摘要
斑叶植物种类丰富,其叶片上色彩各异的斑纹具有特殊的观赏性,不仅是植物重要的观赏性状,还有着一定的生物学和生态学意义,具有帮助繁衍、抵御天敌和适应环境变化等作用。本文综述了近年来观赏植物叶斑分类和形成的相关进展,根据叶片中不同的色素积累和结构区别,在微观结构上对叶斑类型进行划分并总结了叶斑形成的分子机制。现有研究表明,叶片发育过程中色素合成和代谢有关的结构基因和转录因子CHLH、DFR、CRD1等的改变、细胞器发育的受损、细胞发育和分化基因ZAT10、VAR3等的突变会通过影响色素的差异积累、改变叶片结构直接或间接的参与叶斑的形成。虽然目前已有较多对于观赏植物叶斑形成机制的研究,但观赏植物叶斑的遗传机制尚不清晰,叶斑部分的差异基因表达的原因、叶斑图案的空间分布机制等仍有待进一步研究。未来可以通过对斑叶植物中模式植物的筛选,构建泛基因组,与基因组学、蛋白组学、代谢组学等多组学技术结合,研究叶斑的起源、斑叶植物对于环境的适应等问题,探索植物的重要性状与环境适应的进化机制。
斑叶植物(Variegated leaf plants)的叶片近轴面存在多种颜色,以规则或不规则的斑点、斑块形式构成特定和稳定的叶斑图案,是非病理原因导致叶绿素缺失而形成的病斑及斑纹存在于叶片以外其他器官表面的植物种
张建

图1 5种叶斑分型的植物图片
Fig.1 Picture of plants with five leaf pattern types
叶绿素型斑纹区域内细胞的叶绿素含量通常明显低于非斑纹区域,栅栏细胞和表皮细胞之间或栅栏组织细胞自身之间没有明显的细胞间隙(

图2 五种叶斑分型的非斑区域与斑纹区域叶片结构模式
Fig.2 Leaf structure model of non-variegated area and variegated area of five leaf spot types
Ead:近轴表皮细胞;Eab:远轴表皮细胞;Chs:海绵薄壁细胞;Chf:栅栏薄壁细胞;R1、R2、R3:入射光;as:空隙; pi:非光合色素; fu:表皮毛
Ead:Adaxial epidermal cell; Eab: Abaxial epidermal cells; Chs: Spongy chlorenchyma; Chf: Funnel-shaped chlor-enchyma; R1,R2,R3: Incident light; as: Air space; pi: Pigment; fu: Epidermal fur
叶斑的形成除了带来更多的观赏价值,也有一定的生物学意义,能够对植物的生存带来一定的益处。叶绿素型的斑叶植物绿萝大理石皇后(Epipremnum aureum ‘Marble Queen’)叶片白色部分的ORP3基因表达下调,导致大量12-氧植物二烯酸(OPDA,cis(+)-12-oxophytodienoic acid)的积累,上升的12-氧植物二烯酸作为信号分子引起应激和清除活性相关基因的上调表达,导致活性氧(ROS,reactive oxygen species)水平的降低和谷胱甘肽(GSH,glutathione)水平的升高,从而为叶片白斑部分提供生存优
空隙型叶斑是由叶片斑纹区域的栅栏细胞和表皮细胞之间以及栅栏组织自身细胞之间存在明显的细胞间隙造成的(
经过长期进化,部分叶斑特殊的结构和色素含量能保证叶片正常的光合作用。Konoplyova
表皮型叶斑的斑纹区域的表皮细胞大小、形状和外切向细胞壁的厚度不同,或在斑纹区域存在表皮下层细胞(
非光合色素如花青素、黄酮类化合物的局部积累,导致非光合色素型叶斑的形成。非光合色素型叶斑的斑纹为彩色,不为白色或黄绿色(
叶片上非光合色素的积累也对植株的生长有益,卷叶油点百合的叶斑对于幼年期的植物叶片有光保护作用,色素的沉积也能警示食草动物该叶片含有大量酚类等有毒物
附属物型斑纹是由叶片近轴面表皮外附属物(如鳞片、表皮毛、疣突或刺等)分布不均匀引起的(
相比于非斑区域的正常绿色叶片来说,叶绿素型斑叶区域细胞所含叶绿素较少,呈现浅绿色或黄绿色;空隙型斑叶区域细胞更松散、细胞间隙更大,在叶片表面产生亮白色的光斑;表皮型斑叶区域的表皮细胞形状变化或有表皮下层细胞,与非斑区有着不一样的反射光路从而形成白色斑纹;非光合色素型斑叶区域的细胞中有非光合色素(花青素、黄酮类化合物等)的积累,斑纹的颜色即为非光合色素的颜色;附属物型斑叶区域的近轴面表皮上有不均匀分布的表皮毛、鳞片等附属物,附属物自身的颜色以及对于光路的改变导致了斑纹的形成。
除了由某种单独作用形成的叶斑外,还有很多植物叶斑是由两种或两种以上作用联合形成的。如非光合色素的积累和空隙结构共同影响莪术(Curcuma phaeocaulis Valeton
狗枣猕猴桃、欧洲猪牙花斑叶的光合性能良好,不会限制植物的栽培和应
叶绿素型叶斑的形成与质体中色素累积的成分、质体的发育和功能有关,主要是由于叶绿素合成受阻、叶绿素降解、叶绿体发育不完全等原因引起
叶绿素合成首先以谷氨酸作为反应起始物,经过19步化学反应,在18个酶和31个相关基因的参与下,最后形成叶绿素a和叶绿素

图3 叶绿素合成和降解途径及其相关酶和基
Fig.3 Chlorophyll synthesis and degradation pathways and their related enzymes and genes
1: 谷氨酰胺t RNA还原酶; 2: 谷氨酸1-半醛氨基转移酶; 3: 5-氨基乙酰丙酸脱水酶; 4: 胆色素原脱氨酶; 5: 尿卟啉原III合成酶; 6: 尿卟啉原III脱羧酶; 7: 粪卟啉原III氧化酶; 8: 原卟啉原IX氧化酶; 9: 镁鳌合酶; 10: 镁原卟啉IX甲基转移酶; 11: Mg-原卟啉IX单甲酯环化酶; 12: 原叶绿素酯氧化还原酶; 13: 二乙烯还原酶; 14: 叶绿素酸酯a加氧酶; 15: 叶绿素合成酶; 16: 叶绿素b还原酶; 17: 7-羟甲基叶绿素a还原酶; 18: 叶绿素酶;19: 脱镁螯合酶;20: 脱镁叶绿酸a单加氧酶;21:红叶绿素分解代谢物还原酶
1:Glutamine t RNA reductase;2:Glutamate 1-semialdehyde aminotransferase;3:5-aminolevulinic acid dehydratase;4:Hydroxymethylibilane synthase;5:Uroporphyrinogen-III synthase;6:Uroporphyrinogen-III decarboxylase;7:Coporphyrinogen-III oxidase;8:Protoporphyrinogen Ⅸ oxidase;9:Magnesium chelatase;10:Magnesium protoporphyrin IX methyltransferase;11:Mg-protoporphyrin IX monomethylester cyclase;12:Protochlorophyllide oxidoreductase;13:Diethylene reductase;14:Chlorophyllide a oxygenase;15:Chlorophyll synthase;16:Chlorophyll b reductase;17:7-hydroxymethyl chlorophyll a reductase;18:Chlorophyllase;19:Mg-dechelatase;20:Pheide a oxygenase;21:Red chlorophyll catabolite reducase
序号 No. | 斑纹类型 Leaf variegation classification | 中文名 Chinese name | 拉丁学名 Scientific name | 分子机制 Molecular mechanism | 文献 References |
---|---|---|---|---|---|
1 | 叶绿素型 | 贝尔奇卡金哈克勒雷冬青 | Ilex×altaclerensis ‘Belgica Aurea’ | [CRD1、MGD和DGD下调] |
[ |
2 | 叶绿素型 | 黄金葛 | Epipremnum aureum ‘Golden Pothos’ | [CRD1/ZIP表达受损] |
[ |
3 | 叶绿素型 | 文心兰百万金币 | Oncidium ‘Milliongolds’ | CHLH、LHCB7、铁还原蛋白下调,NOL上调 |
[ |
4 | 叶绿素型 | 君子兰 | Clivia miniata var. variegata | CPSAR1、ycf2沉默 |
[ |
5 | 叶绿素型 | 君子兰 | Clivia miniata var. variegata | rpoC2缺失 |
[ |
6 | 叶绿素型 | 青檀Jinyuyuan | Pteroceltis tatarinowii ‘Jinyuyuan’ | W1NV63_AMBTC、HCT、DFR、LAR、PetH下调 |
[ |
7 | 叶绿素型 | 炎陵银边茶 | Camellia sinensis Y‘anlingyinbiancha’ | Z-ISO、ZDS、LUT2、BETA-OHASE_1、ZEP、NCED4、HEMD、PPOX、GUN5、CRD1、PCB2和CH1下调 |
[ |
8 | 叶绿素型 | 炎陵花叶茶 | Camellia sinensis ‘Yanlinghuayecha’ | CsPPOX1、CsLHCB6、CsFdC2和CsSCY1下调 |
[ |
9 | 叶绿素型 | 灰楸Maiyuanjinqiu | Catalpa fargesii ‘Maiyuanjinqiu’ | ALAD、PBGD、CPOX和PPOX的酶活性较低 |
[ |
10 | 叶绿素型 | 金叶玉簪 | Hosta ‘Gold Standard’ | GS1、Hsp70、RBP、PRK和PreP1的差异表达 |
[ |
11 | 叶绿素型 | 常春藤叶仙客 | Cyclamen hederifolium Aiton | 基因间区域rps4-trnT-UGU突变 |
[ |
12 | 叶绿素型 | 墨兰达摩 | Cymbidium sinense ‘Damo’ | CsERF2上调 |
[ |
13 | 叶绿素型 | 向日葵 | Helianthus annuus L. | psaA突变 |
[ |
14 | 叶绿素型 | 黄瓜 | Cucumis sativus L. | Cscs突变 |
[ |
15 | 叶绿素型 | 银杏 | Ginkgo biloba L. | NYC/NOL、Z-ISO、ZDS和 LCYE上调 |
[ |
16 | 叶绿素型 | 尖萼报春苣苔 | Primulina pungentisepala (W. T. Wang) Mich. Möller & A. Weber | HEMC、CHLH下调、CHL2上调 |
[ |
17 | 叶绿素型 | 垂枝银边榕 | Ficus microcarpa ‘Milky Stripe’ | psba、psbb、psbc、psbd下调,clh1、clh2上调 |
[ |
18 | 叶绿素型 | 花叶蝴蝶花 | Iris japonica var. variegata | GLK下调 |
[ |
19 | 叶绿素型 | 光叶百脉根 | Lotus corniculatus subsp. japonicus (Regel) H. Ohashi | SCO2缺失 |
[ |
20 | 叶绿素型 | 台湾蝴蝶兰 | Phalaenopsis aphrodite subsp. Formosana Christenson | PsbP突变 |
[ |
21 | 叶绿素型 | 羽衣甘蓝 | Brassica oleracea var. acephala de Candolle | BoVl突变 |
[ |
22 | 空隙型 | 地钱 | Marchantia polymorpha L. | NOP1突变 |
[ |
23 | 空隙型 | 番茄 | Lvcopersicon esclulenttlum Miller | DCL突变 |
[ |
24 | 空隙型 | 烟草 | Nicotiana tabacum L. | VDL突变 |
[ |
25 | 空隙型 | 拟南芥 | Arabidopsis thaliana (L.) Heynh. | var3突变 |
[ |
26 | 空隙型 | 拟南芥 | Arabidopsis thaliana (L.) Heynh. | 高光下ZAT10、ZAT12表达 |
[ |
27 | 空隙型 | 红车轴草 | Trifolium pratense L. | LHCB亚家族、RBCS家族下调,CESA、CSL、EXP、FLA、PG、PGIP、PLL、PME、RGP、SKS和XTH家族上调 |
[ |
28 | 空隙型 | 尖萼报春苣苔 | Primulina pungentisepala (W. T. Wang) Mich. Möller & A. Weber | XET/H、PE、EXP、CSLD3、ZAT10和VAR3下调 |
[ |
29 | 非光合色素型 | 铁十字秋海棠 | Begonia masoniana Irmsch. | CHS、F3H、F3′H、DFR、UFGT表达 |
[ |
30 | 非光合色素型 | 铁十字秋海棠 | Begonia masoniana Irmsch. | BmaGASA7高表达 |
[ |
31 | 非光合色素型 | 金线兰 | Anoectochilus roxburghii (Wall.) Lindl. | PAL、KAT、CHS 和 AS 下调,PDS 、CrtISO 上调,Deg、SppA、FtsH上调 |
[ |
32 | 非光合色素型 | 矮牵牛属 | Petunia | DPL、PHZ表达 |
[ |
33 | 非光合色素型 | 金鱼草 | Antirrhinum majus L. | AmROSEA1、AmROSEA2、AmVENOSA表达 |
[ |
34 | 非光合色素型 | 亚洲杂交百合 | Lilium spp. | LhMYB6和LhbHLH2、LhMYB12和LhbHLH2共表达 |
[ |
35 | 非光合色素型 | 狗面花属 | Mimulus verbenaceus | STRIPY表达 |
[ |
参考string数据库
Rrefer to string database
叶绿素的含量和蛋白的结构也影响类囊体膜的形成(
(DPs,differential phosphoproteins)的磷酸化水平可能通过调节位于叶绿体和细胞质中酶的活性,从而影响灰楸(Catalpa fargesii ‘Maiyuanjinqiu’)叶斑的形
叶绿素降解主要是将叶绿素a降解为非荧光叶绿素分解代谢物(
在高等植物体中,叶绿体合成了大部分的光合色素,如果叶绿体发育的相关基因变异,则会导致光合色素的合成受阻,最终形成叶斑(
水稻(Oryza sativa L.)中zebra3 突变体通过影响柠檬酸盐的运输和分配,导致叶片中柠檬酸的横向积累不平衡,从而影响叶片上斑纹的空间分
一些跨膜蛋白可以调控细胞分裂,导致细胞间隙的形成,如E3泛素连接酶和HAESA编码的富含亮氨酸重复类受体激酶(LRR-RLKs,Leucine-rich repeat receptor-like protein kinases)可以调控地钱(Marchantia polymorpha L.)的细胞分离,从而形成气
细胞壁是植物细胞膜外起保护和支撑作用的结构,可以通过对细胞扩张的控制来决定细胞的大小和形状,从而塑造各种组织和器官的形态,栅栏细胞形态的改变与细胞壁的建成有关(
花青素是一类水溶性色素,属于类黄酮类物质,在植物体各部位中广泛存在,花青素的合成受到结构基因 (直接编码合成途径中的酶,并受到调节基因的调控) 和调节基因 (主要包括转录因子 MYB、bHLH和WD40的编码基因) 的共同控
调控花青素合成的R2R3-MYB基因在不同空间和时间上的转录水平决定了花青素色素的分
自然选择、适者生存是进化论的基石和生物学最基本的核心问题,叶部性状是观赏植物的重要表型,叶斑的出现不仅促进了自然界中叶表型的多样化,提高了植物的观赏价值和经济价值,同时也反映出植物对于环境适应性和生存技能的提升。探究叶斑形成的机理,对于理解叶斑的功能和适应性进化有着重要意义,也是促进观叶植物资源开发利用的前提。
目前对于叶绿素型和空隙型叶斑的研究较多,主要包括叶绿素每一个合成和降解步骤中相关酶基因的差异表达、叶绿体类囊体膜的发育和色素蛋白的合成、栅栏细胞和细胞壁的发育和形成、叶斑区域差异基因的表达和斑纹处代谢物质的积累。关于非光合色素型叶斑的研究主要包括叶绿素的减少、花青素的积累及其所带来的光保护作用等。表皮型和附属物型叶斑的研究还很少,对于表皮细胞形状变化和附属物形成的机理还有待更多的关注。已有的研究较多聚焦于观赏植物叶斑的形成机制,因此斑叶产生的差异基因CHLH、LHCB亚家族基因等在其他类型的彩叶植物中也有研究,但叶片的颜色变化是如何从叶斑部分发展到整片叶片、导致叶斑部分差异基因表达的原因、斑叶植物的图案形成和叶斑空间分布机制等问题还有待进一步探索。
在已报道的斑叶植物种类中,天南星科(Araceae)的斑叶植物据不完全统计有129种,数量排名大概位于前
参考文献
Hara N. Study of the variegated leaves with special reference to those caused by air spaces. Journal of Japanese Botany, 1957, 16:86-101 [百度学术]
Sheue C R, Pao S H, Chien L F, Chesson P, Peng C I. Natural foliar variegation without costs? The case of Begonia. Annals of Botany, 2012, 109 (6):1065-1074 [百度学术]
张建行. 被子植物叶斑分型及红车轴草斑纹形成相关基因分析. 上海:华东师范大学, 2022 [百度学术]
Zhang J H. Classification of leaf variegation types in angiosperm and variegation related genes of Trifolium pratense.Shanghai: East China Normal University,2022 [百度学术]
王令茹, 徐春霞. 常见彩叶园林植物的分类及其应用. 现代农业科技, 2007 (6):2 [百度学术]
Wang L R,Xu C X.Classification and application of common colored leaf garden plants. Modern Agricultural Sciences and Technology, 2007 (6):2 [百度学术]
袁东升, 李月松, 周洪义. 彩叶植物图鉴. 北京:中国林业出版社, 2015 [百度学术]
Yuan D S,Li Y S,Zhou H Y. Color leaf plant illustration.Beijing: China Forestry Publishing House,2015 [百度学术]
Tsukaya H, Okada H, Mohamed M. A novel feature of structural variegation in leaves of the tropical plant Schismatoglottis calyptrata. Journal of Plant Research, 2004, 117 (6):477-480 [百度学术]
Givnish T J. Leaf mottling: Relation to growth form and leaf phenology and possible role as camouflage. Functional Ecology, 1990, 4 (4):463-474 [百度学术]
Green P S, Erikson R, George A S, Marchant N G, Morcombe M K. Flowers and plants of western Australia. Kew Bulletin, 1975, 30 (1):206 [百度学术]
Ellison A M, Gotelli N J. Evolutionary ecology of carnivorous plants. Trends in Ecology & Evolution, 2001, 16 (11):623-629 [百度学术]
Rocca N L, Pupillo P, Puppi G, Rascio N. Erythronium dens-canis L. (Liliaceae): An unusual case of change of leaf mottling. Plant Physiology and Biochemistry, 2013, 74:108-117 [百度学术]
Lev-Yadun S. Avoiding rather than resisting herbivore attacks is often the first line of plant defence. Biological Journal of the Linnean Society, 2021, 134 (4):775-802 [百度学术]
Lev-Yadun S. The proposed anti-herbivory roles of white leaf variegation. Progress in Botany. Springer, Cham: Springer International Publishing,2015:241-269 [百度学术]
Lev-Yadun S. Why do some thorny plants resemble green zebras? Journal of Theoretical Biology, 2003, 224 (4):483-489 [百度学术]
Lev-Yadun S. Müllerian and batesian mimicry rings of white-variegated aposematic spiny and thorny plants: A hypothesis. Israel Journal of Plant Sciences, 2009, 4 (6):482-483 [百度学术]
Lev-Yadun S. Plant-environment interactions. Berlin, Heidelberg: Springer,2009:167-202 [百度学术]
Lev-Yadun S. Floricuture, ornamental and plant biotechnology. UK: Global science books,2006:292-299 [百度学术]
Lev-Yadun S. Defensive masquerade by plants. Biological Journal of the Linnean Society, 2014, 113 (4):1162-1166 [百度学术]
Lev-Yadun S. Potential defence from herbivory by ‘dazzle effects’ and ‘trickery coloration’ of leaf variegation. Biological Journal of the Linnean Society, 2014, 111 (3):692-697 [百度学术]
Campitelli B E, Stehlik I, Stinchcombe J R. Leaf variegation is associated with reduced herbivore damage in Hydrophyllum virginianum. Botany, 2008, 86 (3):306-313 [百度学术]
梁俊香. 室内观叶植物的应用及前景分析. 中国园艺文摘, 2009, 25 (2):29-30 [百度学术]
Liang J X. Application and prospect analysis of indoor foliage plants. Chinese Horticulture Abstracts, 2009, 25 (2):29-30 [百度学术]
李卫星, 蒋菲, 马江黎, 王金艳, 杨舜博, 陈鹏. 银杏斑叶超微结构观察及叶绿素含量分析. 扬州大学学报:农业与生命科学版, 2016, 37 (1):103-107 [百度学术]
Li W X,Jiang F,Ma J L,Wang J Y,Yang S B,Chen P. Ultrastructure and chlorophyll contents of the variegated leaves in Ginkgo biloba L. Journal of Yangzhou University: Agricultural and Life Science Edition, 2016, 37 (1):103-107 [百度学术]
Yang Y, Medecilo-Guiang M M P, Yang L, Huang B, He J, Chen P. Structure and characteristics of foliar variegation in four species of medicinal Zingiberaceae. Brazilian Journal of Botany, 2023, 46:423-432 [百度学术]
许庆全, 杨凤玺, 叶庆生, 朱根发. 墨兰‘达摩’叶艺品系光合色素含量、叶绿素荧光特性和叶绿体超微结构的比较. 热带作物学报, 2017, 38 (7):1210-1215 [百度学术]
Xu Q Q,Yang F X,Ye Q S,Zhu G F.Comparison of photosynthetic pigments content, chlorophyll fluorescence kinetics parameters and chloroplast ultrastructure of leaf mutant cultivars of cymbidium sinense ‘Damo’. Chinese Journal of Tropical Crops, 2017, 38 (7):1210-1215 [百度学术]
何庆龄. 花叶蝴蝶花杂色叶片形成的生理及转录组学研究. 成都:四川农业大学, 2022 [百度学术]
He Q L. Physiology and transcriptome analysis of variegated leaf formation in iris japonica var. variegata.Chengdu: Sichuan Agricultural University,2022 [百度学术]
邹晓. 羽衣甘蓝白绿花斑叶基因BoVl的精细定位. 沈阳:沈阳农业大学, 2023 [百度学术]
Zou X. Fine mapping of BoVl conferring a variegated leaf phenotype in ornamental kale.Shenyang: Shenyang Agricultural University,2023 [百度学术]
Sun Y H, Hung C Y, Qiu J, Chen J J, Kittur F S, Oldham C E, Henny R J, Burkey K O, Fan L, Xie J. Accumulation of high OPDA level correlates with reduced ROS and elevated GSH benefiting white cell survival in variegated leaves. Scientific Reports, 2017, 7:44158 [百度学术]
Abadie C, Lamothe-Sibold M, Gilard F, Tcherkez G. Isotopic evidence for nitrogen exchange between autotrophic and heterotrophic tissues in variegated leaves. Functional Plant Biology, 2016, 43 (3):298-306 [百度学术]
Abadie C, Lamothe M, Mauve C, Gilard F, Tcherkez G. Leaf green-white variegation is advantageous under N deprivation in Pelargonium × hortorum. Functional Plant Biology, 2015, 42 (6):543-551 [百度学术]
Milic D, Zivanovic B, Samardzic J, Nikolic N, Cukier C, Limami A M, Vidovic M. Carbon and nitrogen allocation between the sink and source leaf tissue in response to the excess excitation energy conditions. International Journal of Molecular Sciences, 2023, 24 (3):2269 [百度学术]
Vidovic M, Morina F, Milic S, Albert A, Zechmann B, Tosti T, Winkler J B, Jovanovic S V. Carbon allocation from source to sink leaf tissue in relation to flavonoid biosynthesis in variegated Pelargonium zonale under UV-B radiation and high PAR intensity. Plant Physiology and Biochemistry, 2015, 93:44-55 [百度学术]
Zhang Z, Liu Z, Song H, Chen M, Cheng S. Protective role of leaf variegation in pittosporum tobira under low temperature: Insights into the physio-biochemical and molecular mechanisms. International Journal of Molecular Sciences, 2019, 20 (19):4857 [百度学术]
王振兴. 狗枣猕猴桃彩叶形成及其光合功能研究. 北京:中国农业科学院, 2018 [百度学术]
Wang Z X. Actinidia kolomikta (Rupr. & Maxim.) maxim variegated leaf formation and photosynthetic function. Beijing: Chinese Academy of Agricultural Sciences,2018 [百度学术]
杜文文, 段青, 马璐琳, 瞿素萍, 贾文杰, 王祥宁, 崔光芬. 7种秋海棠叶片斑纹结构及遗传特性分析. 西北植物学报, 2018, 38 (11):2045-2052 [百度学术]
Du W W,Duan Q,Ma L L,Qu S P,Jia W J,Wang X N,Cui G F. Analysis of foliar variegation structure and genetic characteristics of seven begonia species. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38 (11):2045-2052 [百度学术]
Fooshee W C, Henny R J. Chlorophyll leaves and anatomy of variegated and nonvarigated areas of Aglaonema nitudum leaves. Proceedings of the Florida State Horticultural Society, 1991,103:170-172 [百度学术]
杜文文, 崔光芬, 王继华, 段青, 马璐琳, 贾文杰, 王祥宁. 古林箐秋海棠叶斑结构对叶色的影响. 广西植物, 2019, 39 (6):812-820 [百度学术]
Du W W,Cui G F,Wang J H,Duan Q,Ma L L,Jia W J,Wang X N. Effects of foliar variegation structure on leaf color in Begonia gulinqingensis. Guihaia, 2019, 39 (6):812-820 [百度学术]
Pao S H, Liu J W, Yang J Y, Chesson P, Sheue C R. Uncovering the mechanisms of novel foliar variegation patterns caused by structures and pigments. Taiwania, 2020, 65 (1):74-80 [百度学术]
Esteban R, Fernandez-Marin B, Becerril J M, Garcia-Plazaola J I. Photoprotective implications of leaf variegation in E. dens-canis L. and P. officinalis L. Journal of Plant Physiology, 2008, 165 (12):1255-1263 [百度学术]
Konoplyova A, Petropoulou Y, Yiotis C, Psaras G K, Manetas Y. The fine structure and photosynthetic cost of structural leaf variegation. Flora - Morphology, Distribution, Functional Ecology of Plants, 2008, 203 (8):653-662 [百度学术]
崔卫华, 管开云. 中国秋海棠属植物叶片斑纹多样性研究. 植物分类与资源学报, 2013, 35 (2):119-127 [百度学术]
Cui W H,Guan K Y. Diversity of leaf variegation in chinese begonias. Plant Diversity and Resources, 2013, 35 (2):119-127 [百度学术]
Klancnik K, Levpuscek M, Gaberscik A. Variegation and red abaxial epidermis define the leaf optical properties of Cyclamen purpurascens. Flora, 2016, 224:87-95 [百度学术]
Rocca N L, Rascio N, Pupillo P. Variegation in Arum italicum leaves. A structural-functional study. Plant Physiology and Biochemistry, 2011, 49 (12):1392-1398 [百度学术]
Shelef O, Summerfield L, Lev-Yadun S, Villamarin-Cortez S, Sadeh R, Herrmann I, Rachmilevitch S. Thermal benefits from white variegation of silybum marianum leaves. Frontiers in Plant Science, 2019, 10:688 [百度学术]
Chen Y S, Chesson P, Wu H W, Pao S H, Liu J W, Chien L F, Yong J W H, Sheue C R. Leaf structure affects a plant’s appearance: Combined multiple-mechanisms intensify remarkable foliar variegation. Journal of Plant Research, 2017, 130:311-325 [百度学术]
Mwafongo E, Vollsnes A V, Bjorå C S, Nordal I, Eriksen A B. Leaf mottling/variegation and shape in the Ledebouria revoluta complex-Development, stability and putative function. Flora, 2017, 236-237:33-43 [百度学术]
Cooney L J, Klink J W V, Hughes N M, Perry N B, Schaefer H M, Menzies I J, Gould K S. Red leaf margins indicate increased polygodial content and function as visual signals to reduce herbivory in Pseudowintera colorata. New Phytologist, 2012, 194 (2):488-497 [百度学术]
Ranjetta P, Rahmad Z, Vikneswaran M, Sreeramanan S, Ganapathi T R. Autofluorescence study and selected cyanidin quantification in the Jewel orchids Anoectochilus sp. and Ludisia discolor. PLoS ONE, 2018, 13 (4):e0195642 [百度学术]
Sui J X, Wen M X, Jia L L, Chen Y J, Li C H, Zhang L. Effects of elevated ozone on polka dot plant (Hypoestes phyllostachya) with variegated leaves. Bulletin of Environmental Contamination and Toxicology, 2017, 99:445-451 [百度学术]
Wang Z X, Fan S T, Chen L, Zhao Y, Yang Y M, Ai J, Li X Y, Liu Y X, Qin H Y. Actinidia kolomikta leaf colour and optical characteristics. Biologia Plantarum, 2015, 59 (4):767-772 [百度学术]
王振兴, 曹建冉, 秦红艳, 赵滢, 陈丽, 艾军, 刘涛. 狗枣猕猴桃彩叶色素含量和结构共同影响叶色. 植物生理学报, 2016, 52 (12):1921-1926 [百度学术]
Wang Z X,Cao J R,Qing H Y,Zhao Y,Chen L,Ai J,Liu T. Common effect of pigment content and leaf structure on leaf color in Actinidia kolomikta. Plant Physiology Journal, 2016, 52 (12):1921-1926 [百度学术]
王萌, 赵虎, 赵曾菁, 孟生德, 吴星, 王日升. 辣椒彩色斑叶突变体叶片显微结构及超微结构研究. 西北植物学报, 2022, 42 (4):600-608 [百度学术]
Wang M,Zhao H,Zhao Z J,Meng S D,Wu X,Wang R S. Study on leaf microstructure and ultrastructure of pepper color spot leaf mutant. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42 (4):600-608 [百度学术]
Wang Z X, Yang Y M, Xu P L, Yu Y F, Chen L, Liu Y X, Li X Y, Zhao Y, Qin H Y, Ai J, Wang C W, Sun D. Do naturally variegated leaves have a high photosynthetic cost? The case of Actinidia kolomikta (Rupr. & Maxim.) Maxim. Agronomy Journal, 2016, 108 (1):407-414 [百度学术]
徐明远, 何鹏, 赖伟, 陈梁海, 戈伶俐, 刘世强, 杨寅桂. 植物叶色变异分子机制研究进展. 分子植物育种, 2021, 19 (10):3448-3455 [百度学术]
Xu M Y,He P,Lai W,Chen L H,Ge L L,Liu S Q,Yang Y G. Advances in molecular mechanism of plant leaf color variation. Molecular Plant Breeding, 2021, 19 (10):3448-3455 [百度学术]
Zhang Q, Huang J, Zhou P, Hao M, Zhang M. Cytological and transcriptomic analysis provide insights into the formation of variegated leaves in Ilex * altaclerensis ‘Belgica Aurea’. Plants, 2021, 10 (3):552 [百度学术]
Hung C Y, Zhang J, Bhattacharya C, Li H, Xie J. Transformation of long-lived albino Epipremnum aureum ‘Golden Pothos’ and restoring chloroplast development. Frontiers in Plant Science, 2021, 12:647507 [百度学术]
Qiao Q, Wu C, Cheng T T, Yan Y, Zhang L, Wan Y L, Wang J W, Liu Q Z, Feng Z, Liu Y. Comparative analysis of the metabolome and transcriptome between the green and yellow-green regions of variegated leaves in a mutant variety of the tree species Pteroceltis tatarinowii. International Journal of Molecular Sciences, 2022, 23 (9):4950 [百度学术]
Mao L, Zou Q, Sun Z, Dong Q, Cao X. Insights into chloroplast genome structure, intraspecific variation, and phylogeny of Cyclamen species (Myrsinoideae). Scientific Reports, 2023, 13 (1):87 [百度学术]
Gao J, Liang D, Xu Q, Yang F, Zhu G. Involvement of CsERF2 in leaf variegation of Cymbidium sinense 'Dharma'. Planta, 2020, 252:29 [百度学术]
Wang Q M, Cui J, Dai H, Zhou Y, Li N, Zhang Z. Comparative transcriptome profiling of genes and pathways involved in leaf-patterning of Clivia miniata var. variegata. Gene, 2018, 677:280-288 [百度学术]
Wang Q M, Wang L, Zhou Y B, Cui J G, Wang Y Z, Zhao C M. Leaf patterning of Clivia miniata var. variegata is associated with differential DNA methylation. Plant Cell Reports, 2016, 35:167-184 [百度学术]
Wu Y M, Zheng Y, Xu W M, Zhang Z H, Li L J, Wang Y C, Cui J G, Wang Q M. Chimeric deletion mutation of rpoC2 underlies the leaf-patterning of Clivia miniata var. variegata. Plant Cell Reports, 2023, 42:1419-1431 [百度学术]
田韦韦. 文心兰浅绿条纹突变体的生理及分子基础研究. 北京:中国林业科学研究院, 2017 [百度学术]
Tian W W.Physiological and molecular basic research of light green stripe mutant in Oncidium ‘Milliongolds’.Beijing: Chinese Academy of Forestry,2017 [百度学术]
展艳, 周利斌, 金文杰, 杜艳, 余丽霞, 曲颖, 马永贵, 刘瑞媛. 辐射诱导植物叶色突变的研究进展. 生物技术通报, 2023, 39 (8):106-113 [百度学术]
Zhan Y,Zhou L B,Jin W J,Du Y,Yu L X,Qu Y,Ma Y G,Liu R Y. Research progress in plant leaf color mutation induced by radiation. Biotechnology Bulletin, 2023, 39 (8):106-113 [百度学术]
Chen L, Lai J, He T, Rong J, Tarin M W K, Zheng Y. Differences in photosynthesis of variegated temple bamboo leaves with various levels of variegation are related to chlorophyll biosynthesis and chloroplast development. Journal of the American Society for Horticultural Science, 2018, 143 (2):144-153 [百度学术]
Wang L, Yue C, Cao H L, Zhou Y H, Zeng J M. Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar. BMC Plant Biology, 2014, 14:352 [百度学术]
Shen J Z, Zou Z W, Zhang X Z, Zhou L, Wang Y H, Fang W P, Zhu X J. Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant (Camellia sinensis L.) cultivars. Horticulture Research, 2018, 5:7 [百度学术]
Gao X, Zhang C, Lu C, Wang M, Xie N, Chen J, Li Y, Chen J, Shen C. Disruption of photomorphogenesis leads to abnormal chloroplast development and leaf variegation in Camellia sinensis. Frontiers in Plant Science, 2021, 12:720800 [百度学术]
Xie N, Zhang C, Zhou P, Gao X, Wang M, Tian S, Lu C, Wang K, Shen C. Transcriptomic analyses reveal variegation-induced metabolic changes leading to high L-theanine levels in albino sectors of variegated tea (Camellia sinensis). Plant Physiology and Biochemistry, 2021, 169:29-39 [百度学术]
Wang N, Zhu T, Lu N, Wang Z, Yang G, Qu G, Kong L, Zhang S, Ma W, Wang J. Quantitative phosphoproteomic and physiological analyses provide insights into the formation of the variegated leaf in Catalpa fargesii. International Journal of Molecular Sciences, 2019, 20 (8):1895 [百度学术]
Yu J J, Zhang J Z, Zhao Q, Liu Y L, Chen S X, Guo H L, Shi L, Dai S J. Proteomic analysis reveals the leaf color regulation mechanism in Chimera Hosta “Gold Standard” leaves. International Journal of Molecular Sciences, 2016, 17 (3):346 [百度学术]
Azarin K, Usatov A, Makarenko M, Kozel N, Kovalevich A, Dremuk I, Yemelyanova A, Logacheva M, Fedorenko A, Averina N. A point mutation in the photosystem I P700 chlorophyll a apoprotein A1 gene confers variegation in Helianthus annuus L.. Plant Molecular Biology, 2020, 103 (4-5):373-389 [百度学术]
Cao W, Du Y, Wang C, Xu L, Wu T. Cscs encoding chorismate synthase is a candidate gene for leaf variegation mutation in cucumber. Breeding Science, 2018, 68 (5):571-581 [百度学术]
Li W X, Yang S B, Lu Z, He Z C, Ye Y L, Zhao B B, Wang L, Jin B. Cytological, physiological, and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L.. Horticulture Research, 2018, 5:12 [百度学术]
Chen J C, Li Y Y, He D, Bai M, Li B, Zhang Q X, Luo L. Cytological, physiological and transcriptomic analysis of variegated Leaves in Primulina pungentisepala offspring. BMC Plant Biology, 2022, 22:419 [百度学术]
Shih T H, Lin S H, Huang M Y, Huang W D, Yang C M. Transcriptome profile of the variegated Ficus microcarpa c.v. Milky Stripe Fig leaf. International Journal of Molecular Sciences, 2019, 20 (6):1338 [百度学术]
Zagari N, Sandoval-Ibanez O, Sandal N, Su J, Rodriguez-Concepcion M, Stougaard J, Pribil M, Leister D, Pulido P. SNOWY COTYLEDON 2 promotes chloroplast development and has a role in leaf variegation in both Lotus japonicus and Arabidopsis thaliana. Molecular Plant, 2017, 10 (5):721-734 [百度学术]
Tsai C C, Wu Y J, Sheue C R, Liao P C, Chen Y H, Li S J, Liu J W, Chang H T, Liu W L, Ko Y Z, Chiang Y C. Molecular basis underlying leaf variegation of a moth orchid mutant (Phalaenopsis aphrodite subsp formosana). Frontiers in Plant Science, 2017, 8:1333 [百度学术]
Ren J, Zou J, Zou X, Song G, Gong Z, Liu Z, Ji R, Feng H. Fine mapping of BoVl conferring the variegated leaf in ornamental kale (Brassica oleracea var. acephala). International Journal of Molecular Sciences, 2022, 23 (23):14853 [百度学术]
Kim S H, Kwon C T, Song G, Koh H J, An G, Paek N C. The rice zebra3 (z3) mutation disrupts citrate distribution and produces transverse dark-green/green variegation in mature leaves. Rice, 2018, 11:1 [百度学术]
Hung C Y, Umstead M L, Chen J J, Holliday B M, Kittur F S, Henny R J, Burkey K O, Xie J H. Differential expression of a novel gene EaF82a in green and yellow sectors of variegated Epipremnum aureum leaves is related to uneven distribution of auxin. Physiologia Plantarum, 2014, 152 (4):749-762 [百度学术]
Ishizaki K. Development of schizogenous intercellular spaces in plants. Frontiers in Plant Science, 2015, 6:497 [百度学术]
Ishizaki K, Mizutani M, Shimamura M, Masuda A, Nishihama R, Kohchi T. Essential role of the E3 ubiquitin ligase NOPPERABO1 in schizogenous intercellular space formation in the liverwort Marchantia polymorpha. Plant Cell, 2013, 25 (10):4075-4084 [百度学术]
Keddie J S, Carroll B, Jones J D, Gruissem W. The DCL gene of tomato is required for chloroplast development and palisade cell morphogenesis in leaves. The EMBO Journal, 1996, 15 (16):4208-4217 [百度学术]
Wang Y, Duby G, Purnelle B, Boutry M. Tobacco VDL gene encodes a plastid DEAD box RNA helicase and is involved in chloroplast differentiation and plant morphogenesis. The Plant Cell, 2000, 12 (11):2129-2142 [百度学术]
Naested H, Holm A, Jenkins T, Nielsen H B, Harris C A, Beale M H, Andersen M, Mant A, Scheller H, Camara B, Mattsson O, Mundy J. Arabidopsis VARIEGATED 3 encodes a chloroplasttargeted, zinc-finger protein required for chloroplast and palisade cell development. Journal of Cell Science, 2004, 117 (20):4807-4818 [百度学术]
Munekage Y N, Inoue S, Yoneda Y, Yokota A. Distinct palisade tissue development processes promoted by leaf autonomous signalling and long-distance signalling in Arabidopsis thaliana. Plant Cell and Environment, 2015, 38 (6):1116-1126 [百度学术]
庄维兵, 刘天宇, 束晓春, 渠慎春, 翟恒华, 王涛, 张凤娇, 王忠. 植物体内花青素苷生物合成及呈色的分子调控机制. 植物生理学报, 2018, 54 (11):1630-1644 [百度学术]
Zhuang W B,Liu T Y,Su X C,Qu S C,Zhai H H,Wang T,Zhang F J,Wang Z. The molecular regulation mechanism of anthocyanin biosynthesis and coloration in plants. Plant Physiology Journal, 2018, 54 (11):1630-1644 [百度学术]
杨婷, 薛珍珍, 李娜, 郎校安, 李凌飞, 钟春梅. 铁十字秋海棠斑叶发育过程内参基因筛选及验证. 园艺学报, 2021, 48 (11):2251-2261 [百度学术]
Yang T,Xue Z Z,Li N,Lang X A,Li L F,Zhong C M. Reference genes selection and validation in Begonia masoniana leaves of different developmental stages. Acta Horticulturae Sinica, 2021, 48 (11):2251-2261 [百度学术]
薛珍珍, 关鸿发, 李娜, 李凌飞, 钟春梅. 铁十字秋海棠GASA家族全基因组鉴定及叶斑形成的初步探索. 园艺学报, 2023, 50 (7):1482-1494 [百度学术]
Xue Z Z,Guan H F,Li N,Li L F,Zhong C M. Genome-wide identification of GASA family and preliminary exploration of leaf variegation formation in Begonia masoniana. Acta Horticulturae Sinica, 2023, 50 (7):1482-1494 [百度学术]
孙美. 金线兰叶斑和叶色的结构基础及相关基因的筛选. 上海:华东师范大学, 2022 [百度学术]
Sun M. Structural basis of leaf variegation and ground colour of Anoectochilus roxburghii and the screening of related genes.Shanghai: East China Normal University,2022 [百度学术]
Yamagishi M. How genes paint lily flowers: Regulation of colouration and pigmentation patterning. Scientia Horticulturae, 2013, 163:27-36 [百度学术]
Albert N W, Lewis D H, Zhang H, Schwinn K E, Jameson P E, Davies K M. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant Journal, 2011, 65 (5):771-784 [百度学术]
Schwinn K, Venail J, Shang Y J, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C. A small family of MYB-Regulatory genes controls floral pigmentation intensity and patterning in the Genus Antirrhinum. Plant Cell, 2006, 18 (4):831-851 [百度学术]
Shang Y J, Venail J, Mackay S, Bailey P C, Schwinn K E, Jameson P E, Martin C R, Davies K M. The molecular basis for venation patterning of pigmentation and its effect on pollinator attraction in flowers of Antirrhinum. The New Phytologist, 2011, 189 (2):602-615 [百度学术]
Yamagishi M, Shimoyamada Y, Nakatsuka T, Masuda K. Two R2R3-MYB genes, homologs of Petunia AN2, regulate anthocyanin biosyntheses in flower tepals, tepal spots and leaves of Asiatic hybrid Lily. Plant and Cell Physiology, 2010, 51 (3):463-474 [百度学术]
Lafountain A M, Mcmahon H E, Reid N M, Yuan Y W. To stripe or not to stripe: The origin of a novel foliar pigmentation pattern in monkeyflowers (Mimulus). New Phytologist, 2023, 237 (1):310-322 [百度学术]
Cao Z, Sui S Z, Yang Q, Deng Z N. A single gene controls leaf background color in caladium (Araceae) and is tightly linked to genes for leaf main vein color, spotting and rugosity. Horticulture Research, 2017, 4:16067 [百度学术]
Khalekuzzaman M, Kim K J, Kim H J, Jung H H, Jang H S. Comparison of green and variegated foliage plant species based on chlorophyll fluorescence parameters under different light intensities. Pakistan Journal of Botany, 2015, 47 (5):1709-1715 [百度学术]
Mishra L S, Funk C. The FtsHi enzymes of Arabidopsis thaliana: Pseudo-proteases with an important function. International Journal of Molecular Sciences, 2021,22(11):5917 [百度学术]