摘要
NAC转录因子家族在调节植物的生长发育中发挥着重要的作用,在模式植物、作物中已进行了大量研究,但是在观赏植物中的研究还缺乏系统性的梳理和探讨。本综述介绍了NAC转录因子的结构和分类,并梳理了2004 -2023年NAC转录因子在观赏植物器官生长发育和胁迫响应上的生物学功能研究,其中观赏植物器官生长发育主要集中在叶缘形态建成、花器官发育、叶片衰老、花瓣衰老、种球休眠5个方面,胁迫响应则集中在干旱、盐、碱、冷、热等非生物胁迫,在生物胁迫中报道较少。最后,鉴于观赏植物NAC转录因子大部分都还停留在生物信息学分析以及表达模式分析等功能初探阶段,本文在结合观赏植物全基因组测序继续开展NAC转录因子鉴定研究、挖掘观赏植物中与模式植物存在不同作用机制的NAC转录因子、解析观赏植物NAC转录因子与其他转录因子间的调控网络、加快利用推进基因工程或编辑技术开展观赏植物的分子育种工作等4个方面,对未来NAC转录因子在观赏植物中的研究提出了展望。
转录因子是一类能与基因5′端上游特定序列专一性结合,从而保证目的基因以特定的强度在特定的时间与空间表达的蛋白质分
物种 Species | 数量 Number | 参考文献 Reference |
---|---|---|
铁皮石斛 Dendrobium officinale Kimura et Migo. | 91 |
[ |
小兰屿蝴蝶兰 Phalaenopsis equestris (Schauer) Rchb. | 86 |
[ |
碧冬茄(矮牵牛) Petunia × hybrida hort. ex Vilm. | 41 |
[ |
梅 Prunus mume Siebold & Zucc. | 129 |
[ |
紫花苜蓿 Medicago sativa L. | 113 |
[ |
黄花苜蓿 Medicago falcata L. | 146 |
[ |
木樨(桂花) Osmanthus fragrans Lour. | 119 |
[ |
甘菊 Chrysanthemum lavandulifolium (Fisch.ex Trautv.) Ling et Shih | 123 |
[ |
野菊 Chrysanthemum nankingense Hand.-Mazz. | 153 |
[ |
向日葵 Helianthus annuus L. | 150 |
[ |
月季花 Rosa chinensis Jacq. | 116 |
[ |
莲(荷花) Nelumbo nucifera Gaertn. | 82 |
[ |
单叶蔷薇 Rosa persica Michx. ex Juss. | 118 |
[ |
NAC转录因子具有独特的结构特征,由保守的N端蛋白结构域(PBD, protein binding domain)和多变的C端转录调控区(TRR, transcription regulatory region)组成。N末端由约150个氨基酸组成,可与DNA和其他蛋白质结合,并包含5个亚结构域(A、B、C、D、E)。其中,A区、C区和D区在不同物种中高度保守,而B区和E区相对可变,可能与NAC基因的功能多样性有关;C区和D区含有预测的核定位信号(NLS, nuclear localization signal),这可能与转录因子的核定位和识别靶基因启动子区域的特定顺式作用元件有关,少数NAC蛋白在亚结构域D有1个负调控结构域(NRD, negative regulatory domain),可以抑制转录活性;D区和E区负责与DNA的物理结

图1 NAC转录因子的基本结构
Fig.1 Basic traits of NAC transcription factors
根据系统的比较基因组分析和系统发育分析,Pereira-Santana
叶缘是植物种类识别和分类的一个重要依据,主要可分为全缘、波状、锯齿和牙齿等,其中叶缘锯齿在叶片的水分利用和运输效率、适应低温和对外防御等方面具有重要影响,受到激素、转录因子、环境等多种因素的共同调
在金鱼草(Antirrhinum majus L.)中,CUC同系物CUP(CUPULIFORMIS)基因的突变体表现出顶端分生组织缺失和子叶融合,表明CUC类基因在边界建立和器官分离中具有保守的功
开花是观赏植物个体发育很重要的一个环节,在不同的观赏植物群体中,花器官在数量、类型、大小、形状、颜色、气味和排列上表现出巨大的差异,因此,阐明导致花器官差异的发育和进化机制对于全面理解花多样性的原因至关重
叶片衰老是植物叶片发育的最后阶段,是分子、细胞和器官水平上受到精细调控的复杂生物学过程。其中,NAC家族在叶片衰老的调控中起着至关重要的作用,已经在作物中得到了大量的研
花瓣衰老通常被归类为一种程序性细胞死亡(PCD, programmed cell death)过程,在发育过程中由多个基因控
种球休眠指大多数球根花卉在生长发育过程中遇到不良条件时,为了适应环境而进入生长相对迟缓或无可见生长发育迹象的阶段,种植未完全解除休眠的种球容易导致出苗不齐、花期不一致等问题,解除休眠是一个复杂的生理过程,受多种植物激素的调节。在唐菖蒲(Gladiolus gandavensis Van Houtte)栽培品种中,脱落酸是抑制唐菖蒲球茎休眠解除的一种关键植物激素,GhNAC83负调控一个脱落酸信号调节蛋白GhPP2C1(PROTEIN PHOSPHATASE 2C1),通过直接结合GhPP2C1和细胞分裂素(CK, cytokinin)生物合成基因GhIPT(ISOPENTENYLTRANSFERASE)的启动子并抑制它们的表达,进而促进脱落酸的生物合成和抑制细胞分裂素的生物合成,最终延迟唐菖蒲球茎休眠解
上述研究表明,在观赏植物器官生长发育过程中,NAM/CUC-PIN-IAA模型除了影响叶缘形态建成,也可能调控观赏植物花器官发育,而miR164作为转录后水平上NAC基因表达的负调控因子,在观赏植物叶缘形态建成、花器官发育和叶片衰老中的功能具有一定的保守性。此外,生长素、脱落酸、赤霉素、水杨酸、乙烯等多种植物激素介导NAC转录因子和下游基因的表达,同时伴随叶绿素、活性氧等次生代谢产物的合成,共同调控观赏植物器官的生长发育(

图2 NAC转录因子在观赏植物器官生长发育中的调控网络
Fig.2 Regulatory network of NAC transcription factors in the growth and development of ornamental plant organs
IAA:生长素;Chlorophyl:叶绿素;GAs:赤霉素;Ethylene:乙烯;ABA:脱落酸;SA:水杨酸;ROS:活性氧;CK:细胞分裂素
IAA: Auxin; GAs: Gibberellin; ABA : Abscisic acid; SA: Salicylic acid; ROS: Reactive oxygen species; CK: Cytokinin
研究表明,NAC转录因子在观赏植物胁迫响应中起着重要调控作用,且大部分集中在干旱、盐、碱、冷、热等非生物胁迫(
基因 Gene | 物种 Species | 非生物胁迫类型 Abiotic stress types | 研究方法 Research method | 响应结果 Response result | 参考文献 Reference |
---|---|---|---|---|---|
MsNAC001、MsNAC058 | 紫花苜蓿 | 干旱、盐 | 过表达 | 正调控耐盐性、耐旱性 |
[ |
MsNAC2 | 紫花苜蓿 | 干旱、盐、冷 | 过表达 | 调控植株抗逆性 |
[ |
MsNAC3 | 紫花苜蓿 | 干旱、盐、冷 | qRT-PCR | 正调控植株抗逆性 |
[ |
MsNAC37 | 紫花苜蓿 | 盐、碱 | qRT-PCR | 正调控耐盐碱性 |
[ |
MtNAC51 | 紫花苜蓿 | 干旱、碱、冷 | qRT-PCR | 正调控植株抗逆性 |
[ |
MfNACsa | 黄花苜蓿 | 干旱 | 过表达 | 正调控耐旱性 |
[ |
MfNAC37 | 黄花苜蓿 | 盐 | qRT-PCR | 正调控耐盐性 |
[ |
MfNAC48 | 黄花苜蓿 | 干旱、盐、冷 | qRT-PCR | 调控植株抗逆性 |
[ |
MfNAC87、MfNAC63 | 黄花苜蓿 | 干旱、盐、冷 | 过表达 | 调控植株抗逆性 |
[ |
MfNAC95 | 黄花苜蓿 | 盐 | qRT-PCR | 正调控耐盐性 |
[ |
LpNAC5 | 山丹(细叶百合) | 干旱、盐、碱 | 过表达 | 正调控耐盐碱性、耐旱性 |
[ |
LpNAC6 | 山丹(细叶百合) | 干旱、盐、碱 | 过表达 | 正调控耐盐碱性,负调控耐旱性 |
[ |
LpNAC13 | 山丹(细叶百合) | 干旱、盐 | 过表达 | 正调控耐盐性,负调控耐旱性 |
[ |
LpNAC17 | 山丹(细叶百合) | 盐 | 过表达 | 正调控耐盐性 |
[ |
LpNAC20 | 山丹(细叶百合) | 盐 | 过表达 | 正调控耐盐性 |
[ |
RhNAC2 | 现代月季 | 脱水 | 基因沉默、过表达 | 正调控脱水耐受性 |
[ |
RhNAC3 | 现代月季 | 脱水 | 基因沉默、过表达 | 正调控脱水耐受性 |
[ |
RhATAF1 | 现代月季 | 脱水 | qRT-PCR | 正调控脱水耐受性 |
[ |
RhNAC31 | 现代月季 | 干旱、盐、冷 | 过表达 | 正调控植株抗逆性 |
[ |
RcNAC72 | 月季花 | 干旱、盐、热 | 基因沉默、过表达 | 正调控植株抗逆性 |
[ |
RcNAC29 | 月季花 | 热 | qRT-PCR | 正调控耐热性 |
[ |
RcNAC091 | 月季花 | 脱水 | 基因沉默 | 正调控脱水耐受性 |
[ |
PmNACs | 梅 | 冷 | qRT-PCR | 正调控耐寒性 |
[ |
PmNAC17、PmNAC42 | 梅 | 冷 | qRT-PCR | 正调控耐寒性 |
[ |
CpNAC8 | 蜡梅 | 干旱、盐 | 过表达 | 负调控耐盐性,正调控耐旱性 |
[ |
CpNAC68 | 蜡梅 | 盐、冷、热 | 过表达 | 正调控植株抗逆性 |
[ |
ClNAC9 | 甘菊 | 干旱、盐、碱 | 过表达 | 正调控耐盐碱性和耐旱性 |
[ |
DlNAC1(ClNAC1) | 甘菊 | 干旱、盐、热 | 过表达 | 正调控植株抗逆性 |
[ |
DgNAC1 | 菊花 | 干旱、盐 | 过表达 | 正调控耐盐性 |
[ |
OfNACs | 木樨(桂花) | 冷 | qRT-PCR | 正调控耐寒性 |
[ |
HaNACs | 向日葵 | 干旱、盐 | qRT-PCR | 调控植株抗逆性 |
[ |
RpNACs | 单叶蔷薇 | 干旱 | qRT-PCR | 正调控耐旱性 |
[ |
NtNAC1、NtNAC2 | 水仙 | 干旱、盐 | 过表达 | 正调控耐盐性、耐旱性 |
[ |
NnNAC35 | 莲(荷花) | 盐、碱 | 基因沉默、过表达 | 负调控耐盐碱性 |
[ |
RhNAC29、RhNAC72 | 海南杜鹃 | 热 | qRT-PCR | 正调控耐热性 |
[ |
AfNACs | 木茼蒿 | 冷 | qRT-PCR | 正调控耐寒性 |
[ |
MwNACs | 武当玉兰 | 冷 | qRT-PCR | 正调控耐寒性 |
[ |
PhNAC1 | 蝴蝶兰 | 冷 | qRT-PCR | 正调控耐寒性 |
[ |
LlNAC2 | 卷丹 | 干旱、盐、冷 | 过表达 | 正调控植株抗逆性 |
[ |
LlNAC014 | 麝香百合 | 热 | 基因沉默、过表达 | 正调控耐热性 |
[ |
MbNAC25 | 山荆子 | 干旱、盐、冷 | 过表达 | 正调控植株抗逆性 |
[ |
RsNACs | 木槿 | 镉 | qRT-PCR | 正调控耐镉性 |
[ |
PpNACs | 草地早熟禾 | 镉、干旱、盐、冷、热 | qRT-PCR | 调控植株抗逆性 |
[ |
FaNAC74 | 高羊茅 | 热 | 过表达 | 正调控耐热性 |
[ |
CtNAC2 | 海州常山 | 盐 | qRT-PCR | 正调控耐盐性 |
[ |
水分胁迫是指土壤缺水而明显抑制植物生长的现象,脱水会导致植株叶片、花瓣萎蔫,但在水分充足条件下又可以得到恢复。干旱缺水是水分胁迫最常见的诱发因素,会使植物产生大量的O2和H2O2而遭受氧化胁迫,植物抗氧化系统在保护植物免受干旱胁迫中起主导作用。如黄花苜蓿中的MfNACsa在干旱胁迫下结合乙二醛酶I(MtGlyl)启动子,通过维持植物体内谷胱甘肽(Glutathione)水平来产生耐旱
此外,脱落酸信号通路在观赏植物NAC转录因子响应水分胁迫中也发挥了重要的作用。在月季花中,水分胁迫、脱落酸和GA3处理均显著诱导了RhATAF1的转录本表达上调,而GA3和脱落酸在植物体内存在互作,分别诱导DELLA蛋白的累积和降解,表明RhATAF1有可能通过DELLA蛋白的表达介导脱落酸和GA3途径来参与水分胁迫应
盐和碱是两种不同的非生物胁迫,但常常同时发生,高浓度盐、碱环境会使植物根系细胞受到渗透胁迫、离子毒害、氧化应激、高pH危害等不利影响,植物主要通过合成渗透调节物质、提高抗氧化物酶活性、维持离子平衡等方法来减轻盐碱胁迫对生长发育造成的伤
在前人对山丹LpNAC6基因耐盐性的研究基础
温度是影响观赏植物生长发育和观赏性状的主要环境因素,过冷或过热都会抑制植物的呼吸,从而影响植物的能量代谢过程。冷胁迫方面,现代月季RhNAC31启动子区含有1个低温反应(LTR,low temperature responsive)元件,过表达RhNAC31转基因植株中超氧化物歧化酶和过氧化物酶活性提高,丙二醛和活性氧含量下降,表现出更强的耐寒性,且RhNAC31能够调节脱落酸敏感性,可能通过脱落酸依赖性途径发挥作用。过表达卷丹(L. lancifolium Thunb.)LlNAC2基因增强了转基因拟南芥植株的耐寒性,进一步分析发现LlNAC2蛋白与卷丹的脱水反应结合蛋白LlDREB1和锌指同源结构域LlZFHD4存在物理相互作用,但这些蛋白在逆境条件下如何调控LlNAC2的表达还有待进一步研
热胁迫方面,脱落酸可以增强观赏植物在各种胁迫下的热适应能力,使植物气孔关闭来降低水分蒸腾而抵挡热胁迫,已有研究表明NAC29和NAC72参与了海南杜鹃(Rhododendron hainanense Merr.)在热胁迫下脱落酸的信号转
重金属可以改变植物生理代谢,破坏植物细胞结构和影响植物的光合作用,NAC转录因子在重金属胁迫方面的报道比较少。木槿(Hibiscus syriacus L.
生物胁迫主要包括昆虫、植物病原体(包括细菌、真菌和病毒)对植物引起的伤害,和非生物胁迫相比,生物胁迫在观赏植物中研究较少。已知水杨酸是对病原菌产生抗性反应的信号分子,用黄瓜花叶病毒(CMV, cucumber mosaic virus)和水杨酸分别处理岷江百合(L. regale Wilson)叶片后,LrNAC在高抗病毒的岷江百合中的表达量明显高于高感病毒的宜昌百合(L. leucanthum (Baker) Baker),表明LrNAC可以通过水杨酸信号传导途径参与抗病毒反
上述研究表明,观赏植物在受到非生物胁迫和生物胁迫时,通过感知外界胁迫信号来引发信号级联反应,并主要通过脱落酸依赖性途径和脱落酸非依赖性途径(如DRE/CBF-COR途径、热应激转录因子途径、水杨酸信号转导途径等)来激活NAC转录因子,进而调控下游胁迫相关应激反应基因的表达(如HSP、DREB、EXPA等),使植物体产生一系列生理变化来恢复细胞和组织稳态,如叶绿素含量、脯氨酸含量增加,超氧化物歧化酶、过氧化物酶、过氧化氢酶活性提高,丙二醛、活性氧含量减少等,从而介导植物体对胁迫的耐受性和适应性(

图3 NAC转录因子在观赏植物胁迫响应中的调控机制
Fig.3 Regulatory mechanism of NAC transcription factor in ornamental plant stress response
虽然NAC转录因子在1996年首次发现后已经历了近30年的研究历程,但是其在观赏植物中的研究在2014年后才开始逐渐增多,且大部分都还停留在生物信息学分析以及表达模式分析等功能初探阶段,在观赏植物中的调控机制还非常模糊,未来还需要经历长久的深入探索。本文介绍了NAC转录因子的结构和分类,并梳理了2004 -2023年NAC转录因子在观赏植物器官生长发育和胁迫响应上的生物学功能,其中观赏植物器官生长发育主要集中在叶缘形态建成、花器官发育、叶片衰老、花瓣衰老、种球休眠5个方面,胁迫响应则集中在干旱、盐、碱、冷、热等非生物胁迫,在生物胁迫中报道较少。由于NAC转录因子在观赏植物中的作用较为广泛,因此个别研究未能涵盖其中,例如,有研究表明NAC转录因子还可能参与月季花不同苗龄的阶段变
未来可以从以下4个方面展开观赏植物NAC转录因子的研究:(1)结合观赏植物全基因组测序继续开展NAC转录因子鉴定研究。目前很多观赏植物还没有发布全基因组数据,对了解其NAC家族成员造成了一定的阻碍,只有更多的观赏植物NAC家族成员被鉴定,才能通过生物信息学手段分析预测其可能发挥的功能。(2)挖掘观赏植物中与模式植物存在不同作用机制的NAC转录因子。相较于模式植物和作物,观赏植物NAC基因的挖掘严重不足,通过包括多组学分析在内的多种方法发掘观赏植物中与模式植物存在不同作用机制的NAC转录因子,对于解析不同物种中相同的NAC基因或某些冗余的NAC基因在调控中发挥相反作用的原因以及研究NAC转录因子与植物进化的关系具有重要意义。(3)解析NAC转录因子与观赏植物其他转录因子间的调控网络。参与植物生长发育和胁迫反应的NAC调控网络不是静态的,而是高度动态和复杂的,在NAC调控网络中,NAC转录因子和其他转录因子(MYB、WRKY、KNOX、TCP等)之间是否存在层级关系尚不明确,是一个重要的研究切入点。(4)加快推进利用基因工程或编辑技术开展观赏植物的分子育种工作。一方面,观赏植物需要培育出更多新优品种来满足人们对美的追求;另一方面,全球气候变化造成的极端气候等环境灾害给观赏植物生长发育带来了极大的挑战,NAC转录因子在这两方面尤其是增强植株抗逆性上存在较大的潜力,具有极高的应用价值。
参考文献
Guo Y F, Gan S S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. The Plant Journal, 2006, 46: 601-612 [百度学术]
Souer E, van Houwelingen A, Kloos D, Mol J, Koes R. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 1996, 85(2): 159-170 [百度学术]
Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant. The Plant Cell, 1997, 9(6): 841-857 [百度学术]
Han K J, Zhao Y, Sun Y H, Li Y. NACs, generalist in plant life. Plant Biotechnology Journal,2023:1-25 [百度学术]
Mohanta T K, Yadav D, Khan A, Hashem A, Tabassum B, Khan A L, Abd Allah E F, Al-Harrasi A. Genomics, molecular and evolutionary perspective of NAC transcription factors. PLoS ONE, 2020, 15(4): e0231425 [百度学术]
Bian Z Y, Gao H H, Wang C Y. NAC transcription factors as positive or negative regulators during ongoing battle between pathogens and our food crops. International Journal of Molecular Sciences, 2021, 22(1): 81 [百度学术]
Singh S, Koyama H, Bhati K K, Alok A. The biotechnological importance of the plant-specific NAC transcription factor family in crop improvement. Journal of Plant Research, 2021, 134(3): 475-495 [百度学术]
Liu G S, Li H L, Grierson D, Fu D Q. NAC transcription factor family regulation of fruit ripening and quality: A review. Cells, 2022, 11(3): 525 [百度学术]
Liu J F, Qiao Y Y, Li C, Hou B Z. The NAC transcription factors play core roles in flowering and ripening fundamental to fruit yield and quality. Frontiers in Plant Science, 2023, 14: 1095967 [百度学术]
Kumar R, Das S, Mishra M, Choudhury D R, Sharma K, Kumari A, Singh R. Emerging roles of NAC transcription factor in medicinal plants: Progress and prospects. 3 Biotech, 2021, 11(10): 425 [百度学术]
李良建. 铁皮石斛NAC转录因子家族全基因组鉴定与NAC-DNA结合机制研究及FCA基因的表达分析. 成都: 西南交通大学, 2019 [百度学术]
Li L J. A Genome-wide identification of the NAC transcription factor, a survey of NAC-DNA interaction and expression analysis of FCA gene in Dendrobium officinale Kimura et Migo. Chengdu: Southwest Jiaotong University, 2019 [百度学术]
肖姗姗, 赵虎, 孙叶芳, 戴余有. 小兰屿蝴蝶兰(Phalaenopsis equestris)NAC转录因子家族的全基因组序列鉴定及其进化分析. 浙江农业学报, 2016, 28(7): 1156-1163 [百度学术]
Xiao S S, Zhao H, Sun Y F, Dai Y Y. Identification, characterization and evolution of NAC transcription factors in Phalaenopsis equestris. Journal of Zhejiang Agricultural Sciences, 2016, 28 (7): 1156-1163 [百度学术]
Trupkin S A, Astigueta F H, Baigorria A H, Garcia M N, Delfosse V C, Gonzalez S A, Perez de la Torre M C, Moschen S, Lia V V, Fernandez P, Heinz R A. Identification and expression analysis of NAC transcription factors potentially involved in leaf and petal senescence in Petunia hybrida. Plant Science, 2019, 287: 110195 [百度学术]
Min X Y, Jin X Y, Zhang Z S, Wei X Y, Ndayambaza B, Wang Y R, Liu W X. Genome-wide identification of NAC transcription factor family and functional analysis of the abiotic stress-responsive genes in Medicago sativa L. Journal of Plant Growth Regulation, 2020, 39(1): 324-337 [百度学术]
Zhang L, Jia X, Zhao J, Hasi A, Niu Y. Molecular characterisation and expression analysis of NAC transcription factor genes in wild Medicago falcata under abiotic stresses. Functional Plant Biology, 2020, 47(4): 327-341 [百度学术]
Yue Y Z, Li L, Li Y L, Li H Y, Ding W J, Shi T T, Chen G W, Yang X L, Wang L G. Genome-wide analysis of NAC transcription factors and characterization of the cold stress response in Sweet Osmanthus. Plant Molecular Biology Reporter, 2020, 38(2): 314-330 [百度学术]
温小蕙. 甘菊头状花序上舌状花和管状花发育调控网络的构建. 北京: 北京林业大学, 2020 [百度学术]
Wen X H. The construction of genetic network underlying ray and disc florets on capitulum in Chrysanthemum lavandulifolium. Beijing: Beijing Forestry University, 2020 [百度学术]
Wang H, Li T, Li W, Wang W, Zhao H E. Identification and analysis of Chrysanthemum nankingense NAC transcription factors and an expression analysis of OsNAC7 subfamily members. Peer J, 2021, 9: e11505 [百度学术]
Li W H, Zheng Y L, Yin F L, Wei R, Mao X F. Genome‑wide identifcation and comprehensive analysis of the NAC transcription factor family in sunfower during salt and drought stress. Scientifc Reports, 2021, 11: 19865 [百度学术]
Geng L F, Su L, Fu L F, Lin S, Zhang J M, Liu Q H, Jiang X Q. Genome‑wide analysis of the rose (Rosa chinensis) NAC family and characterization of RcNAC091. Plant Molecular Biology, 2022, 108: 605-619 [百度学术]
Song H Y, Liu Y L, Dong G Q, Zhang M H, Wang Y X, Xin J, Su Y Y, Sun H, Yang M. Genome-wide characterization and comprehensive analysis of NAC transcription factor family in Nelumbo nucifera. Frontiers in Genetics, 2022, 13: 901838 [百度学术]
冯策婷, 江律, 刘鑫颖, 罗乐, 潘会堂, 张启翔, 于超. 单叶蔷薇NAC基因家族鉴定及干旱胁迫响应分析. 生物技术通报, 2023, 39(11): 283-296 [百度学术]
Feng C T, Jiang L, Liu X Y, Luo L, Pan H T, Zhang Q X, Yu C. Genome-wide identification and expression analysis of the NAC gene family in Rosa persica under drought stress. Biotechnology Bulletin, 2023, 39(11): 283-296 [百度学术]
Olsen A N, Ernst H A, Lo Leggio L, Skriver K. DNA-binding specificity and molecular functions of NAC transcription factors. Plant Science, 2005, 169(4): 785-797 [百度学术]
Pereira-Santana A, David Alcaraz L, Castano E, Sanchez-Calderon L, Sanchez-Teyer F, Rodriguez-Zapata L. Comparative genomics of NAC transcriptional factors in angiosperms: Implications for the adaptation and diversification of flowering plants. PLoS ONE, 2015, 10(11): e0141866 [百度学术]
李耀琪, 王志恒. 植物叶片形态的生态功能、地理分布与成因. 植物生态学报, 2021, 45(10): 1154-1172 [百度学术]
Li Y Q, Wang Z H. Ecological function, geographical distribution and origin of plant leaf morphology. Chinese Journal of Plant Ecology, 2021, 45 (10): 1154-1172 [百度学术]
柯锦秀, 陈多, 郭延平. 植物叶缘形态的发育调控机理. 生物多样性, 2018, 26(9): 988-997 [百度学术]
Ke J X, Chen D, Guo Y P. Designing leaf marginal shapes: Regulatory mechanisms of leaf serration or dissection. Biodiversity Science, 2018, 26 (9): 988-997 [百度学术]
Bilsborough G D, Runions A, Barkoulas M, Jenkins H W, Hasson A, Galinha C, Laufs P, Hay A, Prusinkiewicz P, Tsiantis M. Model for the regulation of Arabidopsis thaliana leaf margin development. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(8): 3424-3429 [百度学术]
Vroemen C W, Mordhorst A P, Albrecht C, Kwaaitaal M, de Vries S C. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. The Plant Cell, 2003, 15(7): 1563-1577 [百度学术]
Hasson A, Plessis A, Blein T, Adroher B, Grigg S, Tsiantis M, Boudaoud A, Damerval C, Laufs P. Evolution and diverse roles of the CUP-SHAPEDCOTYLEDON genes in Arabidopsis leaf development. The Plant Cell. 2011, 23(1): 54-68 [百度学术]
Weir I, Lu J P, Cook H, Causier B, Schwarz-Sommer Z, Davies B. CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum. Development, 2004, 131(4): 915-922 [百度学术]
Blein T, Pulido A, Vialette-Guiraud A, Nikovics K, Morin H, Hay A, Johansen I E, Tsiantis M, Laufs P. A conserved molecular framework for compound leaf development. Science, 2008, 322(5909): 1835-1839 [百度学术]
Cheng X F, Peng J L, Ma J Y, Tang Y H, Chen R J, Mysore K S, Wen J Q. NO APICAL MERISTEM (MtNAM) regulates floral organ identity and lateral organ separation in Medicago truncatula. New Phytologist, 2012, 195: 71-84 [百度学术]
Sha S, Chen D, Liu M, Li K L, Jiang C K, Wang D H, Guo Y P. To be serrate or pinnate: Diverse leaf forms of yarrows (Achillea) are linked to differential expression patterns of NAM genes. Annals of Botany, 2018, 121(2): 255-266 [百度学术]
夏伟康. 菊花转录因子CmCUC2和CmCUC3的功能分析. 南京: 南京农业大学, 2020 [百度学术]
Xia W K. Functional analysis of transcription factors CmCUC2 and CmCUC3 in chrysanthemum. Nanjing: Nanjing Agricultural University, 2020 [百度学术]
Shan H Y, Cheng J, Zhang R, Yao X, Kong H Z. Developmental mechanisms involved in the diversification of flowers. Nature Plants, 2019, 5(9): 917-923 [百度学术]
盖若男. 小兰屿蝴蝶兰PeNAC67基因克隆以及调控唇瓣发育的分子机理研究. 上海: 上海师范大学, 2021 [百度学术]
Gai R N. Cloning of PeNAC67 gene from Phalaenopsis equestris and molecular mechanism of regulation of lip valve development. Shanghai: Shanghai Normal University, 2021 [百度学术]
Valoroso M C, Lucibelli F, Aceto S. Orchid NAC transcription factors: A focused analysis of CUPULIFORMIS genes. Genes, 2022, 13(12): 2293 [百度学术]
李骏倬, 戴思兰. ClNAM影响甘菊小花身份决定过程的分子机制研究//中国植物学会. 首届植物科学前沿学术大会摘要集(二), 北京: 中国植物学会, 2022: 109 [百度学术]
Li J Z, Dai S L. Study on the molecular mechanism of ClNAM affecting the identity determination process of Chrysanthemum lavandulifolium // Botanical Society of China.Abstract collection of the First Frontier Academic Conference of Plant Science (2). Beijing: Botanical Society of China, 2022: 109 [百度学术]
Luo J, Wang H, Chen S J, Ren S J, Fu H S, Li R R, Wang C Y. CmNAC73 mediates the formation of green color in Chrysanthemum flowers by directly activating the expression of chlorophyll biosynthesis genes HEMA1 and CRD1. Genes, 2021, 12(5): 704 [百度学术]
Pei H X, Ma N, Tian J, Luo J, Chen J W, Li J, Zheng Y, Chen X, Fei Z J, Gao J P. An NAC transcription factor controls ethylene-regulated cell expansion in flower petals. Plant Physiology, 2013, 163(2): 775-791 [百度学术]
缪云锋, 周丹, 董彬, 赵宏波. 桂花OfNAC转录因子鉴定及在花开放阶段的表达分析. 浙江农林大学学报, 2021, 38(3): 433-444 [百度学术]
Miao Y F, Zhou D, Dong B, Zhao H B. Identification and expression analysis of of NAC transcription factors in Osmanthus fragrans during flower opening stage. Journal of Zhejiang A & F University, 2021, 38 (3): 433-444 [百度学术]
Luoni S B, Astigueta F H, Nicosia S, Moschen S, Fernandez P, Heinz R. Transcription factors associated with leaf senescence in crops. Plants-Basel, 2019, 8(10): 411 [百度学术]
Kim J H, Woo H R, Kim J, Lim P O, Lee I C, Choi S H, Hwang D, Nam H G. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science, 2009, 323(5917): 1053-1057 [百度学术]
Balazadeh S, Siddiqui H, Allu A D, Matallana-Ramirez L P, Caldana C, Mehrnia M, Zanor M-I, Koehler B, Mueller-Roeber B. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant Journal, 2010, 62(2): 250-264 [百度学术]
Moschen S, Bengoa Luoni S, Paniego N B, Esteban Hopp H, Dosio G A A, Fernandez P, Heinz R A. Identification of candidate genes associated with leaf senescence in cultivated sunflower (Helianthus annuus L.). PLoS ONE, 2014, 9(8): e104379 [百度学术]
姚丹. 梅NAC基因的分离鉴定及移动性分析. 南京: 南京农业大学, 2019 [百度学术]
Yao D. Isolation and mobility analysis of NAC gene family in Japanese apricot. Nanjing: Nanjing Agricultural University, 2019 [百度学术]
Shibuya K. Molecular mechanisms of petal senescence in ornamental plants. Journal of the Japanese Society for Horticultural Science, 2012, 81(2): 140-149 [百度学术]
Shibuya K, Watanabe K, Ono M. CRISPR/Cas9-mediated mutagenesis of the EPHEMERAL1 locus that regulates petal senescence in Japanese morning glory. Plant Physiology and Biochemistry, 2018, 131: 53-57 [百度学术]
Takahashi S, Yoshida C, Takahashi H, Nishihara M. Isolation and functional analysis of EPHEMERAL1-LIKE (EPH1L) genes involved in flower senescence in cultivated Japanese Gentians. International Journal of Molecular Sciences, 2022, 23(10): 5608 [百度学术]
Luo J, Li R R, Xu X T, Niu H R, Zhang Y J, Wang C Y. SMRT and illumina RNA sequencing and characterization of a key NAC gene LoNAC29 during the flower senescence in Lilium oriental 'Siberia'. Genes, 2021, 12(6): 869 [百度学术]
Meng L, Yang H P, Xiang L, Wang Y P, Chan Z L. NAC transcription factor TgNAP promotes tulip petal senescence. Plant Physiology, 2022, 190(3): 1960-1977 [百度学术]
Liu W X, Yin H F, Feng Y, Yu S H, Fan Z Q, Li X L, Li J Y. Comparative transcriptome analysis of flower senescence of Camellia lutchuensis. Current Genomics, 2022, 23(1): 66-76 [百度学术]
马广莹, 史小华, 詹菁, 朱开元. 萱草HhNAC1基因序列特征及在花朵衰老进程中的表达分析. 植物生理学报, 2021, 57(9): 1799-1807 [百度学术]
Ma G Y, Shi X H, Zhan J, Zhu K Y. Sequence characteristics of daylily HhNAC1 and expression analysis during flower senescence. Plant Physiology, 2021, 57 (9): 1799-1807 [百度学术]
Wu J, Jin Y J, Liu C, Vonapartis E, Liang J H, Wu W J, Gazzarrini S, He J N, Yi M F. GhNAC83 inhibits corm dormancy release by regulating ABA signaling and cytokinin biosynthesis in Gladiolus hybridus. Journal of Experimental Botany, 2019, 70(4): 1221-1237 [百度学术]
Fan X Y, Yang Y, Li M, Fu L L, Zang Y Q, Wang C X, Hao T Y, Sun H M. Transcriptomics and targeted metabolomics reveal the regulatory network of Lilium davidii var. unicolor during bulb dormancy release. Planta, 2021, 254(3): 59 [百度学术]
申玉华, 徐振军, 唐立红, 杨晓坡, 黄文婕, 武小斌, 张文波. 紫花苜蓿NAC类转录因子基因MsNAC2的克隆及其功能分析. 中国农业科学, 2015, 48(15): 2925-2938 [百度学术]
Shen Y H, Xu Z J, Tang L H, Yang X P, Huang W J, Wu X B, Zhang W B. Cloning and function analysis of the MsNAC2 gene with NAC transcription factor from Alfalfa. Scientia Agricultura Sinica, 2015, 48 (15): 2925-2938 [百度学术]
申玉华, 李雪梅, 乔晓慧, 苗晓娟, 孟振晗, 刘欣泽. 紫花苜蓿逆境响应转录因子MsNAC3基因克隆及表达分析. 西北植物学报, 2017, 37(10): 1919-1925 [百度学术]
Shen Y H, Li X M, Qiao X H, Miao X J, Meng Z H, Liu X Z. Clone and expression of the NAC transcription factor gene MsNAC3 in Medicago sativa L. Acta Botanica Sinica, 2017, 37(10): 1919-1925 [百度学术]
杨紫贻. 紫花苜蓿耐盐评价体系的建立及耐盐机理研究. 呼和浩特: 内蒙古农业大学, 2021 [百度学术]
Yang Z Y. Establishment of salt tolerance evaluation system of Medicago sativa L. and analysis on salt tolerance mechanism. Hohhot: Inner Mongolia Agricultural University, 2021 [百度学术]
孙雪, 宋婷婷, 巩皓, 项继红, 袁玉莹, 喻金秋, 李佳玮, 崔国文. 紫花苜蓿MtNAC51转录因子生物信息学和表达特性分析. 分子植物育种, 2020, 18(22): 7395-7403 [百度学术]
Sun X, Song T T, Gong H, Xiang J H, Yuan Y Y, Yu J Q, Li J W, Cui G W. Bioinformatics and expression specificity analysis of MtNAC51 transcription factor in Medicago sativa L.. Molecular Plant Breeding, 2020, 18 (22): 7395-7403 [百度学术]
Duan M, Zhang R, Zhu F, Zhang Z, Gou L, Wen J, Dong J, Wang T. A Lipid-anchored NAC transcription factor is translocated into the nucleus and activates Glyoxalase I expression during drought stress. Plant Cell, 2017, 29(7): 1748-1772 [百度学术]
张立全, 贾旭慧, 赵静玮, 刘雨欣, 哈斯阿古拉. 黄花苜蓿MfNAC37基因的克隆及盐胁迫下的表达分析. 中国草地学报, 2019, 41(3): 10-14 [百度学术]
Zhang L Q, Jia X H, Zhao J W, Liu Y X, Hasiagula. Cloning and expression analysis of MfNAC37 gene from Medicago falcata under salt stress. Chinese Journal of Grassland, 2019, 41 (3): 10-14 [百度学术]
赵静玮. 黄花苜蓿MfNAC48、MfWRKY3和MfWRKY22基因的克隆及特性分析. 呼和浩特: 内蒙古大学, 2021 [百度学术]
Zhao J W. Cloning and characterization of MfNAC48, MfWRKY3 and MfWRKY22 genes in Medicago falcata. Hohhot: Inner Mongolia University, 2021 [百度学术]
贾旭慧. 黄花苜蓿MfNAC87和MfNAC63基因的功能分析. 呼和浩特: 内蒙古大学, 2021 [百度学术]
Jia X H. Functional analysis of MfNAC87 and MfNAC63 genes in Medicago falcata. Hohhot: Inner Mongolia University, 2021 [百度学术]
张立全, 贾旭慧, 赵静玮, 王旌吉, 哈斯阿古拉. 黄花苜蓿MfNAC95基因鉴定及其应答盐胁迫的表达分析. 中国草地学报, 2020, 42(1): 1-6 [百度学术]
Zhang L Q, Jia X H, Zhao J W, Wang J J, Hasiagula. Identification of Medicago falcata MfNAC95 and expression analysis under salt stress. Chinese Journal of Grassland, 2020, 42 (1): 1-6 [百度学术]
王营. 过表达细叶百合LpNAC5和LpNAC13转基因烟草的抗逆性研究. 哈尔滨: 东北林业大学, 2020 [百度学术]
Wang Y. Study on the stress resistance of tobacco of transgenic LpNAC5 and LpNAC13 from Lilium pumilum. Harbin: Northeast Forestry University, 2020 [百度学术]
曹尚杰. 细叶百合LpNAC6和LpNAC20基因的克隆及其在烟草中的抗盐功能分析. 哈尔滨: 东北林业大学, 2019 [百度学术]
Cao S J. Cloning and salt-resistant function analysis in tobacco of LpNAC6 and LpNAC20 genes from Lilium pumilum. Harbin: Northeast Forestry University, 2019 [百度学术]
Yan H, Liu B, Cui Y, Wang Y, Sun S Y, Wang J W, Tan M M, Wang Y P, Zhang Y N. LpNAC6 reversely regulates the alkali tolerance and drought tolerance of Lilium pumilum. Journal of Plant Physiology, 2022, 270: 153635 [百度学术]
Wang Y, Cui Y, Liu B, Wang Y, Sun S, Wang J, Tan M, Yan H, Zhang Y. Lilium pumilum stress-responsive NAC transcription factor LpNAC17 enhances salt stress tolerance in tobacco. Frontiers in Plant Science, 2022,13: 993841 [百度学术]
Dai F, Zhang C, Jiang X, Kang M, Yin X, Lu P, Zhang X, Zheng Y, Gao J. RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of Rose petals. Plant Physiology, 2012, 160(4): 2064-2082 [百度学术]
Jiang G M, Jiang X Q, Lu P T, Liu J T, Gao J P, Zhang C Q. The Rose (Rosa hybrida) NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in Rose and Arabidopsis. PLoS ONE, 2014, 9(10): e109415 [百度学术]
丁爱琴, 李绍翠, 刘庆超, 王奎玲, 李伟, 刘庆华, 姜新强. 月季RhATAF1基因的克隆及表达特性分析. 植物生理学报, 2018, 54(11): 1711-1718 [百度学术]
Ding A Q, Li S C, Liu Q C, Wang K L, Li W, Liu Q H, Jiang X Q. Cloning and expression analysis of RhATAF1 gene in Rosa hybrida. Chinese Journal of Plant Physiology, 2018, 54 (11): 1711-1718 [百度学术]
Ding A Q, Li S C, Li W, Hao Q, Wan X L, Wang K L, Liu Q C, Liu Q H, Jiang X Q. RhNAC31, a novel rose NAC transcription factor, enhances tolerance to multiple abiotic stresses in Arabidopsis. Acta Physiologiae Plantarum, 2019, 41(6): 75 [百度学术]
Li Z Q, Xing W, Luo P, Zhang F J, Jin X L, Zhang M H. Comparative transcriptome analysis of Rosa chinensis 'Slaters' crimson China' provides insights into the crucial factors and signaling pathways in heat stress response. Plant Physiology and Biochemistry, 2019, 142: 312-331 [百度学术]
Jia X, Zeng Z, Lyu Y M, Zhao S W. Drought-responsive NAC transcription factor RcNAC72 is recognized by RcABF4, interacts with RcDREB2A to enhance drought tolerance in Arabidopsis. International Journal of Molecular Sciences, 2022, 23(3): 1755 [百度学术]
包颖. 月季RcNAC72基因的克隆及表达分析. 唐山师范学院学报, 2022, 44(3): 44-49 [百度学术]
Bao Y. Gene Cloning and Expression Analysis of Rcnac72 in Rosa chinensis. Journal of Tangshan Normal University, 2022, 44 (3): 44-49 [百度学术]
Geng L F, Su L, Fu L F, Lin S, Zhang J M, Liu Q H, Jiang X Q. Genome-wide analysis of the rose (Rosa chinensis) NAC family and characterization of RcNAC091. Plant Molecular Biology, 2022, 108: 605-619 [百度学术]
Zhuo X K, Zheng T C, Zhang Z Y, Zhang Y C, Jiang L B, Ahmad S, Sun L D, Wang J, Cheng T R, Zhang Q X. Genome-wide analysis of the NAC transcription factor gene family reveals differential expression patterns and cold-stress responses in the woody plant Prunus mume. Genes, 2018, 9(10): 494 [百度学术]
丁安琪. 梅花抗寒性比较分析及关键差异基因的功能研究. 北京: 北京林业大学, 2021 [百度学术]
Ding A Q. Comparison analysis of cold tolerance and key differential genes function of Prunus mume. Beijing: Beijing Forestry University, 2021 [百度学术]
陈严. 蜡梅CpNAC8转录因子基因的克隆及功能初步鉴定. 重庆: 西南大学, 2017 [百度学术]
Chen Y. Cloning and functional identification of transcription factor CpNAC8 in Wintersweet(Chimonanthus praecox(L.)Link). Chongqing: Southwest University, 2017 [百度学术]
Lin J, Liu D F, Wang X, Ahmed S, Li M Y, Kovinich N, Sui S Z. Transgene CpNAC68 from Wintersweet (Chimonanthus praecox) improves Arabidopsis survival of multiple abiotic stresses. Plants-Basel, 2021, 10(7): 1403 [百度学术]
Dong F L, Huang H, Liu J, Zhang M, Zhou Y W, Dai S L. Cloning and function analysis of ClNAC9 from Chrysanthemum lavandulifolium. Canadian Journal of Plant Science, 2018, 98(6): 1265-1279 [百度学术]
Liu Y, He M, Dong F, Cai Y, Gao W, Zhou Y, Huang H, Dai S. The Chrysanthemum lavandulifolium ClNAC9 gene positively regulates saline, alkaline, and drought stress in transgenic Chrysanthemum grandiflora. Journal of the American Society for Horticultural Science, 2019, 144(4): 280-288 [百度学术]
Yang Y F, Zhu K, Wu J, Liu L Q, Sun G L, He Y B, Chen F D, Yu D Y. Identification and characterization of a novel NAC-like gene in chrysanthemum (Dendranthema lavandulifolium). Plant Cell Reports, 2016, 35(8): 1783-1798 [百度学术]
朱凯, 武剑, 杨艳芳, 陈发棣, 喻德跃. 甘菊DlNAC1转录因子基因提高烟草耐高温能力. 植物研究, 2017, 37(3): 432-439 [百度学术]
Zhu K, Wu J, Yang Y F, Chen F D, Yu D Y. Overexpression of DlNAC1 gene isolated from Dendranthema lavandulifolium in enhancing heat stress tolerance in transgenic tobacco. Plant Research, 2017, 37 (3): 432-439 [百度学术]
Liu Q L, Xu K D, Zhao L J, Pan Y Z, Jiang B B, Zhang H Q, Liu G L. Overexpression of a novel Chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco. Biotechnology Letters, 2011, 33(10): 2073-2082 [百度学术]
Zhao Q, Zhong M, He L, Wang B, Liu Q L, Pan Y Z, Jiang B B, Zhang L. Overexpression of a Chrysanthemum transcription factor gene DgNAC1 improves drought tolerance in Chrysanthemum. Plant Cell Tissue and Organ Culture, 2018, 135(1): 119-132 [百度学术]
肖瑶宇. ‘云香’水仙NAC转录因子的克隆及抗逆功能分析. 福州: 福建农林大学, 2019 [百度学术]
Xiao Y Y. Cloning and abiotic stresses functional analysis of Narcissus tazetta ‘Yunxiang’ NAC transcription factor. Fuzhou: Fujian Agriculture and Forestry University, 2019 [百度学术]
翟允汝. 荷花关键转录因子NAC35响应盐碱胁迫的调控功能研究. 郑州: 河南农业大学, 2023 [百度学术]
Zhai Y R. Study on the regulatory function of lotus key transcription factor NAC35 in response to saline-alkali stress. Zhengzhou: Henan Agricultural University, 2023 [百度学术]
Zhao Y, Yu W G, Hu X Y, Shi Y H, Liu Y, Zhong Y F, Wang P, Deng S Y, Niu J, Yu X D. Physiological and transcriptomic analysis revealed the involvement of crucial factors in heat stress response of Rhododendron hainanense. Gene, 2018, 660: 109-119 [百度学术]
Xu H Y, Li J J, Wang L J, Li X Y, Liu Y Q, Wang X, Gao T T, Ma Y P. Integrated transcriptomic and metabolomics analysis reveals abscisic acid signal transduction and sugar metabolism pathways as defense responses to cold stress in Argyranthemum frutescens. Environmental and Experimental Botany, 2023, 205: 105115 [百度学术]
Deng S X, Ma J, Zhang L L, Chen F J, Sang Z Y, Jia Z K, Ma L Y. De novo transcriptome sequencing and gene expression profiling of Magnolia wufengensis in response to cold stress. BMC Plant Biology, 2019, 19: 321 [百度学术]
梁芳, 张燕, 牛苏燕, 袁秀云, 崔波. 蝴蝶兰PhNAC1基因序列分析及对低温胁迫的响应. 广西植物, 2020, 40(6): 845-853 [百度学术]
Liang F, Zhang Y, Niu S Y, Yuan X Y, Cui B. Sequence analysis of Phalaenopsis PhNAC1 gene and its response to low temperature stress. Botany of Guangxi, 2020, 40 (6): 845-853 [百度学术]
Yong Y B, Zhang Y, Lyu Y M. A Stress-responsive NAC transcription factor from tiger Lily (LlNAC2) interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in Arabidopsis. International Journal of Molecular Sciences, 2019, 20(13): 3225 [百度学术]
Wu Z, Li T, Xiang J, Teng R D, Zhang D H, Teng N J. A lily membrane-associated NAC transcription factor LlNAC014 is involved in thermotolerance via activation of the DREB2-HSFA3 module. Journal of Experimental Botany, 2023, 74(3): 945-963 [百度学术]
Han D G, Du M, Zhou Z Y, Wang S, Li T M, Han J X, Xu T L, Yang G H. Overexpression of a Malus baccata NAC transcription factor gene MbNAC25 increases cold and salinity tolerance in Arabidopsis. International Journal of Molecular Sciences, 2020, 21(4): 1198 [百度学术]
Li X, Liu L L, Sun S X, Li Y M, Jia L, Ye S L, Yu Y X, Dossa K, Luan Y P. Physiological and transcriptional mechanisms associated with cadmium stress tolerance in Hibiscus syriacus L. BMC Plant Biology, 2023, 23(1): 286 [百度学术]
朱瑞婷, 牛奎举, 张然, 马晖玲. 草地早熟禾NAC基因鉴定及非生物胁迫下表达模式分析. 草原与草坪, 2021, 41(4): 26-35 [百度学术]
Zhu R T, Niu K J, Zhang R, Ma H L. Identification of NAC gene in Poa pratensis and analysis of expression patterns under abiotic stress. Grassland and Turf, 2021, 41 (4): 26-35 [百度学术]
纪康. 高羊茅高温响应转录因子FaNAC74的功能鉴定及耐高温种质筛选应用. 武汉: 中国科学院大学, 2020 [百度学术]
Ji K. Functional identification of high temperature responsive transcription factor FaNAC74 and application of high temperature tolerant germplasm screening in Festuca arundinacea. Wuhan: University of Chinese Academy of Sciences, 2020 [百度学术]
华雅洁, 胡蝶, 丁文杰, 王良桂, 杨秀莲. 海州常山CtNAC2基因克隆及盐胁迫下特异性表达分析. 分子植物育种, 2020, 18(18): 5975-5981 [百度学术]
Hua Y J, Hu D, Ding W J, Wang L G, Yang X L. Cloning and specific expression analysis of CtNAC2 gene in Clerodendrum trichotomum under salt stress. Molecular Plant Breeding, 2020, 18 (18): 5975-5981 [百度学术]
王佺珍, 刘倩, 高娅妮, 柳旭. 植物对盐碱胁迫的响应机制研究进展. 生态学报, 2017, 37(16): 5565-5577 [百度学术]
Wang W Z, Liu Q, Gao Y N, Liu X. Research progress on plant response mechanisms to saline-alkali stress. Acta Ecologica Sinica, 2017, 37(16): 5565-5577 [百度学术]
张响玲. 岷江百合LrPR10基因和LrNAC转录因子基因的克隆及表达分析. 杨凌: 西北农林科技大学, 2014 [百度学术]
Zhang X L. Cloning and expression analysis of LrPR10 gene and LrNAC transcription factor gene from Lilium regale. Yangling: Northwest A&F University, 2014 [百度学术]
张志强, 代蕊, 特木尔布和, 谭瑶, 爽爽, 陈崎. 基于转录组测序的苜蓿诱导性抗蓟马相关转录因子挖掘. 分子植物育种, 2022, http://kns.cnki.net/kcms/detail/46.1068.S.20220608.0924.002.html [百度学术]
Zhang Z Q, Dai R, Temuer B, Tan Y, Shuang S, Chen Q. Exploration of the transcription factor in response to thrips-induced defense in Alfalfa by transcriptome sequencing. Molecular Plant Breeding, 2022, http://kns.cnki.net/kcms/detail/46.1068.S.20220608.0924.002.html [百度学术]
Tan J R, Yi X W, Luo L, Yu C, Wang J, Cheng T R, Zhang Q X, Pan H T. RNA-seq and sRNA-seq analysis in lateral buds and leaves of juvenile and adult roses. Scientia Horticulturae, 2021, 290: 110513 [百度学术]
王海. 甘菊木质素合成相关NAC转录因子功能及其基因编辑. 北京: 北京林业大学, 2021 [百度学术]
Wang H. Function and gene editing of NAC transcription factors related to lignin synthesis in Chrysanthemum lavandulifolium. Beijing: Beijing Forestry University, 2021 [百度学术]
崔毅慧. 铁皮石斛体胚发育及其NAC家族基因克隆与特性分析. 成都: 西南交通大学, 2016 [百度学术]
Cui Y H. Molecular cloning and characteristic analysis of NAC family genes and somatic of Dendrobium candidum Wall. ex Lindl. Chengdu: Southwest Jiaotong University, 2016 [百度学术]
Gu C H, Shang L X, Zhang G Z, Wang Q, Ma Q Q, Hong S D, Zhao Y, Yang L Y. Identification and expression analysis of NAC gene family in weeping trait of Lagerstroemia indica. Plants-Basel, 2022, 11(16): 2168 [百度学术]