摘要
糖基化修饰在植物的生长发育中扮演着至关重要的角色。糖基转移酶是催化糖苷化产物合成的核心酶,其中,主要以UDP-糖为糖基供体的UGT家族,能够催化次生代谢中的小分子化合物,在调节各种植物次生代谢物的溶解度、稳定性和生物活性等方面具有重要作用,并与植物品质性状、非生物胁迫和生物胁迫的响应等紧密相关,近年来成为备受关注的研究热点。本文对植物中UDP-糖基转移酶进行了全面的综述,涵盖了其结构特点、催化特性、反应类型、功能分类和命名方式等方面。此外,文中还总结了目前观赏植物中UDP-糖基转移酶对激素、萜类化合物和类黄酮化合物等的修饰情况,这些修饰过程进而影响植物的花色、叶色、株型、叶形、挥发性化合物的储存、植物对生物与非生物胁迫的抗性,以及功能性化合物成分的合成等多个方面。通过相关工作文献的回顾与总结,有助于进一步认知糖基转移酶在观赏植物代谢调控中的作用,也为今后的观赏植物种质改良创新和功能性成分的研发提供参考。
植物代谢过程可以分为初生代谢和次生代谢两大类。植物初生代谢是一种普遍存在于生命体中的代谢方式,其生成的初生代谢化合物在植物生长、发育、繁殖等基础生命活动中扮演至关重要的角
自然界中的植物代谢物数量高达20万~100万
糖基转移酶在多种植物中参与化合物的修饰,并在植物的各种生理过程中发挥至关重要的作
糖基化反应的受体分子种类多样,包括糖类、脂质、蛋白质、核酸、次生代谢物以及内外源有毒物
糖基化对于受体分子具有多重影响,如增加受体分子的水溶性、提高化学稳定性、改变其生物活性和在细胞中的定位等特
然而糖基化有时也会增加细胞内毒性,例如拟南芥水杨酸糖基转移酶AtSAGT1的过表达导致了植物对丁香假单胞菌的易感性增
根据CAZY网站(http://www.cazy.org/Glycosyl Transferases)中糖基转移酶超家族的分类结果显示,截止到2023年7月,共有113个糖基转移酶超家族(GT1~GT116,其中GT36、GT46、GT86已被删除

图 1 糖基供体
Fig.1 Glycosyl donor

图 2 UGT保守序列PSPG box
Fig. 2 The PSPG box conserved motif of UGT
拟南芥UGT的14个家族中各取1个基因序列比对,做出PSPG box。选取不同序列对比得到的PSPG box部分位点可能有所不同。纵坐标显示的字母的相对高度代表该位点氨基酸的保守性,横坐标的1~44代表PSPG box的44个氨基酸
Take one gene sequence alignment from each of the 14 families of Arabidopsis UGT and create a PSPG box. The partial sites of PSPG box obtained by comparing different sequences may vary.The relative height of the letters shown on the ordinate represents the conservatism of the amino acids at the site,and the 1-44 of the abscissa represents the 44 amino acids of the PSPG box
UGT超家族有着系统的命名方式。以编码UDP-糖基转移酶的基因“UGT75C1”为例,“UGT”为家族名称,说明该基因所编码的UDP-糖基转移酶属于UGT超家族;“75”为该基因的家族编号,同一家族成员之间序列相似性≥40%,其中1~50是动物源UGT,51~70是酵母源UGT,71~100是植物源UGT,101~200为细菌源UGT;C指代亚家族编号,同一亚家族成员之间序列相似性≥60%;最后的1则是该基因唯一的编号;若基因编号后接字母“P”,如UGT75C1P则说明基因为假基因;当某一来源的家族编号排满时,按以下规律进行编号,例如51~70之后为501~700,71~100之后为701~1000
UGT超家族是一类以GT-B方式折叠(GT-B折叠指两个正相对的β/α/β类Rossmann折叠区域以较松散的方式连接在一起)的糖基转移
先前的研究将114个拟南芥UGT利用邻接法进行系统发育分析,根据序列相似性分为A~M共13
观赏植物中的糖基转移酶研究较少,目前被报道的观赏植物中的糖基转移酶主要催化激素、萜类化合物和黄酮类化合物等一些小分子化合
酶的功能 The function of the enzyme | 物种中文名(拉丁名) Chinese name (Latin name) of the species | 基因名/UGT编号 Gene name/ UGT number | 登录号 Accession number | 底物 Substrate | 活性最高的 糖基供体 The most active glycosyl donor | 产物 Product | 参考文献 References |
---|---|---|---|---|---|---|---|
花色 The color of the flower | 莲(Nelumbo nucifera G.) | NnUFGT2 | — | 矢车菊素 | UDP-葡萄糖 | 矢车菊素-3-O-葡萄糖苷 |
[ |
芍药和谐(Paeonia ‘Hexie’) | PhUGT78A22 | OM310997 |
矢车菊素-3-O-葡萄糖苷 芍药色素-3-O-葡萄糖苷 | UDP-葡萄糖 |
矢车菊素-3,5-O-葡萄糖苷 芍药色素-3,5-O-葡萄糖苷 |
[ | |
裂叶牵牛(Ipomoea nil L.) | In3GT | LC019108 | 矢车菊素 | UDP-葡萄糖 | 矢车菊素-3-O-葡萄糖苷 |
[ | |
圆叶牵牛(Ipomoea purpurea L.) | Ip3GT | LC019117 | 矢车菊素 | UDP-葡萄糖 | 矢车菊素-3-O-葡萄糖苷 | ||
菊花(Chrysanthemum morifolium R.) | CtA3′5′GT/UGT78K8 | AB115560 |
矢车菊-3-O- (6″-O-丙二醇)葡萄糖苷 | UDP-葡萄糖 |
矢车菊素3-O- (3,6″-O-二丙二醇)葡萄糖苷 |
[ | |
飞燕草素-3-O- (6″-O-丙二酰基)葡萄糖苷 | UDP-葡萄糖 |
飞燕草素 3-O- (6″-O-丙二酰基)葡萄糖苷- 3,5″-O-二丙二醇-葡萄糖苷 | |||||
粉蝶花(Nemophila menziesii H.) | NmGT8/UGT88P1 | LC328827 | 芹菜素 | UDP-葡萄糖 | 芹菜素-4-O-葡萄糖苷 |
[ | |
NmGT22/UGT84A34 | LC328828 | 芹菜素-4-O-葡萄糖苷 | UDP-葡萄糖 | 芹菜素-7,4-O-二葡萄糖苷 | |||
月季(Rosa hybrid) | RhGT1 | AB201048 | 矢车菊素-5-O-葡萄糖苷 | UDP-葡萄糖 | 矢车菊素-3,5-O-葡萄糖苷 |
[ | |
文心兰(Oncidium hybridum H.) | UGT75C1 | — | — | — | — |
[ | |
叶缘形状 The shape of leaf margin | 羽衣甘蓝(Brassica oleracea var.acephala C.) | BoALG10 | XP_013623580.1 | — | — | — |
[ |
株型 The type of plant | 利马豆(Phaseolus lunatus L.) | ZOG1 | — | — | — | — |
[ |
挥发性化合物 Volatile compounds | 丹桂(Osmanthus fragrans L.) | OfUGT85A84 | MG767217 | 芳樟醇氧化物 | UDP-葡萄糖 | — |
[ |
矮牵牛(Petunia hybrida V.) | UGT85A96 | — |
2-苯乙醇/ 苯甲醇 | — | — |
[ | |
UGT85A98 | — | 苯丙素/萜烯醇/类黄酮/C6醇 | — | — |
酶的功能 The function of the enzyme | 物种中文名(拉丁名) Chinese name (Latin name) of the species | 基因名/UGT编号 Gene name/ UGT number | 登录号 Accession number | 底物 Substrate | 活性最高的 糖基供体 The most active glycosyl donor | 产物 Product | 参考文献 References |
---|---|---|---|---|---|---|---|
生物胁迫 Biological stress | -(Myrmecophyte tococa) | UGT85A123 | OQ921380 | 苯乙達肟(PAOx) | UDP-葡萄糖 | 苯乙達肟葡萄糖苷 |
[ |
银杏(Ginkgo biloba L.) | GbUGT716A1 | KX371617 | 表没食子儿茶素酸酯(EGCG) | UDP-葡萄糖 | EGCG-4′,4″-葡萄糖苷 |
[ | |
欧洲山芥(Barbarea vulgaris R.) | UGT73C10 | JQ291613 | 常春藤素 | UDP-葡萄糖 |
3-O-β-D-吡喃葡萄糖基 常春藤素 |
[ | |
UGT73C11 | JQ291614 | 齐墩果酸 | UDP-葡萄糖 |
3-O-β-D-吡喃葡萄糖基 齐墩果酸 | |||
茶(Camellia sinensis L.) | UGT87E7 | — | 水杨酸 | UDP-葡萄糖 | 水杨酸葡萄糖酯 |
[ | |
非生物胁迫 Abiotic stress | 矮牵牛(Petunia hybrida V.) | PhUGT51 | — | — | — | — |
[ |
活性成分 Active ingredient | 雄黄兰(Crocosmia crocosmiiflora N.) | UGT77B2 | AXB26715 | 杨梅素 | UDP-鼠李糖 | 杨梅素-3-O-鼠李糖苷 |
[ |
UGT709G2 | CAE7502601 | 杨梅素-3-O-鼠李糖苷 | UDP-葡萄糖 |
杨梅素 3-O-葡萄糖基 鼠李糖苷 | |||
雄黄兰(Crocosmia crocosmiiflora N.) | CcUGT4/UGT703H1 | QNT13160 |
montbretin A-X | UDP-鼠李糖 |
montbretin A- |
[ | |
CcUGT5/UGT729A1 | QNT13161 |
montbretin A- | UDP-木糖 | montbretin A | |||
山银花(Lonicera macranthoides H) | LmUGT73P1 | — | 葳岩仙皂苷A | UDP-鼠李糖 | α-常春藤皂苷 |
[ | |
秤星树(Ilex asprella C.) | IaAU1/UGT74AG5 | MK994508 | 熊果酸 | UDP-葡萄糖 |
熊果酸28-O-β-D- 吡喃葡萄糖苷 |
[ | |
栀子(Gardenia jasminoides J.) | GjUGT2/UGT85A24 | AB555732 | 7-羟基香豆素 | UDP-葡萄糖 | 7-去氧番木鳖苷 |
[ |
—代表此物种没有中文名,未查到登录号或所引用的文章中未提到底物、活性最高的糖基供体、产物
— means that this species has no Chinese name, accession number has not been found, or the substrate, the most active glycan donor, product is not mentioned in the references
花青素苷是糖苷家族中被广泛研究的成员,通常存在于植物的液泡
日本杏(Prunus mume S.)、荷花叶红莲(Nelumbo nucifera ‘Yehonglian’)等植物中,均筛选到调控红色花瓣形成的差异表达基因UFGT
一些罕见的蓝色花朵也受到UGT的调控。芍药和谐(Paeonia ‘Hexie’)的花瓣呈紫色并点缀着深紫色斑点。检测发现,花瓣深紫色部分主要有4种花青素:矢车菊素-3-O-葡萄糖苷(Cy3G,cyanidin-3-O-glucoside)、矢车菊素-3,5-O-葡萄糖苷(Cy3G5G,cyanidin-3,5-O-glucoside)、芍药素-3-O-葡萄糖苷(Pn3G,paeonin-3-O-glucoside)和芍药素-3,5-O-葡萄糖苷(Pn3G5G,paeonin-3,5-O-glucoside),而花瓣紫色部分只含有矢车菊素-3,5-O-葡萄糖苷和芍药素-3,5-O-葡萄糖苷2种花色素,最终鉴定出PhUGT78A22能以矢车菊素-3-O-葡萄糖苷和芍药素-3-O-葡萄糖苷为底物分别合成矢车菊素-3,5-O-葡萄糖苷和芍药素-3,5-O-葡萄糖苷,使花瓣颜色变
除花青素外,其他代谢物的糖基化也影响花色。通过对红花(Carthamus tinctorius L.)黄色系和白色系花的微阵列数据及代谢产物数据进行研究发现,在黄色系植物中,CtUGT3和CtUGT25与山奈酚-3-O-β-D-葡萄糖苷(kaempferol-3-O-β-D-glucoside)呈正相关,CtUGT16与槲皮素-3-O-β-D-葡萄糖苷(quercetin-3-O-β-D-glucoside)呈正相关,相反,在白色系花中,CtUGT3和CtUGT25与槲皮素-3-O-β-D-葡萄糖苷呈正相
在观赏植物的叶片与植株形态方面,UGT的表达对叶色、叶缘形状等特征有显著影响。UGT75C1是一种花色苷3-O-葡萄糖苷5-O-葡萄糖基转移酶,在文心兰(Oncidium hybridum H.)花色与叶色中均差异表达,并富集于花青素合成代谢通路中;UGT75C1对花青素的糖基化修饰作用会导致花青素合成途径中的产物受到影响,改变花瓣与叶片中花青素的含量与酶活性,使其在白花与黄色条纹叶片中的表达量分别高于黄花与普通叶
UGT还影响观赏植物叶缘形状的形成。观赏羽衣甘蓝(Brassica oleracea var. acephala C.)不同株系呈现出不同的叶缘特征, 其中F0819株系与S0835株系分别呈现出羽状叶缘与光滑叶缘,对此,研究人员发现BoALG10是一种催化N-糖基化的α- 1,2糖基转移酶,在羽衣甘蓝叶缘形态形成中具有重要作用。研究人员进一步发现在不同生长的发育时期和组织中,BoALG10在S0835株系中的表达量均显著高于F0819株系(除第一对基生叶)。最后将BoALG10
研究表明,UGT在特定条件下的表达也可以改变植株的整体形态。在烟草中过表达利马豆(Phaseolus lunatus L.)的玉米素糖基转移酶(ZOG1,zeatin O-glucosyltransferase)基因,相对于对照植物,四环素诱导性启动子(Tet-ZOG1)的转基因烟草需要10倍的玉米素浓度才能发芽和诱导愈伤组织;而在35S强启动子下的转基因烟草诱导出更多的不定根,植株矮
在挥发性化合物的储存和释放方面,观赏植物中的糖苷化产物起到了关键作用。芳樟醇氧化物是桂花(Osmanthus fragrans L.)盛花期占比最高的挥发性化合物成分(反式芳樟醇氧化物13.25%,顺式芳樟醇氧化物4.62%
印度茉莉(Jasminum auriculatum V.
UGTs通过稳定和增强一些天然产物的水溶
以热带地区的植物Myrmecophyte tococa(曾用名Tococa quadrialata)为例,当该植物遭受食草昆虫咬食后,会产生化学物质抵御虫食;其中,挥发性化合物PAOx(Phenylacetaldoxime)仅能在虫食时存在,而在UGT85A123催化下积累的糖苷PAOx-Glu(phenylacetaldoxime glucoside)至少能持续存在3 d以上,使PAOx以更稳定的形式储存于植物体内,应对将来的威
在观赏植物中,部分糖苷化产物可能是药用成分或待开发的功能性化合物。例如,在雄黄兰(Crocosmia crocosmiiflora N.)球茎发育的早期阶段中积累的酰化类黄酮苷MbA(Montbretin A)及其前体mini MbA(Myricetin 3-O-(6′-O-caffeoyl)- glucosylrhamnoside)被认为是治疗二型糖尿病的潜在药物。研究人员通过比较和筛选发育早期和晚期的球茎的差异表达基因,发现UGT77B2、UGT709G2是合成mini MbA的关键
秤星树(Ilex asprella C.)的根部提取物也常用于治疗流感和咽炎,其中乌索烷型三萜和三萜皂苷是其药理活性的来源。然而,目前对于参与三萜生物合成的糖基化反应的酶仍然知之甚少。研究人员经过候选基因筛选、体外功能测定、共表达分析等实验,确定了IaAU1(UGT74AG5)可在熊果酸(Ursolic acid)的C-28位将其糖基化为熊果酸28-O-β-D-葡萄糖吡
观赏植物基因组的测
此外,基因编辑技术(如CRISPR/Cas9)的应用也将加速对糖基转移酶功能的深入研
参考文献
Fang C, Fernie A R, Luo J. Exploring the diversity of plant metabolism. Trends in Plant Science, 2019, 24(1):83-98 [百度学术]
Pott D M, Osorio S, Vallarino J G. From central to specialized metabolism: An overview of some secondary compounds derived from the primary metabolism for their role in conferring nutritional and organoleptic characteristics to fruit. Frontiers in Plant Science, 2019, 10:835 [百度学术]
Wang Q J. Recent research on isoprenoid biosynthetic pathway and metabolic regulation of functional isoprenoids in medicinal plants. Botanical Research, 2012, 1(2):23-29 [百度学术]
Liu H, Begley T. Comprehensive Natural Products III. Third Edition. Amsterdam:Elsevier, 2020:393-445 [百度学术]
Wang S, Alseekh S, Fernie A R, Luo J. The structure and function of major plant metabolite modifications. Molecular Plant, 2019, 12(7): 899-919 [百度学术]
Campbell J A, Davies G J, Bulone V, Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. The Biochemical Journal, 1997, 326(Pt 3): 929-939 [百度学术]
Vetter J. Plant cyanogenic glycosides. Toxicon: Official Journal of the International Society on Toxinology, 2000, 38(1): 11-36 [百度学术]
Ross J, Li Y, Lim E-K, Bowles D J. Higher plant glycosyltransferases. Genome Biology, 2001,2(2):REVIEWS3004 [百度学术]
Gachon C M M, Langlois M M, Saindrenan P. Plant secondary metabolism glycosyltransferases: The emerging functional analysis. Trends in Plant Science, 2005, 10(11):542-549 [百度学术]
Zhang P, Zhang Z, Zhang L, Wang J, Wu C. Glycosyltransferase GT1 family: Phylogenetic distribution, substrates coverage, and representative structural features. Computational and Structural Biotechnology Journal, 2020, 18:1383-1390 [百度学术]
Burla B, Pfrunder S, Nagy R, Francisco R M, Lee Y, Martinoia E. Vacuolar transport of abscisic acid glucosyl ester is mediated by ATP-binding cassette and proton-antiport mechanisms in Arabidopsis. Plant Physiology, 2013, 163(3): 1446-1458 [百度学术]
Husar S, Berthiller F, Fujioka S, Rozhon W, Khan M, Kalaivanan F, Elias L, Higgins G, Li Y, Schuhmacher R, Krska R, Seto H, Vaistij F, Bowles D, Poppenberger B. Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana. BMC Plant Biology, 2011, 11(1):51 [百度学术]
Song J T, Koo Y J, Seo H S, Kim M C, Kim J H, Choi Y D. Overexpression of AtSGT1, an Arabidopsis salicylic acid glucosyltransferase, leads to increased susceptibility to Pseudomonas syringae. Phytochemistry, 2008, 69(5):1128-1134 [百度学术]
Sun G, Putkaradze N, Bohnacker S, Jonczyk R, Fida T, Hoffmann T, Bernhardt R, Härtl K, Schwab W. Six uridine-diphosphate glycosyltransferases catalyze the glycosylation of bioactive C13-Apocarotenols. Plant Physiology, 2020, 184(4):1744-1761 [百度学术]
Yang Y, Liang Y, Cui F, Wang Y, Sun L, Zan X, Sun W. UDP-Glycosyltransferases in edible fungi: Function, structure, and catalytic mechanism. Fermentation, 2023, 9(2):164 [百度学术]
Mackenzie P, Owens I, Burchell B, Bock K, Bairoch A, Bélanger A, Fournel-Gigleux S, Green M, Hum D, Iyanagi T, Lancet D, Louisot P, Magdalou J, Chowdhury J, Ritter J, Schachter H, Tephly T, Tipton K, Nebert D. The UDP glycosyltransferase gene superfamily: Rcommended nomenclature update based on evolutionary divergence. Pharmacogenetics, 1997, 7(4):255-269 [百度学术]
Bowles D, Lim E, Poppenberger B, Vaistij F. Glycosyltransferases of lipophilic small molecules. Annual Review of Plant Biology, 2006, 57:567-597 [百度学术]
Paquette S, Møller B L, Bak S. On the origin of family 1 plant glycosyltransferases. Phytochemistry, 2003, 62(3):399-413 [百度学术]
隋晓明. 玫瑰花青苷合成相关糖基转移酶基因的克隆及功能分析.泰安:山东农业大学, 2019 [百度学术]
Sui X M. Cloning and functional analysis of glycosyltransferase genes related to anthocyanin biosynthesis in Rosa rugosa. Tai’an:Shandong Agricultural University, 2019 [百度学术]
Coutinho P M, Deleury E, Davies G J, Henrissat B. An evolving hierarchical family classification for glycosyltransferases. Journal of Molecular Biology, 2003, 328(2):307-317 [百度学术]
Lim E K, Ashford D A, Hou B, Jackson R G, Bowles D J. Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides. Biotechnology and Bioengineering, 2004, 87(5):623-631 [百度学术]
徐僡. 类黄酮3-O-糖基转移酶调控马缨杜鹃花色呈色的机制研究.贵阳: 贵州师范大学, 2021 [百度学术]
Xu H. The mechanism study on flavonoid 3-O-glycosyltransferase regulating the formation of flower color of Rhododendron delavayi. Guiyang: Guizhou Normal University, 2021 [百度学术]
Li H, Yang X, Lu M, Chen J, Shi T. Gene expression and evolution of Family-1 UDP-glycosyltransferases—insights from an aquatic flowering plant (Sacred lotus). Aquatic Botany, 2020, 166:103270 [百度学术]
Ji X, Lin S, Chen Y, Liu J, Yun X, Wang T, Qin J, Luo C, Wang K, Zhao Z, Zhan R, Xu H. Identification of α-Amyrin 28-Carboxylase and glycosyltransferase from Ilex asprella and production of ursolic acid 28-O-β-d-glucopyranoside in engineered yeast. Frontiers in Plant Science, 2020, 11:612 [百度学术]
曲戈,孙周通. 催化混杂性驱动的酶功能重塑. 生物技术通报, 2023, 39(4):1-9 [百度学术]
Qu G, Sun Z T. Catalytic promiscuitriven redesign of enzyme functions. Biotechnology Bulletin,2023,39(4):1-9 [百度学术]
Wang Z, Wang S, Xu Z, Li M, Chen K, Zhang Y, Hu Z, Zhang M, Zhang Z, Qiao X, Ye M. Highly promiscuous flavonoid 3-O-glycosyltransferase from Scutellaria baicalensis. Organic Letters, 2019, 21(7):2241-2245 [百度学术]
Liu Y, Wang Q, Liu X, Cheng J, Zhang L, Chu H, Wang R, Li H, Chang H, Ahmed N, Wang Z, Liao X, Jiang H. pUGTdb: A comprehensive database of plant UDP-dependent glycosyltransferases. Molecular Plant, 2023, 16(4):643-646 [百度学术]
Deng J, Su M, Zhang X, Liu X, Damaris R N, Lv S, Yang P. Proteomic and metabolomic analyses showing the differentially accumulation of NnUFGT2 is involved in the petal red-white bicolor pigmentation in lotus (Nelumbo nucifera). Plant Physiology and Biochemistry, 2023, 198:107675 [百度学术]
Li Y, Kong F, Liu Z, Peng L, Shu Q. PhUGT78A22, a novel glycosyltransferase in Paeonia ‘He Xie’, can catalyze the transfer of glucose to glucosylated anthocyanins during petal blotch formation. BMC Plant Biology, 2022, 22(1):405 [百度学术]
Morita Y, Ishiguro K, Tanaka Y, Iida S, Hoshino A. Spontaneous mutations of the UDP-glucose:Flavonoid 3-O-glucosyltransferase gene confers pale- and dull-colored flowers in the Japanese and common morning glories. Planta, 2015, 242(3):575-587 [百度学术]
Noda N, Yoshioka S, Kishimoto S, Nakayama M, Douzono M, Tanaka Y, Aida R. Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism. Science Advances, 2017, 3(7):e1602785 [百度学术]
Okitsu N, Matsui K, Horikawa M, Sugahara K, Tanaka Y. Identification and characterization of novel Nemophila menziesii flavone glucosyltransferases that catalyze biosynthesis of flavone 7,4′-O-diglucoside, a key component of blue metalloanthocyanins. Plant and Cell Physiology, 2018, 59(10):2075-2085 [百度学术]
Wang C, Li Y, Wang N, Yu Q, Li Y, Gao J, Zhou X, Ma N. An efficient CRISPR/Cas9 platform for targeted genome editing in rose (Rosa hybrida). Journal of Integrative Plant Biology, 2023, 65(4):895 [百度学术]
王马寅. 文心兰花色和叶色调控关键基因的转录水平分析.海口:海南大学, 2021 [百度学术]
Wang M Y. Transcriptome analysis of genes involved in flower and leaf color of Oncidium. Haikou:Hainan University, 2021 [百度学术]
Feng X, Yang X, Zhong M, Li X, Zhu P. BoALG10, an α-1,2 glycosyltransferase, plays an essential role in maintaining leaf margin shape in ornamental kale. Horticulture Research, 2022, 9:37 [百度学术]
Martin R, Mok D W, Smets R, Van O, Mok M. Development of transgenic tobacco harboring a zeatin O-glucosyltransferase gene from Phaseolus. In Vitro Cellular & Developmental Biology-Plant, 2001, 37(3):354-360 [百度学术]
Zheng R, Zhu Z, Wang Y, Hu S, Xi W, Xiao W, Qu X, Zhong L, Fu Q, Wang C. UGT85A84 catalyzes the glycosylation of aromatic monoterpenes in Osmanthus fragrans Lour. flowers. Frontiers in Plant Science, 2019, 10:1376 [百度学术]
Koeduka T, Ueyama Y, Kitajima S, Ohnishi T, Matsui K. Molecular cloning and characterization of UDP-glucose: Volatile benzenoid/phenylpropanoid glucosyltransferase in petunia flowers. Journal of Plant Physiology, 2020, 252:153245 [百度学术]
Müller A, Nakamura Y, Reichelt M, Luck K, Cosio E, Lackus N, Gershenzon J, Mithöfer A, Köllner T. Biosynthesis, herbivore induction, and defensive role of phenylacetaldoxime glucoside. Plant Physiology, 2023, 194(1):329-346 [百度学术]
Su X, Shen G, Di S, Dixon R A, Pang Y. Characterization of UGT716A1 as a Multi-substrate UDP: Flavonoid glucosyltransferase gene in Ginkgo biloba. Frontiers in Plant Science, 2017, 8:2085 [百度学术]
Dong L, Tang Z, Yang T, Hao F, Deng X. Genome-wide analysis of UGT genes in petunia and identification of PhUGT51 involved in the regulation of salt resistance. Plants, 2022, 11(18): 2434 [百度学术]
Hu Y, Zhang M, Lu M, Wu Y, Jing T, Zhao M, Zhao Y, Feng Y, Wang J, Gao T, Zhou Z, Wu B, Jiang H, Wan X, Schwab W, Song C. Salicylic acid carboxyl glucosyltransferase UGT87E7 regulates disease resistance in Camellia sinensis. Plant Physiology, 2022, 188(3):1507-1520 [百度学术]
Augustin J, Drok S, Shinoda T, Sanmiya K, Nielsen J, Khakimov B, Olsen C, Hansen E, Kuzina V, Ekstrøm C, Hauser T, Bak S. UDP-glycosyltransferases from the UGT73C subfamily in Barbarea vulgaris catalyze sapogenin 3-O- glucosylation in saponin-mediated insect resistance. Plant Physiology, 2012, 160(4):1881-1895 [百度学术]
Irmisch S, Jo S, Roach C, Jancsik S, Man S M, Madilao L, O’neil J, Williams R, Withers S, Bohlmann J. Discovery of UDP-glycosyltransferases and bahd-acyltransferases involved in the biosynthesis of the antidiabetic plant metabolite Montbretin A. Plant Cell, 2018, 30(8):1864-1886 [百度学术]
Irmisch S, Jancsik S, Man S M, Madilao L, Bohlmann J. Complete biosynthesis of the anti-diabetic plant metabolite Montbretin A. Plant Physiology, 2020, 184(1):97-109 [百度学术]
Yin X, Xiang Y, Huang F, Chen Y, Ding H, Du J, Chen X, Wang X, Wei X, Cai Y, Gao W, Guo D, Alolga R N, Kan X, Zhang B, Alejo-jacuinde G, Li P, Tran L P, Herrera-Estrella L, Lu X, Qi L. Comparative genomics of the medicinal plants Lonicera macranthoides and L. japonica provides insight into genus genome evolution and hederagenin‐based saponin biosynthesis. Plant Biotechnology Journal, 2023,21(11):2209-2223 [百度学术]
Ji X, Lin S, Chen Y, Liu J, Yun X, Wang T, Qin J, Luo C, Wang K, Zhao Z, Zhan R, Xu H. Identification of α-amyrin 28-carboxylase and glycosyltransferase from ilex asprella and production of ursolic acid 28-O-β-D-glucopyranoside in engineered yeast. Frontiers in Plant Science, 2020, 11:612 [百度学术]
Nagatoshi M, Terasaka K, Nagatsu A, Mizukami H. Iridoid-specific glucosyltransferase from gardenia jasminoides. Journal of Biological Chemistry, 2011, 286(37):32866-32874 [百度学术]
Le R J, Huss B, Creach A, Hawkins S, Neutelings G. Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Frontiers in Plant Science, 2016, 7:735 [百度学术]
Chen Y, Gao A, Hu F C, Hu G B, Zhao Z C. Functional analysis of the UDP glucose: Flavonoid-3-Oglucosyltransferase (UFGT) promoter from litchi (Litchi chinesis Sonn.) and transient expression in onions (Allium cepa Linn.). African Journal of Plant Science, 2015, 9(6):244-249 [百度学术]
范文广, 柴佳靖, 李保豫, 田亚琴, 田辉, 任海伟, 白鹏, 潘香逸. 百合花青苷分子调控研究进展. 植物遗传资源学报, 2023, 24 (5):1236-1247 [百度学术]
Fan W G, Chai J J, Li B Y, Tian Y Q, Tian H, Ren H W, Bai P, Pan X Y. Advances in molecular regulation of anthocyanin biosynthesis in Lilium. Journal of Plant Genetic Resources, 2023, 24 (5):1236-1247 [百度学术]
徐雷锋. 百合双色花形成的转录组分析及基因LhUFGT和LhSGR的功能研究. 北京:中国农业科学院, 2017 [百度学术]
Xu L F. Transcriptome analysis of bicolor tepal development in lilie sand functional analysis of LhUFGT and LhSGR. Beijing:Chinese Academy of Agricultural Sciences, 2017 [百度学术]
Wu X, Gong Q, Ni X, Zhou Y, Gao Z. UFGT: The key enzyme associated with the petals variegation in Japanese apricot. Frontiers in Plant Science, 2017, 8:108 [百度学术]
Deng J, Li J J, Su M Y, Chen L, Yang P F. Characterization of key genes involved in anthocyanins biosynthesis in Nelumbo nucifera through RNA-Seq. Aquatic Botany, 2021, 174:103428 [百度学术]
Feng X, Gao G, Yu C, Zhu A, Chen J, Chen K, Wang X, Abubakar A S, Chen P. Transcriptome and metabolome analysis reveals anthocyanin biosynthesis pathway associated with ramie (Boehmeria nivea (L.) Gaud.) leaf color formation. BMC Genomics, 2021, 22(1):684 [百度学术]
Wu L, Liu J, Huang W, Wang Y, Chen Q, Lu B. Exploration of Osmanthus fragrans Lour.′s composition, nutraceutical functions and applications. Food Chemistry, 2022, 377:131853 [百度学术]
Barman M, Mitra A. Floral maturation and changing air temperatures influence scent volatiles biosynthesis and emission in Jasminum auriculatum Vahl. Environmental and Experimental Botany, 2021, 181:104296 [百度学术]
Francis M J O, Allcock C. Geraniol β-d-glucoside; occurrence and synthesis in rose flowers. Phytochemistry, 1969, 8(8):1339-1347 [百度学术]
Mohsen E, Younis I Y, Farag M A. Metabolites profiling of Egyptian Rosa damascena Mill. flowers as analyzed via ultra-high-performance liquid chromatography-mass spectrometry and solid-phase microextraction gas chromatography-mass spectrometry in relation to its anti-collagenase skin effect. Industrial Crops and Products, 2020, 155:112818 [百度学术]
Li Y, He L, Song Y, Zhang P, Chen D, Guan L, Liu S. Comprehensive study of volatile compounds and transcriptome data providing genes for grape aroma. BMC Plant Biology, 2023, 23(1):171 [百度学术]
Wu B, Cao X, Liu H, Zhu C, Klee H, Zhang B, Chen K. UDP-glucosyltransferase PpUGT85A2 controls volatile glycosylation in peach. Journal of Experimental Botany, 2019,70(3):925-936 [百度学术]
Song C, Zhao S, Hong X, Liu J, Schulenburg K, Schwab W. A UDP-glucosyltransferase functions in both acylphloroglucinol glucoside and anthocyanin biosynthesis in strawberry (Fragaria×ananassa). The Plant Journal, 2016, 85(6):730-742 [百度学术]
Khorolragchaa A, Kim Y, Rahimi S, Sukweenadhi J, Jang M, Yang D. Grouping and characterization of putative glycosyltransferase genes from Panax ginseng Meyer. Gene, 2014, 536(1):186-92 [百度学术]
Yonekura S K, Hanada K. An evolutionary view of functional diversity in family 1 glycosyltransferases. Plant Journal for Cell & Molecular Biology, 2011, 66(1):182-193 [百度学术]
Wolfgang S, Jean C P, Thomas N, Maria P K P, Gerhard A. Functional characterization of two clusters of Brachypodium distachyon UDP-glycosyltransferases encoding putative deoxynivalenol detoxification genes. Molecular Plant-Microbe Interactions Journal, 2013, 26(7):781-792 [百度学术]
Zhao M, Zhang N, Gao T, Jin J, Jing T, Wang J, Wu Y, Wan X, Schwab W, Song C. Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants. The New Phytologist, 2020, 226(2): 362-372 [百度学术]
Mohnike L, Rekhter D, Huang W J, Feussner K, Tian H N, Herrfurth C, Zhang Y L, Feussner I. How to achieve immune balance and harmony: Glycosyltransferase UGT76B1 inactivates N-hydroxy-pipecolic acid to suppress defense responses. Plant Cell, 2021, 33(3):453-454 [百度学术]
Dong N Q, Sun Y, Guo T, Shi C L, Zhang Y M, Kan Y, Xiang Y H, Zhang H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Wang Y, Ye W W, Shan J X, Lin H X. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice. Nature Communications, 2020, 11(1):2629 [百度学术]
Müller A, Nakamura Y, Reichelt M, Luck K, Cosio E, Lackus N, Gershenzon J, Mithöfer A, Köllner T. Biosynthesis, herbivore induction, and defensive role of phenylacetaldoxime glucoside. Plant Physiology, 2023, 194(1):329-346 [百度学术]
Guan R, Zhao Y, Zhang H, Fan G, Liu X, Zhou W, SHI C, Wang J, Liu W, Liang X, Fu Y, Ma K, Zhao L, Zhang F, Lu Z, Lee S M-Y, Xu X, Wang J, Yang H, Fu C, Ge S, Chen W. Draft genome of the living fossil Ginkgo biloba. GigaScience, 2016, 5(1):49 [百度学术]
Tundis R, Loizzo M R, Menichini F, Statti GA, Menichini F. Biological and pharmacological activities of iridoids: Recent developments. Mini-Reviews in Medicinal Chemistry. 2008, 8(4):399-420 [百度学术]
Zheng T, Li P, Li L, Zhang Q. Research advances in and prospects of ornamental plant genomics. Horticulture Research, 2021, 8(1):65 [百度学术]
毛兴学, 柳武革, 郑晓钰, 范芝兰, 陈文丰, 潘大建, 李晨, 王丰. CRISPR/Cas9技术编辑MPK7和MPK14基因创制抗穗发芽水稻新种质. 植物遗传资源学报, 2022, 23(1):281-289 [百度学术]
Mao X X, Liu W G, Zheng X Y, Fan Z L, Chen W F, Pan D J, Li C, Wang F. Generating Pre-harvest sprouting resistant germplasms by editing MPK7 and MPK14 via CRISPR/Cas9 technology. Journal of Plant Genetic Resources, 2022, 23(1):281-289 [百度学术]
谢园园. CRISPR/Cas9技术在观赏植物改良育种上的应用研究进展. 现代农业科技, 2020, (8):134-136,143 [百度学术]
Xie Y Y. Advances on application of CRISPR/Cas9 technology in improved breeding of ornamental plants. Modern Agricultural Sciences and Technology, 2020, (8):134-136,143 [百度学术]
Ma X, Zhang W, Jiang Y, Wen J, Wei S, Zhao, Y. Paeoniflorin, a natural product with multiple targets in liver diseases-a mini review. Frontiers in Pharmacology, 2020, 11:531 [百度学术]
Zhang Y, Li Y, Li C, Zhao Y, Xu L, Ma S, Lin F, Xie Y, An J, Wang S. Paeonia×suffruticosa andrews leaf extract and its main component apigenin 7-O-glucoside ameliorate hyperuricemia by inhibiting xanthine oxidase activity and regulating renal urate transporters. Phytomedicine, 2023, 118:154957 [百度学术]
Sun Y, Chen Z, Yang J, Mutanda I, Li S, Zhang Q, Zhang Y, Zhang Y, Wang Y. Pathway-specific enzymes from bamboo and crop leaves biosynthesize antinociceptive C-glycosylated flavones. Communications Biology, 2020, 3(1):110 [百度学术]
Uchida K, Akashi T, Hirai M.Y. Identification and characterization of glycosyltransferases catalyzing direct xanthone 4-C-glycosylation in Hypericum perforatum. Federation of European Biochemical Societies Letter, 2021, 595:2608-2615 [百度学术]