Phenotypic observation of wheat leaves infested with powdery mildew
A:不同侵染时间的叶片表型;B:不同侵染时间白粉菌生长状态;C:分生孢子;PGT:初生芽管;AP:附着胞;M:菌丝;FC:足细胞;CO:分生孢子梗;红圈内表示可以看见的白粉菌
A:Leaf phenotypes at different infestation times;B:Growth status of powdery mildew at different infestation times;C:Condium;PGT:Primary germ tube;AP:Appressorium;M:Mycelium;FC:Foot cell of conidiophores;CO:Conidiophores;Red circles indicate visible powdery mildew
台盼蓝染色表明随着侵染时间增加,死细胞与白粉菌数目越来越多,在4 d时出现明显变化(

图2 小麦叶片染色观察
Fig.2 Observation of wheat leaf staining
A:台盼蓝染色;B:DAB染色;C:NBT染色
A:Taipan blue staining;B:DAB staining;C:NBT staining
由

图3 白粉菌侵染小麦叶片的生理变化
Fig.3 Physiological changes in wheat leaves infected with powdery mildew
PAL:苯丙氨酸解氨酶;PPO:多酚氧化酶;SP:可溶性蛋白;H2O2:过氧化氢;CHL:叶绿素;下同;不同小写字母代表在P<0.05水平上差异显著
PAL:Phenylalanine ammonia-lyase;PPO:Polyphenol oxidase;SP:Soluble protein;H2O2:Hydrogen peroxide;CHL:Chlorophyll;The same as below;Different letters indicate significant difference at P<0.05 level
由
在侵染0 h的小麦叶片中,H2O2与多酚氧化酶两者表现出正相关,可溶性蛋白、叶绿素和苯丙氨酸解氨酶三者两两之间表现正相关(

图4 叶片中不同时期各指标相关性分析
Fig.4 Correlation analysis of various indicators in leaves
转录组数据表明白粉菌侵染后的小麦叶片植物-病原菌相互作用通路、MAPK信号通路和植物激素信号转导通路在不同时间被明显富集(

图5 叶片差异表达基因的KEGG富集分析
Fig.5 KEGG enrichment analysis of differentially expressed genes in leaves
A:6 h相比于0 h;B:1 d相比于6 h;C:4 d相比于1 d;D:7 d相比于4 d;图片展示部分显著富集结果,括号前数字代表富集到通路内的差异基因个数,括号内数字代表通路的富集显著程度,横坐标代表通路中差异基因占总差异基因的比例
A:6 h compared to 0 h ;B:1 d compared to 6 h;C:4 d compared to 1 d;D:7 d compared to 4 d;The pictures show some significant enrichment results, the number before parentheses represents the number of differentially expressed genes enriched within the pathway, the number within parentheses represents the significance of pathway enrichment, and the horizontal axis represents the proportion of differentially expressed genes in the pathway to the total differentially expressed genes
转录组分析了免疫信号传导通路中9类基因在6 h-vs-0 h(6 h相比于0 h)、1 d-vs-6 h(1 d相比于6 h)、4 d-vs-1 d(4 d相比于1 d)、7 d-vs-4 d(7 d相比于4 d)不同侵染时期差异表达情况,将植物-病原相互作用通路中的差异基因注释结果汇总,分别保留这9类基因的FPKM值,供后续统计分析。6 h-vs-0 h的差异表达基因主要是CDPK(Calcium-dependent protein kinase)基因,10个基因中8个基因表达下调,其中CPK4(TraesCS6B02G111800)下调最多,表达量下调了5倍。1 d-vs-6 h的差异表达基因主要是CDPK和PR基因,其中22个CDPK基因中15个基因上调,18个PR基因全部上调,并且有16个PR基因的log2FC≥2(FC≥4),PR基因的表达可以诱导系统获得性抗性,远离侵染部位的组织产生抗菌物质,抵御白粉菌进一步侵染。4 d-vs-1 d的差异基因数目较多的是CDPK和PR基因,其中13个CDPK基因中7个基因上调6个基因下调,13个PR基因中5个基因上调8个基因下调,但此时通路整体是上调的。7 d-vs-4 d的差异基因大部分表达上调,其中CDPK和Rboh(Respiratory burst oxidase homolog)差异基因数目较多,15个CDPK基因中7个基因上调8个基因下调,11个Rboh基因中5个基因上调6个基因下调。总体而言,CDPK和PR基因在各个侵染时期差异基因均较多;6 h-vs-0 h差异基因数目较少,1 d-vs-6 h差异基因数目逐渐增多且大部分表达上调,4 d-vs-1 d和7 d-vs-4 d差异基因数目分别为52个和57个,与1 d-vs-6 h的81个差异基因数目相比有所减少(
差异表达基因 Differential expression gene | 6 h-vs-0 h | 1 d-vs-6 h | 4 d-vs-1 d | 7 d-vs-4 d | |||||
---|---|---|---|---|---|---|---|---|---|
基因总数 Total number of genes | 上下调 基因数 Number of up- and down-regulated genes | 基因总数 Total number of genes | 上下调 基因数 Number of up- and down-regulated genes | 基因总数 Total number of genes | 上下调 基因数 Number of up- and down-regulated genes | 基因总数 Total number of genes | 上下调 基因数 Number of up- and down-regulated genes | ||
CNGCs | 6 | 6↑ | 10 | 5↑ | 6 | 5↑ | 8 | 1↑ | |
0 | 5↓ | 1↓ | 7↓ | ||||||
CDPK | 10 | 2↑ | 22 | 15↑ | 13 | 7↑ | 15 | 7↑ | |
8↓ | 7↓ | 6↓ | 8↓ | ||||||
Rboh | 5 | 1↑ | 14 | 8↑ | 5 | 4↑ | 11 | 5↑ | |
4↓ | 6↓ | 1↓ | 6↓ | ||||||
WRKY25/33 | 2 | 0 | 2 | 2↑ | 4 | 4↑ | 2 | 2↑ | |
2↓ | 0 | 0 | 0 | ||||||
WRKY29/22 | 1 | 0 | 0 | 0 | 3 | 3↑ | 3 | 3↑ | |
1↓ | 0 | 0 | 0 | ||||||
PR | 5 | 0 | 18 | 18↑ | 13 | 5↑ | 10 | 9↑ | |
5↓ | 0 | 8↓ | 1↓ | ||||||
RIN4 | 0 | 0 | 7 | 7↑ | 5 | 5↑ | 4 | 4↑ | |
0 | 0 | 0 | 0 | ||||||
CEBiP | 0 | 0 | 2 | 2↑ | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | ||||||
CERK1 | 0 | 0 | 6 | 6↑ | 3 | 0 | 4 | 4↑ | |
0 | 0 | 3↓ | 0 |
6 h-vs-0 h表示6 h相比于0 h;1 d-vs-6 h表示1 d相比于6 h;4 d-vs-1 d表示4 d相比于1 d;7 d-vs-4 d表示7 d相比于4 d;↑为表达上调,↓为表达下调
6 h-vs-0 h represents 6 h compared to 0 h; 1 d-vs-6 h represents 1 d compared to 6 h; 4 d-vs-1 d represents 4 d compared to 1 d; 7 d-vs-4 d represents 7 d compared to 4 d; ↑ is up-regulated expression, ↓ is down-regulated expression
结合

图6 植物-病原菌相互作用通路及其差异基因表达分析
Fig.6 Analysis of plant pathogen interaction pathway and differential gene expression
CK表示侵染0h;TG-6h表示侵染6h;TG-1d表示侵染1d;TG-4d表示侵染4d;TG-7d表示侵染7d;绿色方块表示绘制热图的一类基因
CK indicates infestation 0 h; TG-6h indicates infestation 6 h; TG-1d indicates infestation 1 d; TG-4d indicates infestation 4 d; TG-7d indicates infestation 7 d; Green squares indicate a class of genes for which a heat map was drawn
总体而言,0 h到6 h信号传导通路被抑制,6 h到4 d小麦做出积极的响应,PTI发挥着主要作用,大量的Rboh、PR基因被诱导表达,6 h到1 d出现ETI,4 d到7 d时信号传导通路表达趋于稳定,大部分基因相比4 d表现出下调表达,但此时PTI和ETI依然发挥着重要的作用。
白粉菌侵染小麦叶片后会启动抗病防御机制,植物体内发生一系列的信号传递和生理生化变
本研究结果表明,0 h到6 h为侵染初期,此时大部分通路中的基因表达下调,侵染前期6 h到1 d时大量PR基因被诱导表达,此时出现ETI信号传导,侵染中期1 d到4 d时PTI信号传导上调,PR基因部分下调。张露
综上所述,侵染初期白粉菌可能通过释放效应子干扰小麦内部免疫系统,大部分免疫防御基因下调,前期和中期整体上小麦通过诱导PR等相关防御基因进行积极防御,而侵染后期因叶片表面布满大量分生孢子严重干扰其光合作用,白粉菌完全定殖于小麦细胞,释放的毒素破坏了小麦的组织和细胞,从而影响小麦正常生长。本研究以白粉病感病品种为材料,为掌握白粉菌侵染过程中感病品种的表型变化、生理反应和免疫信号通路的差异基因的表达情况等奠定基础。今后可对相应抗病品种和感病品种联合分析以明确抗病和感病品种间的表型、生理和免疫信号通路的差异,从而确定不同抗感性品种的白粉病抗性差异。
参考文献
Alam M A, Hongpo W, Hong Z, Ji W Q. Differential expression of resistance to powdery mildew at the early stage of development in wheat line N0308. Genetics and Molecular Research, 2014, 13(2): 4289-4301 [百度学术]
Mapuranga J, Chang J Y, Yang W X. Combating powdery mildew: Advances in molecular interactions between Blumeria graminis f. sp. tritici and wheat. Frontiers in Plant Science, 2022, 13:1102908 [百度学术]
Chen G, Wei B, Li G, Gong C, Fan R, Zhang X. TaEDS1 genes positively regulate resistance to powdery mildew in wheat. Plant Molecular Biology, 2018, 96(6): 607-625 [百度学术]
Zheng H, Dong L, Han X, Jin H, Yin C, Han Y, Li B, Qin H, Zhang J, Shen Q, Zhang K, Wang D. The TuMYB46L-TuACO3 module regulates ethylene biosynthesis in einkorn wheat defense to powdery mildew. The New Phytologist, 2020, 225(6): 2526-2541 [百度学术]
Li S, Lin D, Zhang Y, Deng M, Chen Y, Lv B, Li B, Lei Y, Wang Y, Zhao L, Liang Y, Liu J, Chen K, Liu Z, Xiao J, Qiu J, Gao C. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature, 2022, 602(7897): 455-460 [百度学术]
Kaur S, Samota M K, Choudhary M, Choudhary M, Pandey A K, Sharma A, Thakur J. How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. Physiology and Molecular Biology of Plants, 2022, 28(2): 485-504 [百度学术]
Heller J, Tudzynski P. Reactive oxygen species in phytopathogenic fungi: Signaling, development, and disease. Annual Review of Phytopathology, 2011, 49: 369-390 [百度学术]
Andersen E J, Ali S, Byamukama E, Yen Y, Nepal M P. Disease resistance mechanisms in plants. Genes, 2018, 9(7): 339 [百度学术]
Wang Y, Ji D, Chen T, Li B, Zhang Z, Qin G, Tian S. Production, signaling, and scavenging mechanisms of reactive oxygen species in fruit-pathogen interactions. International Journal of Molecular Sciences, 2019, 20(12): 2994 [百度学术]
Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver D J, Coutu J, Shulaev V, Schlauch K, Mittler R. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. The Plant Cell, 2005, 17(1):268-281 [百度学术]
Herrera-Vásquez A, Salinas P, Holuigue L. Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Frontiers in Plant Science, 2015, 6:171 [百度学术]
Khodadadi F, Tohidfar M, Vahdati K, Dandekar A M, Leslie C A. Functional analysis of walnut polyphenol oxidase gene (JrPPO1) in transgenic tobacco plants and PPO induction in response to walnut bacterial blight. Plant Pathology, 2020, 69(4):756-764 [百度学术]
You X, Fang H, Wang R, Wang GL, Ning Y. Phenylalanine ammonia lyases mediate broad-spectrum resistance to pathogens and insect pests in plants. Science Bulletin, 2020, 65(17): 1425-1427 [百度学术]
Zhang H, Huang Q, Yi L, Song X, Li L, Deng G, Liang J, Chen F, Yu M, Long H. PAL-mediated SA biosynthesis pathway contributes to nematode resistance in wheat. The Plant Journal, 2021, 107(3): 698-712 [百度学术]
Zucker M. Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue. Plant Physiology, 1965, 40(5): 779-784 [百度学术]
González E M, de Ancos B, Cano M P. Partial characterization of polyphenol oxidase activity in raspberry fruits. Journal of Agricultural and Food Chemistry, 1999, 47(10): 4068-4072 [百度学术]
Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248-254 [百度学术]
Arnon D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiology, 1949, 24(1): 1-15 [百度学术]
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014, 15(12):550 [百度学术]
Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. Kegg for taxonomy-based analysis of pathways and genomes. Nucleic Acids Research, 2023, 51: D587-D592 [百度学术]
Gao H, Niu J, Zhao W, Zhang D, Li S, Xu Y, Liu Y. The effect and regulation mechanism of powdery mildewon wheat grain carbon metabolism. Starch-Starke, 2022, 74: 19 [百度学术]
Yadav V, Wang Z, Guo Y, Zhang X. Comparative transcriptome profiling reveals the role of phytohormones and phenylpropanoid pathway in early-stage resistance against powdery mildew in watermelon (Citrullus lanatus L.). Frontiers in Plant Science, 2022, 13: 1016822 [百度学术]
刘慧青, 谢丽琼, 王贤磊, 李群, 宁雪飞. 精细定位甜瓜白粉病抗性基因Pm-M. 植物遗传资源学报, 2022,23(1):217-225 [百度学术]
Liu H Q, Xie L Q, Wang X L, Li Q, Ning X F. Fine mapping of a powdery mildew resistance gene Pm-MR1 12.1 in melon. Journal of Plant Genetic Resources, 2022,23(1):217-225 [百度学术]
延荣, 耿妙苗, 李晓静, 安浩军, 温树敏, 刘桂茹, 王睿辉. 河北省小麦品种和种质资源抗白粉病鉴定与抗病基因分子标记检测. 植物遗传资源学报, 2020,21(3):683-705 [百度学术]
Yan R, Geng M M, Li X J, An H J, Wen S M, Liu G R, Wang R H. Phenotyping and marker-assisted gene identification of powdery mildew resistance in wheat commercial varieties and germplasm resources from Hebei province. Journal of Plant Genetic Resources, 2020,21(3):683-705 [百度学术]
秦宏坤, 李帅, 马冬, 郭卫丽. 南瓜侵染白粉菌后的活性氧爆发观察. 中国农学通报, 2020,36(25):121-128 [百度学术]
Qing H K, Li S, Ma D, Guo W L. Active oxygen outbreaks of pumpkin infected with powdery mildew. Chinese Agricultural Science Bulletin, 2020, 36(25) :121-128 [百度学术]
田丽波, 杨衍, 商桑, 司龙亭. 不同苦瓜品系的抗白粉病能力及其与防御酶活性的相关性. 沈阳农业大学学报, 2015,46(3):284-291 [百度学术]
Tian L B, Yang Y, Shang S, Si L T. Correlation of bitter melon's resistance to powdery mildew and activities of defense enzymes. Journal of Shenyang Agricultural University, 2015,46(3):284-291 [百度学术]
董文科, 马祥, 毛春晖, 邓婧慧, 贾秀秀, 张顺萍, 郭珊珊, 马晖玲. 10个草地早熟禾品种对白粉病的抗性评价及生理特性分析. 草原与草坪, 2020,40(3):47-56 [百度学术]
Dong W K, Ma X, Mao C H, Deng J H, Jia X X, Zhang S P, Guo S S, Ma H L. Resistance evaluation and physiological characteristic analysis of ten Poa pratensis varieties to powdery mildew. Grassland and Turf, 2020,40(3):47-56 [百度学术]
韩庆典, 杨美娟, 黄择祥, 闫丽, 胡晓君. 小麦白粉病菌对小麦幼苗光合生理特性的影响. 基因组学与应用生物学, 2017,36(10):4373-4379 [百度学术]
Han Q D, Yang M J, Huang Z X, Yan L, Hu X J. Effects of wheat powdery mildew on the photosynthetic physiological characteristics of wheat seedlings. Genomics and Applied Biology, 2017,36(10):4373-4379 [百度学术]
Chi Y H, Koo S S, Oh H T, Lee E S, Park J H, Phan K A T, Wi S D, Bae S B, Paeng S K, Chae H B, Kang C H, Kim M G, Kim W Y, Yun D J, Lee S Y. The physiological functions of universal stress proteins and their molecular mechanism to protect plants from environmental stresses. Frontiers in Plant Science, 2019, 10: 750 [百度学术]
Wang C, He X, Li Y, Wang L, Guo X, Guo X. The cotton mapk kinase ghmpk20 negatively regulates resistance to Fusarium oxysporum by mediating the mkk4-mpk20-wrky40 cascade. Molecular Plant Pathology, 2018, 19(7): 1624-1638 [百度学术]
张露露, 卞云迪, 张驰, 刘晓颖, 范宝莉, 王振英. 小麦Brock抗白粉菌侵染早期防御应答基因分析. 天津师范大学学报:自然科学版, 2021,41(3):40-46 [百度学术]
Zhang L L, Bian Y D, Zhang C, Liu X Y, Fan B L, Wang Z Y. Expression profiling of the early response genes against powdery mildew in resistant wheat Brock. Journal of Tianjin Normal University: Natural Science Edition, 2021,41(3):40-46 [百度学术]
Xu G, Moeder W, Yoshioka K, Shan L. A tale of many families: Calcium channels in plant immunity. The Plant Cell, 34(5): 1551-1567 [百度学术]
Zhang W, Dong C, Zhang Y, Zhu J, Dai H, Bai S. An apple cyclic nucleotide-gated ion channel gene highly responsive to Botryosphaeria dothidea infection enhances the susceptibility of Nicotiana benthamiana to bacterial and fungal pathogens. Plant Science, 2018, 269: 94-105 [百度学术]
Schulz P, Herde M, Romeis T. Calcium-dependent protein kinases: Hubs in plant stress signaling and development. Plant Physiology, 2013, 163(2): 523-530 [百度学术]
DeFalco T A, Zipfel C. Molecular mechanisms of early plant pattern-triggered immune signaling. Molecular Cell, 2021, 81(17): 3449-3467 [百度学术]
Macho A P, Zipfel C. Plant PRRs and the activation of innate immune signaling. Molecular Cell, 2014, 54(2): 263-272 [百度学术]
Rebaque D, Del Hierro I, López G, Bacete L, Vilaplana F, Dallabernardina P, Pfrengle F, Jordá L, Sánchez-Vallet A, Pérez R, Brunner F, Molina A, Mélida H. Cell wall-derived mixed-linked beta-1,3/1,4-glucans trigger immune responses and disease resistance in plants. The Plant Journal, 2021, 106(3): 601-615 [百度学术]
Yang C, Wang E, Liu J. Cerk1, more than a co-receptor in plant-microbe interactions. The New Phytologist, 2022, 234(5): 1606-1613 [百度学术]