摘要
菥蓂(Thlaspi arvense L.)属于十字花科菥蓂属,是一种兼具药食同源功效的草本植物,生态适应能力强,种子富含油脂,具备较高的资源开发利用价值。近年来,随着现代生命科学研究的不断进步,菥蓂的诸多优势得以被发掘,国内外已陆续开展了关于菥蓂的基础和应用研究。目前国内的报道多集中于菥蓂的功能活性物质提取及其在临床医疗上的作用,国外研究则偏向于探索菥蓂在农业生产循环中的生态价值与脂质代谢调控机制。大量研究表明,菥蓂具备开发生物柴油和补充油料生产的优异潜质,也是新型药物开发的良好备选原料。同时,得益于菥蓂全基因组信息的公布,对菥蓂开展分子育种改良已成为可能,例如通过基因编辑技术改变其种子脂肪酸构成以获得更符合食用油需求的品质,以及挖掘菥蓂的其他重要功能基因用于提高作物生产和抗逆性。利用代谢工程手段优化菥蓂的脂质特性以制备新型植物油甚至异源生产高价值脂肪酸(神经酸等)将潜力巨大,是菥蓂最具前景的开发方向之一。本文综述并展望了近年来菥蓂在资源开发利用和脂质代谢工程研究等方面的报道,以期为菥蓂在我国的基础研究和推广应用提供参考。
菥蓂(Thlaspi arvense L.)属于十字花科菥蓂属,是一种一年生的药食同源草本植

图1 菥蓂植株的生长形态
Fig.1 Growth morphology of the pennycress plant
A:幼苗期(播种后80~90 d);B:结果期(幼苗期后23~30 d);C:成熟期(结果期后22~29 d);D:收获期种子(成熟期后1~8 d)
A:Seedling period (80-90 days after sowing);B:Fruiting period (23-30 days after the seedling stage);C:Maturing period (22-29 days after the fruiting period);D:Harvested seeds (1-8 days after maturity)
菥蓂的种质资源丰富,在全球范围内均有分布,生态适应性强,耐寒能力出色,能够广泛生长于不同的地域和生
近年来,在基础研究的推动下,菥蓂的植物资源开发利用价值越来越受到重视,国外研究已开始利用代谢工程(Metabolic engineering)等现代基因改造技术对菥蓂进行定向的生产品质改良,例如通过改善菥蓂种子油脂中的脂肪酸构成以提高其功能特性和附加
菥蓂的药食两用兼高抗逆特性为其带来了丰富的资源开发利用价值。《神农本草经》将菥蓂记载为第四十二味药:“味辛,微温。主明目,目痛泪出;除痹;补五脏,益精光。久服轻身不老。”菥蓂的药用功效由此可见,因此一直都是制备传统藏族、蒙族、朝鲜族等民族药材的关键原
除了药用之外,菥蓂的食用价值也是其传统资源利用的重要体现。菥蓂在我国南方一直是特色的蔬菜补充,例如在上海嘉定地区,菥蓂的嫩叶经腌制后能够长期保存,别名“南翔罗汉菜”,营养价值丰富,口感爽脆,备受当地居民的欢迎。在江浙一带,当地人自明代以来就流行吃“苦斋”,其实就是俗称“白花败酱草”的菥蓂,由于菥蓂中含有三萜皂苷、内酯、香豆素、生物碱等次生代谢成
现阶段我国对菥蓂的资源开发利用研究总体上偏向于化学成分分析和药用活性鉴定,但目前已有部分研究开始逐步探索菥蓂在农业生产和生态中的应用。李娜
国外的大量研究指出,菥蓂种子的高油脂含量能够为生物柴油和植物油产业带来新的发展机遇,是一种适用性较强的油料植物资源,进入工业用油和食用油市场的可行性极
基因组学研究是使用高通量DNA测序和生物信息学等技术来系统组装和分析特定物种的整体基因组结构和功能的方法,能够揭示物种基因的结构组成,发现基因的位置并注释其功
Dorn
McGinn
目前,美国明尼苏达大学的马克斯实验室已将菥蓂的全基因组信息公布(https://pennycress.umn.edu),并持续在更新中,这为菥蓂物种的系统发育和分子改良研究提供了高分辨率的可靠工具。作为一种自交二倍体,菥蓂生命周期短,易于遗传操作,因此在基础研究领域将会是遗传学和表观遗传学上的一个优异模式物
菥蓂是一种生态适应能力极强的植物,能够在海拔近4500 m的范围内生长存
黄志慧
菥蓂的脂质主要在种子中合成积
序号 No. | 来源 Sources | 棕榈酸 C16∶0 | 棕榈油酸C16∶1 | 硬脂酸 C18∶0 | 油酸 C18∶1 | 亚油酸 C18∶2 | 亚麻酸 C18∶3 | 花生酸 C20∶0 |
---|---|---|---|---|---|---|---|---|
1 | 浙江 | 2.19±0.14b | 0.55±0.01b | 0.08±0.06c | 1.41±0.15c | 5.06±0.14c | 2.35±0.05c | 0.31±0.02c |
2 | 广东 | 2.03±0.03c | 0.62±0.16a | 0.21±0.15a | 2.47±1.45a | 5.42±0.12b | 2.50±0.13b | 0.46±0.31b |
3 | 吉林 | 2.36±0.35b | 0.49±0.01c | 0.14±0.04b | 1.56±0.21c | 5.38±0.17b | 2.46±0.09b | 0.73±0.67a |
4 | 福建 | 2.54±0.17b | 0.55±0.17b | 0.14±0.07b | 1.68±0.30c | 5.03±0.92c | 3.31±0.49a | 0.26±0.46d |
5 | 安徽 | 1.76±0.60d | 0.51±0.02b | 0.16±0.02b | 1.91±0.22b | 5.71±0.15a | 2.63±0.05b | 0.36±0.03c |
6 | 山东 | 2.99±0.25a | 0.48±0.01c | 0.21±0.01a | 2.15±0.27b | 5.97±0.18a | 2.44±0.02c | 0.46±0.05b |
7 | 江苏 | 1.92±0.17c | 0.28±0.17d | 0.05±0.07d | 1.26±0.30c | 4.81±0.92d | 2.20±0.49d | 0.65±0.46a |
8 | 甘肃 | 1.64±0.14d | 0.40±0.01c | 0.09±0.06c | 0.98±0.15d | 4.49±0.14d | 2.12±0.05d | 0.40±0.02c |
序号 No. |
来源 Sources | 蓖麻油酸C20∶1 | 花生二烯酸C20∶2 |
山嵛酸 C22∶0 |
芥酸 C22∶1 |
其他 Others |
总脂质含量(mg/g) Total lipid content | |
1 | 浙江 | 17.02±0.04b | 3.08±0.62c | 0.33±0.04d | 64.96±1.12b | 2.65±0.51b | 6.85±1.66d | |
2 | 广东 | 17.11±0.36b | 3.03±0.09c | 0.74±0.54b | 63.21±2.08c | 2.20±0.15c | 8.32±0.14c | |
3 | 吉林 | 17.12±0.07b | 2.94±0.07c | 0.55±0.21c | 63.35±1.80c | 2.92±0.56a | 8.19±0.54c | |
4 | 福建 | 15.69±2.49c | 3.35±0.13a | 0.74±0.21b | 64.47±3.83b | 2.25±0.37c | 10.14±2.33a | |
5 | 安徽 | 17.28±0.10a | 3.02±0.13c | 0.57±0.01c | 63.80±0.23c | 2.29±0.67c | 7.86±1.32c | |
6 | 山东 | 16.97±0.07b | 2.82±0.02d | 0.67±0.24b | 63.09±0.22c | 1.76±0.13d | 6.21±2.33d | |
7 | 江苏 | 15.85±2.49c | 2.94±0.13d | 4.40±0.21a | 67.47±3.83b | 2.18±0.37c | 8.78±0.68b | |
8 | 甘肃 | 13.82±0.04d | 3.20±0.62b | 0.46±0.04d | 70.13±1.12a | 2.29±0.51c | 9.22±1.32b |
Others表示C16~C22脂肪酸以外的其他脂肪酸比例总和,不同字母表示各材料在同一种脂肪酸类别和总脂质含量上差异显著(P<0.05)
Others represent the sum of other fatty acids besides the C16-C22 fatty acids, different letters under the same fatty acid category and total lipid content of each material are significantly different(P < 0.05)
菥蓂种子的脂质类别构成主要包括甘油三酯、磷脂和部分甾醇类物质,以甘油三酯居多,这与其他十字花科油料植物相

图2 植物中芥酸(C22∶1)在甘油三酯内的富集过程
Fig.2 Enrichment of eruciic acid (C22∶1) in TAG within plants
Plastid:质体;Acetyl-CoA:乙酰辅酶A;ACCase(Acetyl-CoA carboxylase):乙酰辅酶A羧化酶;Malonyl-CoA:丙二酰辅酶A;KAS:3-酮脂酰-ACP合酶;FatA/B:酰基-ACP硫酯酶;Free fatty acids:游离脂肪酸;Cytosol:细胞质;LACS:长链酰基辅酶A合酶;KCS:3-酮脂酰辅酶A合酶;KCR:3-酮脂酰辅酶A还原酶;HCD:3-羟酰辅酶A脱水酶;ECR:反式-2,3-烯酰辅酶A还原酶;Very long chain acyl-CoA(C22∶1):极长链酰基辅酶A(芥酸);G3P:3-磷酸甘油;GPAT:3-磷酸甘油酰基转移酶;LPA(lysophospholipids):溶血磷脂;LPAAT:溶血磷脂酸酰基转移酶;PA:磷脂酸;PAP:磷脂酸磷酸化酶;DAG:二酰基甘油;DGAT:二酰基甘油酰基转移酶;TAG:甘油三酯;PDAT:磷脂二酰基甘油酰基转移酶;PC(phosphatidylcholine):磷脂酰胆碱;LPC:溶血磷脂酰胆碱;PDCT:磷脂酰胆碱二酰甘油磷酸胆碱转移酶;LPCAT:溶血磷脂酰胆碱酰基转移酶;PLA2:磷脂酶A2;Acyl group:酰基族;红色字体表示基因,黑色字体表示物质,绿色字体表示细胞器
The red font represents genes, the black font represents substances, and the green font represents organelles
植物油是重要的农业商品,全球人口的过快增长导致了植物油消费的显著增
Claver
在菥蓂的脂肪酸改良上,McGinn
菥蓂基础研究的不断充实为利用分子手段提高其应用和经济价值奠定了良好基础,有效促进了菥蓂的资源开发利用。结合菥蓂的脂质特征,神经酸(二十四碳-顺-15-烯酸,C24∶
神经酸是动物脑苷脂的关键组分,最初在鲨鱼脑组织中被发
此外,菥蓂与其他十字花科大宗油料作物如油菜(Brassica napus)、亚麻荠(Camelina sativa)等在进化上具有较高的同源
全球生物多样性在过去半个世纪锐减明
我国对菥蓂的总体研究起步较晚,虽然国内具有丰富的种质资源储备,但目前重视程度还不够高,研究人数也较少,这无疑限制了我国菥蓂产业的突破。国外对菥蓂的研究早在20世纪90年代初期就已开展,持续至今已建立起较为系统的产学研应用体
参考文献
刘静果,张宝山,张玉红,郑宝江.中草药菥蓂的研究现状及展望.江苏农业科学,2020,48(22):15-21 [百度学术]
Liu J G, Zhang B S, Zhang Y H,Zheng B J . Research status and prospect of Thlaspi arvense L.. Jiangsu Agricultural Sciences,2020,48(22):15-21 [百度学术]
李雪娇.菥蓂提取物及8种黄酮成分的抗炎活性研究.南宁:广西大学,2020 [百度学术]
Li X J. Study on anti-inflammayory activity of Thlaspi arvense L. extract and 8 flavonoids .Nanning: Guangxi University, 2020 [百度学术]
Zanetti T, Isbell T A, Gesch R W, Evangelista R L, Alexopoulou E, Moser B, Monti A. Turning a burden into an opportunity: Pennycress (Thlaspi arvense L.) a new oilseed crop for biofuel production. Biomass and Bioenergy, 2019,130:105354 [百度学术]
McGinn M, Phippen W B, Chopra R, Bansal S,Jarvis B A,Phippen M E,Dorn K M,Esfahanian M,Nazarenus T J,Cahoon Edgar B,Durrett T P,Marks M D,Sedbrook J C. Molecular tools enabling pennycress (Thlaspi arvense) as a model plant and oilseed cash cover crop. Plant Biotechnology Journal, 2019,17(4):776-788 [百度学术]
赵茹.绿色化学理念下菥蓂草资源的多级利用研究.哈尔滨:东北林业大学, 2021 [百度学术]
Zhao R.Research on multi-level utilization of Thlaspi arvense L.resources based on green chemistry concept . Harbin: Northeast Forestry University,2021 [百度学术]
次旦多吉,巴桑卓嘎,达娃卓玛.十三味菥蓂丸质量标准的提升.中成药, 2019,41(11):2748-2752 [百度学术]
Ci D D J, Ba S Z G, Da W Z M. The improvement of quality standard of thirteen kinds of herbs.Chinese Patent Medicine, 2019,41(11):2748-2752 [百度学术]
Cubins1 J A, Wells1 M S, FrelsK, OttM A, ForcellaF, JohnsonG A, WaliaM K, BeckerR L, GeschR W. Management of pennycress as a winter annual cash cover crop. A review.Agronomy for Sustainable Development, 2019,39(5):1-11 [百度学术]
Jarvis B A, Romsdahl T B, McGinn M G, Nazarenus T J,Cahoon E B,Chapman K D,Sedbrook J C. CRISPR/Cas9-induced fad2 and rod1 mutations stacked with fae1 confer high oleic acid seed oil in pennycress (Thlaspi arvense L.). Frontiers in Plant Science, 2021,12:652319 [百度学术]
Christopher J ,Tatiana L N G ,Emmanuel O , Trevor B R, Athanas G, Kent D C, Erich G, Ana P. Effective mechanisms for improving seed oil production in pennycress (Thlaspi arvense L.) highlighted by integration of comparative metabolomics and transcriptomics. Frontiers in Plant Science,2022,13:943585 [百度学术]
刘戈宇,柴团耀,孙涛.超富集植物遏蓝菜对重金属吸收、运输和累积的机制.生物工程学报,2010,26(5):561-568 [百度学术]
Liu G Y, Chai T Y, Sun T. Heavy metal absorption, transportation and accumulation mechanisms in hyperaccumulator Thlaspi caerulescens. Journal of Bioengineering,2010,26(5):561-568 [百度学术]
于金英.复方菥蓂胶囊治疗痛风的药学研究.成都: 成都中医药大学,2015 [百度学术]
Yu J Y. Study on compound ximing capsulein in the treatment of gout. Chengdu: Chengdu University of Traditional Chinese Medicine, 2015 [百度学术]
李雪娇,刘洪,王立升.菥蓂提取物抗炎活性研究.广西大学学报:自然科学版,2022,47(4):1099-1103 [百度学术]
Li X J, Liu H, Wang L S. Study on the anti-inflammatory activity of extractsof Thlaspi arvenes L.. Journal of Guangxi University:Natural Science Edition, 2022,47 (4): 1099-1103 [百度学术]
薛亚,张立超,胡薇,贾婷婷,朱剑敏,朱为康,朱海青.关于菥蓂的本草考证.上海中医药杂志,2023,57(10):48-53 [百度学术]
Xue Y, Zhang L C, Hu W, Jia T T, Zhu J M, Zhu W K, Zhu H Q. Herbal textual research of Thlaspi herba. Shanghai Journal of Traditional Chinese Medicine, 2023,57 (10): 48-53 [百度学术]
许晓燕,余梦瑶,魏巍,江南,罗霞.菥蓂子乙醇提取物对 H2O2 诱导PC12 细胞损伤的保护作用.四川中医,2016,34(7):58-61 [百度学术]
Xu X Y, Yu M Y, Wei W, Jiang N,Luo X. Protective effect of Thlaspi arvense L.seed ethanol extract on damage PC12 cell induced by H2O2.Sichuan Traditional Chinese Medicine, 2016,34 (7): 58-61 [百度学术]
李英哲,李佳东,黄梦龙,周明哲,吴弢.菥蓂配方颗粒特征图谱及含量测定研究.中国药业,2023,32(6):60-66 [百度学术]
Li Y Z, Li J D, Huang M L, Zhou M Z, Wu T. Characteristic chromatograms and content determination of Thlaspi herba formula granules. China Pharmaceutical, 2023,32 (6): 60-66 [百度学术]
李娜娜.外源NO对盐胁迫下菥蓂生理及次生代谢产物的影响.哈尔滨:东北林业大学,2022 [百度学术]
Li N N. Effects of exogenous NO on the physiological and secondary metabolites of Thlaspi arvense L. under salt stress. Harbin: Northeast Forestry University, 2022 [百度学术]
杨柳青.实葶葱与伴生植物协同和竞争关系.乌鲁木齐:新疆农业大学,2021 [百度学术]
Yang L Q. Synergistic and competitive relationships between Allium galanthum and associated plants. Urumqi :Xinjiang Agricultural University, 2021 [百度学术]
赵月婉. 镉胁迫条件下菥蓂的代内和跨代可塑性:从形态、生理到基因表达的多层次响应.昆明:云南大学,2022 [百度学术]
Zhao Y W. Within-and Transgenerational plasticity under cadmium stress in Thlaspi arvense: Multi-level responses of morphology, physiology, and gene expression. Kunming:Yunnan University, 2022 [百度学术]
Royo-Esnal A, Necajeva J, Torra J, Recasens J, Gesch R W. Emergence of field pennycress (Thlaspi arvense L.): Comparison of two accessions and modelling. Industrial Crops and Products, 2015,66:161-169 [百度学术]
Liu J G, Zhang Z W, Yu Z Y, Tang S J, Sun Y M, Zhang Y H, Zheng B J. Ultrasound-assisted production of biodiesel from field pennycress (Thlaspi arvense L.) seeds: Process optimization and quality evaluation. Industrial Crops & Products, 2023,203:117224 [百度学术]
Isbell T A, Evangelista R, Glenn S E, Devore D A, Moser B R, Cermak S C, Rao S. Enrichment of erucic acid from pennycress (Thlaspi arvense L.) seed oil. Industrial Crops and Products, 2015,66:188-193 [百度学术]
Altendorf K, Isbell T, Wyse D L, Anderson J A. Significant variation for seed oil content, fatty acid profile, and seed weight in natural populations of field pennycress (Thlaspi arvense L.). Industrial Crops and Products, 2019,129:261-268 [百度学术]
乔卫华,张宏斌,郑晓明,陈宝雄,陈彦清,李垚奎,程云连,张丽芳,方沩,孙玉芳,杨庆文.我国作物野生近缘植物保护工作近20年的成就与展望.植物遗传资源学报,2020,21(6):1329-1336 [百度学术]
Qiao W H, Zhang H B, Zheng X M, Chen B X, Chen Y Q, Li Y K, Cheng Y L, Zhang L F, Fang W, Sun Y F, Yang Q W. Achievements of the conservation of wild relatives of crops in the past 20 years and the prospects in China. Journal of Plant Genetic Resources, 2020,21 (6): 1329-1336 [百度学术]
张学勇,郝晨阳,焦成智,李甜,毛龙,刘旭.种质资源学与基因组学相结合-破解基因发掘与育种利用的难题.植物遗传资源学报,2023,24(1):11-21 [百度学术]
Zhang X Y, Hao C Y, Jiao C Z,Li T ,Mao L,Liu X.Integration of germplasmics and genomics:Bridging up crop gene discovery and breeding. Journal of Plant Genetic Resources, 2023,24 (1): 11-21 [百度学术]
Seehausen O, Butlin R K, Keller I, Wagner C E, Boughman J W, Hohenlohe P A, Peichel C L, Saetre G P, Bank C, Brännström A, Brelsford A, Clarkson C S, Eroukhmanoff F, Feder J L, Fischer M C, Foote A D, Franchini P, Jiggins C D, Jones F C, Lindholm A K, Lucek K, Maan M E, Marques D A, Martin S H, Matthews B, Meier J I, Möst M, Nachman M W, Nonaka E, Rennison D J, Schwarzer J, Watson E T, Westram A M, Widmer A. Genomics and the origin of species. Nature Reviews Genetics, 2014,15 (3):176-192 [百度学术]
侯祥英,崔运鹏,刘娟.深度学习在植物基因组学与作物育种中的应用现状与展望.农业图书情报学报,2022,34(8):4-18 [百度学术]
Hou X Y, Cui Y P, Liu J. Applications and prospect analysis of deep learning in plant genomics and crop breeding. Agricultural Library and Information Journal, 2022,34 (8): 4-18 [百度学术]
Dorn K M, Fankhauser J D, Wyse D L, Marks M D. A draft genome of field pennycress (Thlaspi arvense) provides tools for the domestication of a new winter biofuel crop. DNA Research, 2015, 22(2): 121-131 [百度学术]
Yang R, Jarvis D E, Chen H, Beilstein M A, Grimwood J, Jenkins J, Shu S, Prochnik S, Xin M, Ma C, Schmutz J, Wing R A, Mitchell-Olds T, Schumaker K S,Wang X. The reference genome of the halophytic plant Eutrema salsugineum. Frontiers in Plant Science, 2013, 4: 4,46 [百度学术]
Nunn A, Rodríguez-Arévalo I, Tandukar Z, Frels K, Contreras-Garrido A, Carbonell-Bejerano P, Zhang P, Ramos-Cruz D, Jandrasits K, Lanz C, Brusa A, Mirouze M, Dorn K M, Galbraith D W, Jarvis B A, Sedbrook J C, Wyse D L, Otto C, Langenberger D, Stadler P F, Weigel D, Marks M D, Anderson J A, Becker C, Chopra R. Chromosome-level Thlaspi arvense genome provides new tools for translational research and for a newly domesticated cash cover crop of the cooler climates. Plant Biotechnology Journal, 2022, 20(5),944-963 [百度学术]
Geng Y P, Chang N, Zhao Y W, Qin X Y, Lu S G, Crabbe M, James C, Guan Y B, Zhang T C. Increased epigenetic diversity and transient epigenetic memory in response to salinity stress in Thlaspi arvense. Ecology and Evolution, 2020,10(20):11622-11630 [百度学术]
Chopra R, Johnson E B, Daniels E, McGinn M, Dorn K M, Esfahanian M, Folstad N, Amundson K, Altendorf K, Betts K, Frels K, Anderson J A, Wyse D L, Sedbrook J C,David M M. Translational genomics using Arabidopsis as a model enables the characterization of pennycress genes through forward and reverse genetics. The Plant Journal, 2018, 96(6):1093-1105 [百度学术]
孙帅.群落组成对菥蓂种群特征和个体形态及抗性的影响.南充:西华师范大学, 2019 [百度学术]
Sun S. Effects of community composition on population characteristics, individual morphology and resistance of Thlaspi arvense L. .Nanchong:China West Normal University, 2019 [百度学术]
王光野,蔡立格,张静菊,付艳平.菥蓂(Thlaspi arvenus L.)抗旱适应结构研究.长春师范学院学报:自然科学版, 2009,28(4):54-56 [百度学术]
Wang G Y, Cai L G, Zhang J J, Fu Y P. Research on characteristics of Thlaspi arvenus L. which adapt to the arid environment. Journal of Changchun Normal University:Natural Science Edition, 2009,28 (4): 54-56 [百度学术]
袁祯.菥蓂(Thlaspi arvense)种子萌发特性及其对母本环境的响应.兰州:兰州大学, 2020 [百度学术]
Yuan Z. Response to maternal environment of Thlaspi arvense. Lanzhou:Lanzhou University,2020 [百度学术]
常娜.菥蓂表观遗传多样性对盐胁迫的响应及其短期表观遗传记忆.昆明:云南大学,2020 [百度学术]
Chang N. Increased epigenetic diversity and transient epigenetic memory in response to salinity stress in Thlaspi arvense. Kunming:Yunnan University,2020 [百度学术]
Geng Y P, Guan Y B, Qiong L, Lu S G, An M, Crabbe M J C, Qi J, Zhao F Q, Qiao Q, Zhang T C. Genomic analysis of field pennycress (Thlaspi arvense) provides insights into mechanisms of adaptation to high elevation. BMC Biology, 2021,19(1):1-14 [百度学术]
黄志慧,张一宁,李娜娜,郑宝江,张玉红.增补UV-B辐射对菥蓂生理特性及次生代谢产物的影响.植物研究,2022,42(6):1079-1087 [百度学术]
Huang Z H, Zhang Y N, Li N N, Zheng B J, Zhang Y H. Responses of supplemental UV-B radiation to physiological properties and secondary metabolites of Thlaspi arvense. Plant Research, 2022,42 (6): 1079-1087 [百度学术]
Chopra R, Johnson E, Emenecker R, Cahoon E B, Joe L, Kliebenstein D J, Daniels E, Dorn K M, Esfahanian M, Folstad N, Frels K, McGinn M, Ott M,Gallaher C M, Altendorf K R, Berroyer A, Ismail B, Anderson J A, Wyse D L, Ulmasov T, Sedbrook J C, Marks M D. Identification and stacking of crucial traits required for the domestication of pennycress. Nature Food, 2020,1 (1):84-91 [百度学术]
Moser B R. Biodiesel from alternative oilseed feedstocks: Camelina and field pennycress. Biofuels, 2012,3(2):193-209 [百度学术]
Wang D, Xiao H M, Lv X W, Hong C, Wei F. Mass spectrometry based on chemical derivatization has brought novel discoveries to lipidomics: A comprehensive review. Critical Reviews in Analytical Chemistry, 2023,DOI:https://doi.org/10.1080/10408347.2023.2261130 [百度学术]
韩凤英,王津,胡馨月,徐劲松,许本波,张学昆,赵福永.不同超长链脂肪酸延长酶基因FAE1芥酸合成功能的比较.植物遗传资源学报,2023,24(2):569-583 [百度学术]
Han F Y, Wang J, Hu X Y, Xu J S, Xu B B, Zhang X K, Zhao F Y. Comparison of erucic acid biosynthesis of the FAE1 genes encoding the very-long-chain fatty acid elongase from different plant species. Journal of Plant Genetic Resources, 2023,24 (2): 569-583 [百度学术]
Wang P D, Xiong X J, Zhang X B, Wu G, Liu F. A review of erucic acid production in Brassicaceae oilseeds: Progress and prospects for the genetic engineering of high and low-erucic acid rapeseeds (Brassica napus). Frontiers in Plant Science, 2022,13:899076 [百度学术]
杨哲, 徐志浩, 赵艳涛,张永民. 芥酸基表面活性剂的合成及性能研究.中国洗涤用品工业, 2021(3):36-44 [百度学术]
Yang Z, Xu Z H, Zhao Y T, Zhang Y M. Synthesis and properties of erucic acid based surfactant.Chinese Detergent lndustry, 2021(3):36-44 [百度学术]
罗远洲.甘油三酯中芥酸位置对健康的影响.油脂科技, 1985(3):50-53 [百度学术]
Luo Y Z. Health effects of erucic acid position in triglycerides. Grease Technology, 1985 (3): 50-53 [百度学术]
Vaughan D A, Balazs E, Heslop-Harrison J S. From crop domestication to super-domestication. Annals of Botany, 2007,100(5):893-901 [百度学术]
Sedbrook J C, Phippen W B, Marks M D. New approaches to facilitate rapid domestication of a wild plant to an oilseed crop: Example pennycress (Thlaspi arvense L.). Plant Science, 2014,227:122-132 [百度学术]
Xu X Y, Yang H K, Singh S P, Sharp P J, Liu Q. Genetic manipulation of non-classic oilseed plants for enhancement of their potential as a biofactory for triacylglycerol production. Engineering, 2018,4 (4):523-533 [百度学术]
Vanhercke T, Dyer J M, Mullen R T, Kilaru A, Mahbubur Rahman M, Petrie J R, Green A G, Yurchenko O, Singh S P. Metabolic engineering for enhanced oil in biomass. Progress in Lipid Research, 2019,74 :103-129 [百度学术]
Chao H B, Kilaru A, Liu L Z. Editorial: Genetics, breeding and engineering to enhance oil quality and yield. Frontiers in Plant Science, 2023,14 :1265897 [百度学术]
Claver A G, Hernández del Rey R, López M V, Picorel R, Alfonso M. Identification of target genes and processes involved in erucic acid accumulation during seed development in the biodiesel feedstock pennycress (Thlaspi arvense L.). Journal of Plant Physiology, 2017,208:7-16 [百度学术]
Johnston C, García Navarrete L T, Ortiz E, Romsdahl T B, Guzha A, Chapman K D, Grotewold E, Alonso A P. Effective mechanisms for improving seed oil production in pennycress (Thlaspi arvense L.) highlighted by integration of comparative metabolomics and transcriptomics. Frontiers in Plant Science, 2022, 13: 943585 [百度学术]
García Navarrete T, Arias C, Mukundi E, Alonso Ana P,Grotewold E. Natural variation and improved genome annotation of the emerging biofuel crop field pennycress (Thlaspi arvense). G3: Genes, Genomes, Genetics, 2022, 12(6):84 [百度学术]
Dar A A, Choudhury A R, Kancharla P K, Arumugam N. The FAD2 gene in plants: Occurrence, regulation, and role. Frontiers in Plant Science, 2017,8 :1789 [百度学术]
王婕,施嘉仪,高盈玺,张文静,胡雄杰,李群生,周智勇,任钟旗.神经酸来源及分离方法的研究进展.中国油脂,2024,49(3):41-46 [百度学术]
Wang J,Shi J Y,Gao Y X,Zhang W J,Hu X J,Li Q S,Zhou Z Y,Ren Z Q.Research progress on sources and separation methods of nervonic acid.China Oils and Fats,2024,49(3):41-46 [百度学术]
Ntoumani E, Strandvik B, Sabel K G. Nervonic acid is much lower in donor milk than in milk from mothers delivering premature infants—of neglected importance. Prostaglandins, Leukotrienes and Essential Fatty Acids, 2013,89(4):241-244 [百度学术]
Liu F, Wang P,Xiong X J, Zeng X H, Zhang X B, Wu G. A review of nervonic acid production in plants: Prospects for the genetic engineering of high nervonic acid cultivars plants. Frontiers in Plant Science, 2021,12:626625 [百度学术]
Yang T, Yu Q, Xu W, Li D Z, Chen F, Liu A Z. Transcriptome analysis reveals crucial genes involved in the biosynthesis of nervonic acid in woody Malania oleifera oilseeds. BMC Plant Biology, 2018, 18(1): 1-13 [百度学术]
乔青青,顾晖,于有伟,王向东.遏蓝菜神经酸的提取与微乳化作用研究.农产品加工,2011(2):28-31 [百度学术]
Qiao Q Q, Gu H, Yu Y W, Wang X D. Extraction and micro-emulsion of nervonic acid on pennycress. Processing of Agricultural Products, 2011 (2): 28-31 [百度学术]
Zou X F, Suppanz I, Raman H, Hou J L, Wang J, Long Y, Jung C, Meng J L. Comparative analysis of FLC homologues in brassicaceae provides insight into their role in the evolution of oilseed rape. PLoS ONE, 2012,7 (9):45751 [百度学术]
Thambugala D, Ragupathy R, Cloutier S. Structural organization of fatty acid desaturase loci in linseed lines with contrasting linolenic acid contents. Functional & Integrative Genomics, 2016,16 (4):429-439 [百度学术]
Petrie J R, Zhou X, Leonforte A, McAllister J, Shrestha P, Kennedy Y, Belide S, Buzza G, Gororo N, Gao W X, Lester G, Mansour M P, Mulder R J, Liu Q, Tian L J, Silva C, Cogan N O I, Nichols P D, Green A G, de Feyter R, Devine M D, Singh S P. Development of a Brassica napus (Canola) crop containing fish oil-like levels of DHA in the seed oil. Frontiers in Plant Science, 2020,11:727 [百度学术]
Yue Q B, Zhang J L, Qin R N, Huang J L, He J H. Analysis on the loss path and cooperative protection of global biodiversity based on input-output model. Journal of Cleaner Production, 2023,419 :138232 [百度学术]