摘要
在热带地区种植的香蕉、番木瓜、甘蔗、木薯、天然橡胶、油棕等热带作物,是我国农业的重要组成部分,不仅为我们的日常生活和工农业生产提供了重要的原材料,而且为我国热带与亚热带地区的主要农业产量和经济增长做出了贡献。然而,这些作物的现代分子育种受其生物学特性和遗传复杂性的严重阻碍,多倍化、杂合性、无性繁殖、童期长和植株高大等问题导致热带作物的传统杂交育种周期长、难度大、进展慢。基因编辑技术的发展为热带作物育种带来了新途径和新机遇。CRISPR/Cas9系统介导的基因组编辑技术以其更高的靶向效率、多功能性和易用性,已被广泛应用于植物基因组编辑育种中。近年来,该技术在香蕉、木薯、天然橡胶、甘蔗等热带作物上也实现了广泛应用。本文介绍了基于CRISPR-Cas9系统的基因组编辑、CRISPR-Cas9在热带作物改良中的应用进展以及所面临的挑战和问题,同时对热带作物基因编辑育种方面提出建议,以期为后续研究提供思路,并为进一步开发应用该技术以有效改良热带作物的植物性状提供参考。
关键词
CRISPR/Cas系统(Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein)已经成为基因组编辑的最流行和最先进的工具之一。1987年,研究人员在大肠杆菌(Escherichia coli)的碱性磷酸酶同工酶(IAP, alkaline phosphatase isozyme)基因中首次发现CRISPR序列,该序列是自然界中原核生物的一种防卫系统,通过激活适应性免疫应答来抵抗噬菌体等入
2013年,CRISPR/Cas9系统陆续应用于拟南
在热带地区种植的香蕉、木薯、甘蔗、橡胶、木瓜、油棕等热带作物,为我们的日常生活和工农业提供了重要的原材料。然而,这些作物的现代育种受到其生物学特性和遗传复杂性的严重阻
CRISPR/Cas9是生物基因组编辑中鉴定最明确、最受欢迎和应用最广泛的系统。该系统由两个元件组成:一个是称为Cas9的RNA引导的DNA内切酶,另一个是sgRNA。Cas9与sgRNA结合可以针对与sgRNA互补的基因组序列,并催化DNA骨架的双链断裂(DSB,double-stranded break)。然后,双链断裂主要通过容易出错的非同源末端连接(NHEJ,non-homologous end-joining)途径或无错误的同源重组(HDR, homology-directed repair)来修复。非同源末端连接容易导致单个碱基的插入、缺失或替换。在自然条件下,真核细胞中同源重组发生的概率很低,而非同源末端连接发生的几率更高。因此,可以通过双链断裂和随后的DNA修复来实现基因修饰和基因组编辑。在植物界中,CRISPR/Cas9系统已被广泛用于作物的遗传改良或种质创制,如水
然而,基于Cas9的基因编辑的最大弱点是在基因组中形成非靶标的双链断裂,这可能会产生突变、大的染色体异常,如易位、倒位等。大多数致病突变和农学上重要的遗传变异都是SNPs,需要更精确的基因组编辑工具来校正序列。因此,基于Cas9的碱基编辑器(BE,base editing)和引导编辑器(PE,prime editing)被开发出
CRISPR/Cas9系统在理论上适用于所有物种,在模式植物中已有成熟的应用体系,在香蕉、番木瓜、甘蔗、木薯、天然橡胶、油棕等主要热带作物中已有初步应用,应用进展阐述如下。
香蕉(Musa spp.)是世界重要的果粮兼备的经济作物,也是全球鲜果消费量和贸易额最大的水果,在推动我国热带与亚热带地区农民脱贫致富和乡村振兴中起着重要作用。然而,香蕉生产受到枯萎病、干旱、冷害等生物和非生物胁迫的严重威胁。全球最重要的香蕉栽培品种是三倍体,高度不育,遗传基础狭窄,这些特性严重阻碍应用传统杂交育种培育香蕉优良新品种。而诱变育种与突变体选育新品种具有周期长、盲目性大等问题。因此,香蕉生物育种被认为是培育抗逆、抗病优质新品种的理想途径。
来自国内外的相关学者已相继在香蕉中建立了CRISPR/Cas9基因组编辑技术体系。胡春华
随着CRISPR/Cas9编辑技术体系在香蕉中的成功建立,CRISPR/Cas9介导的基因组编辑技术在香蕉中已被应用于增强抗病性、提高果实品质、延长货架期和改善株型结构等方面。香蕉条纹病毒(BSV, banana streak virus)是一种整合在香蕉B基因组中的双链杆状DNA病毒,称为内源性BSV (eBSV, endogenous BSV)。它严重影响了非洲大蕉(AAB)的生产,也限制了携带B基因组的二倍体祖先种Musa balbisiana或其衍生物作为亲本的使用。2019年,Tripathi
番木瓜(Carica papaya L.)是木瓜科番木瓜属的多年生草本果树,在热带和亚热带国家广泛种植,以其丰富的营养和药用价值而受欢迎。然而,番木瓜产业的发展受到番木瓜环斑花叶病毒病(PRSV, papaya ringspot virus)的严重限制,抗病品种的培育成为产业发展的关键。由于我国可食用番木瓜抗病资源匮乏,栽培种遗传基础狭窄,通过传统的杂交育种难以培育出抗病品种,而分子育种技术则可有效地改良品种的抗病
中国热带农业科学院热带生物技术研究所转基因生物安全研究团队的科研人员利用Golden Gate法构建了番木瓜曲叶病毒的CRISPR/Cas9的串联多切点表达载
甘蔗(Saccharum spp.)是世界上80%的糖和26%的生物乙醇的工业原料作物。甘蔗的基因组是所有驯化农业物种中最复杂的(2n = 100~130),其复杂的、高度多倍体的基因组阻碍了传统杂交育种技术在甘蔗品种改良上的应用进
Zhao
木薯(Manihot esculenta Crantz)是世界热带与亚热带地区广泛栽植的重要主粮作物,也是主要的工业原料。在这种重要的主食作物中进行有效的基因编辑将为解决木薯生产中生物和非生物胁迫的限制以及采后利用提供新机遇。木薯遗传转化体系的建立和基因组测序的完成使得基于CRISPR的基因组编辑技术在木薯基础和应用研究中的潜力得以实现,从而改善木薯重要的经济性状。2017年,Odipio
研究人员陆续将CRISPR/Cas9技术用于木薯抗病性的增强、淀粉品质的改善以及无氰木薯品种的开发等研究。木薯褐条病(CBSD, cassava brown streak disease )和木薯花叶病(CMD, cassava mosaic disease)是木薯上的两种主要毁灭性病毒病。Gomez
目前木薯遗传转化的模式品种为来源于非洲的TMS60444品种,该品种产量和淀粉含量低、分枝多、抗病性差,不是理想的生物育种受体材料。因此,研发我国优良木薯品种的高效遗传转化技术具有重要意义。中国热科院生物所植物抗逆基因功能研究团队在木薯生物育种技术研究方面取得新进展,建立了我国木薯主栽品种华南8号的高效遗传转化及基因编辑体系,该团队以分生组织高表达的YAO启动子驱动Cas9蛋白表达,编辑MePDS基因,编辑效率达到93%,单等位纯合突变率达到45%,为迄今木薯基因编辑领域的最高纯合突变
巴西橡胶树(Hevea brasiliensis Muell. Arg.)是当前天然橡胶的主要来源。作为一种具有长童期(6~7年)的异花授粉树种,通过常规育种方法对橡胶树进行遗传改良的效率非常低,难以满足经济需求。因此,迫切需要更有效的分子方法来加速橡胶树的性状改良。橡胶树全基因组序列的测序完成及橡胶树原生质体再生植株方法的成功建立为利用CRISPR/Cas9技术在橡胶树中进行基因编辑奠定了坚实的基
具有“世界油王”美誉的油棕(Elaeis guineensis Jacq.)是一种重要的热带木本油料作物,是棕榈(仁)油的主要原料作物。全球对棕榈油的需求逐年增加,到2050年,棕榈油的需求将增至2.5亿吨,超过世界油类和脂肪的总产
作为饮料类热带经济作物,咖啡(Coffea canephora L.)和可可(Theobroma cacao L.)是全球消耗最多的植物源饮品。2018年,法国和美国的科学家分别建立了咖啡和可可的CRISPR/Cas9基因编辑系
相较于模式植物和主粮作物而言,CRISPR/Cas9 系统在热带作物基因功能研究和品种改良方面的应用比较滞后,多数尚处于基因编辑体系建立的初步阶段。高效的遗传转化再生体系是进行转基因和基因编辑的前提。目前虽已在上述热带作物中建立了有效的再生和遗传转化体系,但仍然存在着较大问题。如在香蕉中,已报道的转化受体有香蕉胚性细胞悬浮系(ECS, embryogenic cell suspensions)、原生质体、茎尖或多芽体薄切片等,但每种受体却都有明显的缺陷,如ECS法虽可得到单细胞起源的转基因株系,但建立和维持ECS需要耗费大量时间、精力,再生周期长(15~18个月),而且ECS诱导技术仍仅限于有限的几个实验室和几个基因型品种,技术重现性差;茎尖或多芽体薄切片虽简单快速,但成功率极低,极易产生嵌合体而导致后期筛选过程中目标性状的丢失;原生质体虽转化方便,但再生非常困难。因此,迫切需要一种广适、高效、稳定的香蕉遗传转化再生方案。作为单子叶多年生的木本油料作物,目前油棕遗传转化的受体主要是胚性愈伤组
总体而言,上述这些热带作物的全基因组测序工作虽已相继完成并公布,但对重要农艺性状相关的基因通路和基因功能的解析仍需进一步加强;多数热带作物尚不具备稳定的遗传转化体系或转化效率偏低,使得基因组编辑实验和优化变得困难,想要得到稳定可遗传的基因编辑材料,工作量大,耗时长;热带作物的多倍体特性和基因组杂合性增加了在遗传转化T0代就能获得目标基因的突变表型的难度;现有的植物sgRNA在线设计软件数据库中仅包含少数热带作物基因组信息,收集更多热带作物品种的基因组数据将有助于CRISPR/Cas9的应用。
使用瞬时原生质体系统进行PEG介导的CRISPR元件递送对于gRNA验证非常有用,但只有极少数植物物种可以从原生质体再生。微粒轰击(基因枪)和农杆菌介导的递送,高度依赖植物种类、基因型和组织类型特异
南方科技大学朱健康团队开发了一种递送系统(CDB,cut-dip-budding),利用根茎再生的优势,利用发根农杆菌对甘薯进行转化和编辑,直接产生毛状
Wolabu
基因组编辑分子生物学研究的进展导致设计出具有广泛应用的各种基因组编辑工具。因此,选择编辑给定物种的最佳系统和编辑的目的变得至关重要。最近新兴的碱基编辑和引导编辑技术具有扩大基因组编辑范围和效率的潜力,其在热带作物中的应用可以在精确和加速遗传改良中发挥至关重要的作用。
参考文献
郭晓强. CRISPR-Cas9技术发展史:25年的科学历程. 自然杂志,2016, 38 (4): 278-286 [百度学术]
Guo X Q. The invention of CRISPR-Cas9 technology: 25-years scientific journey. Chinese Journal of Nature, 2016, 38 (4): 278-286 [百度学术]
Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib B, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339 (6121): 819-823 [百度学术]
Li J F, Norville J E, Aach J, McCormack M, Zhang D, Bush J, Church G M, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 2013, 31: 688-691 [百度学术]
Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 2013, 31: 691-693 [百度学术]
Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Liu J, Xi J J, Qiu J, Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 2013, 31: 686-688 [百度学术]
Zhang P. Tropical crops enter the era of genome editing. Tropical Plants, 2022, 1:10 [百度学术]
毛兴学, 郑晓钰, 孙炳蕊, 李晨, 陈文丰, 潘大建, 柳武革, 范芝兰, 王丰. 应用CRISPR/Cas9技术创制低直链淀粉含量水稻种质. 植物遗传资源学报, 2022, 23 (2): 583-591 [百度学术]
Mao X X, Zheng X Y, Sun B R, Li C, Chen W F, Pan D J, Liu W G, Fan Z L, Wang F. Creating novel rice germplasms with low amylose content by editing upstream sequence of Wx gene coding region via CRISPR/Cas9 technology. Journal of Plant Genetic Resources, 2022, 23 (2): 583-591 [百度学术]
王超凡, 张大健. 基因编辑技术在大豆种质资源研究中的利用. 植物遗传资源学报, 2020, 21 (1): 26-32 [百度学术]
Wang C F,Zhang D J. Application of gene editing in studies of soybean germplasm resource. Journal of Plant Genetic Resources, 2020, 21 (1): 26-32 [百度学术]
高谢旺, 谭安琪, 胡信畅, 祝孟洋, 阮颖, 刘春林. 利用CRISPR/Cas9技术创制高油酸甘蓝型油菜新种质. 植物遗传资源学报, 2020, 21 (4): 1002-1008 [百度学术]
Gao X W, Tan A Q, Hu X C, Zhu M Y, Ruan Y, Liu C L. Creation of new germplasm of high-oleic rapeseed using CRISPR/Cas9. Journal of Plant Genetic Resources, 2020, 21 (4): 1002-1008 [百度学术]
于美, 唐华丽, 叶兴国. 利用转基因技术和基因编辑技术改良小麦进展. 植物遗传资源学报, 2023, 24 (1): 102-116 [百度学术]
Yu M, Tang H L, Ye X G. Progresses on wheat improvement by using transgenic and genome editing technologies. Journal of Plant Genetic Resources, 2023, 24 (1): 102-116 [百度学术]
Rees H A, Liu D R. Base editing: Precision chemistry on the genome and transcriptome of living cells. Nature Reviews Genetics, 2018, 19: 770-788 [百度学术]
Anzalone A V, Randolph P B, Davis J R, Sousa A A, Koblan L W, Levy J M, Chen P J , Wilson C, Newby G A, Raguram A, Liu D R. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576: 149-157 [百度学术]
赵无迪, 黄国斌, 朱向星, 毕延震, 唐冬生. 碱基编辑技术在猪遗传改良上的应用研究进展. 生物工程学, 2023, 39 (10): 3936-3947 [百度学术]
Zhao W D, Huang G B, Zhu X X, Bi Y Z, Tang D S. Application of single base editing technique in pig genetic improvement: A review. Chinese Journal of Biotechnology, 2023, 39 (10): 3936-3947 [百度学术]
Liang Y, Xie J, Zhang Q, Wang X, Gou S, Lin L, Chen T, Ge W, Zhuang Z, Lian M, Chen F, Li N, Ouyang Z, Lai C, Liu X, Li L, Ye Y, Wu H, Wang K, Lai L. AGBE: A dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns. Nucleic Acids Research, 2022, 50: 5384-5399 [百度学术]
Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu J, Wang D, Gao C. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nature Biotechnology, 2017, 35: 438-440 [百度学术]
Xu W, Zhang C, Yang Y, Zhao S, Kang G, He X, Song J, Yang J. Versatile nucleotides substitution in plant using an improved system, prime editing. Molecular Plant, 2020, 13: 675-678 [百度学术]
胡春华, 邓贵明, 孙晓玄, 左存武, 李春雨, 邝瑞彬, 杨乔松, 易干军. 香蕉CRISPR/Cas9基因编辑技术体系的建立. 中国农业科学, 2017, 50 (7): 1294-1301 [百度学术]
Hu C H, Deng G M, Sun X X, Zuo C W, Li C Y, Kuang R B, Yang Q S, Yi G J. Establishment of an efficient CRISPR/Cas9-mediated gene editing system in banana. Scientia Agricultura Sinica, 2017, 50 (7): 1294-1301 [百度学术]
Kaur N, Alok A, Shivani, Kaur N, Tiwari S. CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Functional Integrative Genomics, 2018, 18 (1): 89-99 [百度学术]
Naim F, Dugdale B, Kleidon J, Brinin A, Shand K, Waterhouse P, Dale J. Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9. Transgenic Research, 2018, 27 (5): 451-460 [百度学术]
Ntui V O, Tripathi J N, Tripathi L. Robust CRISPR/Cas9 mediated genome editing tool for banana and plantain (Musa spp.). Current Plant Biology, 2020, 21:100128 [百度学术]
Wu S, Zhu H, Liu J, Yang Q, Shao X, Bi F, Hu C, Hou H, Chen K, Yi G. Establishment of a PEG-mediated protoplast transformation system based on DNA and CRISPR/Cas9 ribonucleoprotein complexes for banana. BMC Plant Biology, 2020, 20 (1): 425 [百度学术]
Zhang S, Wu S, Hu C, Yang Q, Dong T, Sheng Ou, Deng G, He W, Dou T, Li C, Sun C, Yi G, Bi F. Increased mutation efficiency of CRISPR/Cas9 genome editing in banana by optimized construct. PeerJ, 2022, 10: e12664 [百度学术]
Hu C, Liu F, Sheng O, Yang Q, Dou T, Dong T, Li C, Gao H, He W, Liu S, Deng G, Yi G, Bi F. Efficient and transgene-free genome editing in banana using a REG-2 promoter-driven gene-deletion system. Molecular Horticulture, 2023, 3: 16 [百度学术]
Tripathi J N, Ntui V O, Ron M, Muiruri S K, Britt A, Tripathi L. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Communication Biology, 2019, 2: 46 [百度学术]
Tripathi J N, Ntui V O, Shah T, Tripathi L. CRISPR/Cas9 mediated editing of DMR6 Orthologue in banana (Musa spp.) confers enhanced resistance to bacterial disease. Plant Biotechnology Journal, 2021, 19 (7): 1291-1293 [百度学术]
Maxmen A. CRISPR could save bananas from fungus. Nature, 2019, 574: 15 [百度学术]
Kaur N, Alok A, Shivani, Kumar P, Kuar N, Awasthi P, Chaturvedi S, Pandey P, Pandey A, Pandey A K, Tiwari S. CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for β-carotene biosynthesis in banana fruit. Metabolic Engineering, 2020, 59: 76-86 [百度学术]
Awasthi P, Khan S, Lakhani H, Chaturvedi S, Shivani, Kaur N, Singh J, Kesarwani A K, Tiwari S. Transgene-free genome editing supports the role of carotenoid cleavage dioxygenase 4 as a negative regulator of β-carotene in banana. Journal of Experimental Botany, 2022, 73 (11): 3401-3416 [百度学术]
孙晓玄.香蕉CRISPR/Cas9基因编辑技术体系的建立. 广州: 华南农业大学, 2017 [百度学术]
Sun X Y. Establishment of an efficient CRISPR/Cas9-mediated gene editing system in banana. Guangzhou: South China Agricultural University, 2017 [百度学术]
Shao X, Wu S, Dou T, Zhu H, Yi G. Using CRISPR/Cas9 genome editing system to create MaGA20ox2 gene-modified semi-dwarf banana. Plant Biotechnology Journal, 2020, 18: 17-19 [百度学术]
Hu C, Sheng O, Deng G, He W, Bi F. CRISPR/Cas9-mediated genome editing of MaACO1 (aminocyclopropane-1-carboxylate oxidase1) promotes the shelf life of banana fruit. Plant Biotechnology Journal, 2021, 19: 654-56 [百度学术]
魏岳荣,周陈平,邝瑞彬,杨护,黄炳雄,杨敏. 番木瓜均质胚性细胞悬浮系的建立和高效植株再生. 果树学报, 2023, 40 (2): 376-385 [百度学术]
Wei Y R, Zhou C P, Kuang R B, Yang H, Huang B X, Yang M. Development of embryogenic cell suspension cultures and efficient plant regeneration of Carica papaya L. Journal of Fruit Science, 2023, 40 (2): 376-385 [百度学术]
Gonsalves D. Control of Papaya ringspot virus in papaya: A case study. Annual Review of Phytopathology, 1998, 36: 415-437 [百度学术]
Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw J H, Senin P, Wang W, Ly B V, Lewis K L T, Salzberg S L, Feng L, Jones M R, Skelton R, Murray J E, Chen C, Qian W, Shen J, Du P, Eustice M, Tong E, Tang H, Lyons E, Paull R E, Michael T P, Wall K, Rice D W, Albert H, Wang M L, Zhu Y J, Schatz M, Nagarajan N, Acob R A, Guan P, Blas A, Wai C M, Ackerman C M, Ren Y, Liu C, Wang J N, Wang J P, Na J, Shakirov E V, Haas B, Thimmapuram J, Nelson D, Wang X, Bowers J E, Gscjwend A R, Delcher A L, Singh R, Suzuki J, Tripathi S, Neupane K, Wei H, Irikura B, Paidi M, Jing N, Zhang W, Presting G, Wondsor A, Navajas-Pérez R, Torres M J, Feltus F A, Porter B, Li Y, Burroughs A M, Luo M, Christopher D A, Mount S M, Moore P H, Sugimura T, JIANG J, Schuler M A, Friedman V, Mitchell-Olds T, Shippen D S, de Pamphilis C W, Palmer J D, Freeling M, Paterson A H, Gonsalves D, Wang L, Alam M. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 2008, 452: 991-996 [百度学术]
Al-Shara B, Taha R M, Mohamad J, Elias H, Khan A. Somatic embryogenesis and plantlet regeneration in the Carica papaya L. cv. Eksotika. Plants, 2020, 9 (3): 360 [百度学术]
赵晓兵, 曾秋霞, 杨丽媛, 方寒梅, 左丽萍, 吴永旺, 岳晶晶.番木瓜胚性愈伤组织高效诱导与植株再生. 分子植物育种, 2022, 20 (8): 2713-2724 [百度学术]
Zhao X B, Zeng Q X, Yang L Y, Fang H M, Zuo L P, Wu Y W, Yue J J. Efficient induction of papaya embryogenic callus and plant regeneration. Molecular Plant Breeding, 2022, 20 (8): 2713-2724 [百度学术]
王绪朋, 赵辉, 贾瑞宗, 孔华, 郭运玲, 郭安平. 用Golden Gate法构建广谱抗番木瓜环斑病毒海南株系的CRISPR/FnCas9植物表达载体. 热带作物学报, 2018, 39 (5): 955-962 [百度学术]
Wang X P, Zhao H, Jia R Z, Kong H, Guo Y L, Guo A P. Construction of CRISPR/FnCas9 plant expression vectors with broad spectrum resistance to Hainan Papaya ringspot virus by Golden gate. Chinese Journal of Tropical Crops, 2018, 39 (5): 955-962 [百度学术]
龙欢, 赵辉, 王绪朋, 贾瑞宗, 贺萍萍, 孔华, 郭运玲, 郭安平. 基于CRISPR基因编辑系统抗番木瓜曲叶病毒的植物转化载体的构建. 热带作物学报, 2019, 40 (10): 2022-2028 [百度学术]
Long H, Zhao H, Wang X P, Jia R Z, He P P, Kong H, Guo Y L, Guo A P. Construction of CRISPR plant expression vectors resistance to papaya leaf curl virus. Chinese Journal of Tropical Crops, 2019, 40 (10): 2022-2028 [百度学术]
Brewer S E, Chambers A H. CRISPR/Cas9-mediated genome editing of phytoene desaturase in Carica papaya L. The Journal of Horticultural Science and Biotechnology, 2022, 97: 580-592 [百度学术]
Hoang T H T, Nguyen N H, Nguyen L T, Bui T P, Le N T, Dao N T, Monteiro M, Pham N B, Molnar A, Chu H H, Do P T. Developing a robust in vivo hairy root system for assessing transgene expression and genome editing efficiency in papaya. Plant Cell, Tissue and Organ Culture, 2023, 152: 661-667 [百度学术]
许孚,汪洲涛,路贵龙,阙友雄. 甘蔗遗传改良中的基因工程:适用、成就、局限和展望. 农业生物技术学报, 2022, 30 (3): 580-593 [百度学术]
Xu F, Wang Z T, Lu G L, Que Y X. Genetic engineering in sugarcane improvement: Adaptability, achievements, limitations and prospects. Journal of Agricultural Biotechnology, 2022, 30 (3): 580-593 [百度学术]
Zhao Y, Karan R, Altpeter F. Error-free recombination in sugarcane mediated by only 30 nucleotides of homology and CRISPR/Cas9 induced DNA breaks or Cre-recombinase. Biotechnology Journal, 2021, 16 (6): e2000650 [百度学术]
Eid A, Mohan C, Sanchez S, Wang D D, Altpeter F. Multiallelic, targeted mutagenesis of magnesium chelatase with CRISPR/Cas9 provides a rapidly scorable phenotype in highly polyploid sugarcane. Frontiers in Genome Editing, 2021, 3: 654996 [百度学术]
Oz M T, Altpeter A, Karan R, Merotto A, Altpeter F. CRISPR/Cas9-mediated multi-allelic gene targeting in sugarcane confers herbicide tolerance. Frontiers in Genome Editing, 2021, 3: 673566 [百度学术]
Odipio J, Alicai T, Ingelbrecht I, Nusinow D A, Bart R, Taylor N J. Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava. Frontiers in Plant Science, 2017, 8: 1780 [百度学术]
Gomez M A, Lin Z D, Moll T, Chauhan R D, Hayden L, Renninger K, Beyene G, Taylor N J, Carrington, J C, Staskawicz B J. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnology Journal, 2019, 17: 421-434 [百度学术]
Mehta D, Stürchler A, Anjanappa R B, Zaidi S S, Hirsch-Hoffmann M, Gruissem W, Vanderschuren H. Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses. Genome Biology, 2019, 20 (1): 80 [百度学术]
叶昕彤. 利用CRISPR/Cas9 靶向斯里兰卡木薯花叶病毒创制抗病木薯材料. 杭州: 浙江大学, 2021 [百度学术]
Ye X T. Generation of Sri Lankan cassava mosaic virus resistant cassava plants by CRISPR/Cas9-mediated genome targeting. Hangzhou:Zhejiang University, 2021 [百度学术]
Veley K M, Okwuonu I, Jensen G, Yoder M, Taylor N J, Meyers B C, Bart R S. Gene tagging via CRISPR-mediated homology-directed repair in cassava. Genes,Genomes,Genetics, 2021, 11 (4): jkab028 [百度学术]
Wang Y, Geng M, Pan R, Zhang T, Zhen X, Che Y, Li R, Liu J, Chen Y, Guo J. Engineering bacterial blight-resistant plants through CRISPR/Cas9-targeted editing of the MeSWEET10a promoter in cassava. bioRxiv. (2022-03-02)[2023-10-10].https://doi.org/10.1101/2022.3.2.482644 [百度学术]
Bull S E, Seung D, Chanez C, Mehta D, Kuon J E, Truernit E, Hochmuth A, Zurkirchen I, Zeeman S C, Gruissem W, Vanderschuren H. Accelerated ex situ breeding of GBSS- and PTST1-edited cassava for modified starch. Science Advances, 2018, 4: eaat6086 [百度学术]
Luo S, Ma Q, Zhong Y, Jing J, Wei Z, Zhou W, Lu X, Tian Y, Zhang P. Editing of the starch branching enzyme gene SBE2 generates high-amylose storage roots in cassava. Plant Molecular Biology, 2022, 108, 429-442 [百度学术]
Juma B S, Mukami A, Mweu C, Ngugi M P, Mbinda W. Targeted mutagenesis of the CYP79D1 gene via CRISPR/Cas9-mediated genome editing results in lower levels of cyanide in cassava. Frontiers in Plant Science, 2022, 13: 1009860 [百度学术]
Gomez M A, Berkoff K C, Gill B K, Iavarone A T, Lieberman S E, Ma J M, Schultink A, Karavolias N G, Wyman S K, Chauhan R D, Taylor N J, Staskawicz B J, Cho M J, Rokhsar D S, Lyons J B. CRISPR-Cas9-mediated knockout of CYP79D1 and CYP79D2 in cassava attenuates toxic cyanogen production. Frontiers in Plant Science, 2023, 13: 1079254 [百度学术]
Wang Y J, Lu X H, Zhen X H, Yang H, Che Y N, Hou J Y, Geng M T, Liu J, Hu X W, Li R M, Guo J C, Yao Y. A transformation and genome editing system for cassava cultivar SC8. Genes, 2022, 13: 1650 [百度学术]
Tang C, Yang M, Fang Y, Luo Y, Gao S, Xiao X, An Z, Zhou B, Zhang B, Tan X, Yeang H Y, Qin Y, Yang J, Lin Q, Mei H, Montoro P, Long X, Qi J, Hua Y, He Z, Sun M, Li W, Zeng X, Cheng H, Liu Y, Yang J, Tian W, Zhuang N, Zeng R, Li D, He P, Li Z, Zou Z, Li S, Li C, Wang J, Wei D, Lai C Q, Luo W, Yu J, Hu S, Huang H. The rubber tree genome reveals new insights into rubber production and species adaptation. Nature Plants, 2016, 2 (6): 16073 [百度学术]
戴雪梅, 黄天带, 李季,杨先锋, 黄华孙. 不同外植体对橡胶树原生质体分离和再生的影响.分子植物育种, 2014, 12 (6): 1259-1264 [百度学术]
Dai X M, Huang T D, Li J, Yang X F, Huang H S. Effects of different explants on isolation and regeneration of protoplast in rubber tree. Molecular Plant Breeding, 2014,12 (6): 1259-1264 [百度学术]
刘承圆. 橡胶树Mlo基因的克隆和基因修饰载体的构建. 海口: 海南大学, 2018 [百度学术]
Liu C Y. Cloning of MLO gene in Hevea brasiliensis and construction of gene modified vectors. Haikou: Hainan University, 2018 [百度学术]
Fan Y T, Xin S C, Dai X M, Yang X F, Huang H S, Hua Y W. Efficient genome editing of rubber tree (hevea brasiliensis) protoplasts using CRISPR/Cas9 ribonucleoproteins. Industrial Crops & Products, 2020, 146: 112146 [百度学术]
Dai X M, Yang X F, Wang C, Fan Y T, Xin S C, Hua Y W, Wang K J, Huang H S. CRISPR/Cas9-mediated genome editing in Hevea brasiliensis. Industrial Crops & Products, 2021, 164: 113418 [百度学术]
Masani M Y A, Izawati A M D, Rasid O A, Parveez G K A. Biotechnology of oil palm: Current status of oil palm genetic transformation. Biocatalysis and Agricultural Biotechnology, 2018, 15: 335-347 [百度学术]
Yarra R, Jin L, Zhao Z, Cao H. Progress in tissue culture and genetic transformation of oil palm: An overview. International Journal of Molecular Sciences, 2019, 20 (21): 5353 [百度学术]
Yeap W C, Norkhairunnisa C M K, Norfadzilah J, Muhammad Rashdan M, Appleton D R, Harikrishna K. An efficient clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 mutagenesis system for Oil Palm (Elaeis guineensis). Frontiers in Plant Science, 2021, 12: 773656 [百度学术]
Breitler J C, Dechamp E, Campa C, Rodrigues L A Z, Guyot R, Marraccini P, Etienne H. CRISPR/Cas9-mediated efficient targeted mutagenesis has the potential to accelerate the domestication of Coffea canephora. Plant Cell, Tissue and Organ Culture, 2018, 134 (3): 383-394 [百度学术]
Fister A S, Landherr L, Maximova S N, Guiltinan M J. Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Frontiers in Plant Science, 2018, 9: 268 [百度学术]
Scharf A, Lang C, Fischer M. Genetic authentication: Differentiation of fine and bulk cocoa (Theobroma cacao L.) by a new CRISPR/Cas9-based in vitro method. Food Control, 2020, 114: 107219 [百度学术]
Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 2019, 70: 667-697 [百度学术]
Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho MJ, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiua J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer P M, Bruce W, Newman L, Shen B, Zheng P, Bideny D, Falco C, Register J, Zhao Z Y, Xu D, Jones T, Gordon-Kamm W. Morphogenic regulators BABY BOOM and WUSCHEL improve monocot transformation. Plant Cell, 2016, 28: 1998-2015 [百度学术]
Debernardi J M, Tricoli D M, Ercoli M F, Hayta S, Ronald P, Palatnik J F, Dubcovsky J. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnology, 2020, 38: 1274-1279 [百度学术]
Wang K, Shi L, Liang X, Zhao P, Wang W, Liu J, Chang Y, Hiei Y, Yanagihara C, Du L, Ishida Y, Ye X G. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nature Plants, 2022, 8: 110-117 [百度学术]
Cao X, Xie H, Song M, Lu J, Ma P, Huang B, Wang M, Tian Y, Chen J, Lang Z, Li G, Zhu J K. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture. Innovation, 2022, 4 (1): 100345 [百度学术]
Wolabu T W, Cong L, Park J J, Bao Q, Chen M, Sun J, Xu B, Ge Y, Chai M, Liu Z . Development of a highly efficient multiplex genome editing system in outcrossing tetraploid alfalfa (Medicago sativa). Frontiers in Plant Science, 2020, 11: 1063 [百度学术]
Lorenzo C D, Debray K, Herwegh D, Develtere W, Impens L, Schaumont D, Vandeputte W, Aesaert S, Coussens G, De Boe Y. BREEDIT: A multiplex genome editing strategy to improve complex quantitative traits in maize. Plant Cell, 2022, 35 (1): 218-238 [百度学术]
Gupta A, Liu B, Raza S, Chen Q J, Yang B. Modularly assembledmultiplex prime editors for simultaneous editing of agronomically important genes in rice. Plant Communications, 2023,DOI: https://doi.org/10.1016/j.xplc.2023.100741 [百度学术]