摘要
镉(Cd)胁迫严重限制植物生长,因此鉴定与植物镉胁迫耐受性相关的基因尤为重要。课题组前期通过转录组数据筛选获得番茄UDP-糖基转移酶基因(SlUDP)响应植株镉胁迫反应。本研究克隆SlUDP基因编码区全长序列,该基因在叶片和果实中表达量较高,受镉胁迫诱导上调表达。酵母耐镉性分析表明,转入SlUDP基因提高了酵母镉胁迫的耐受性。进一步获得SlUDP过表达拟南芥株系,CdCl2胁迫下(40、60、80 μmol/L),与野生型相比,过表达拟南芥株系的子叶失绿程度下降;发芽率、根长和种子存活率提高,而丙二醛含量下降,可溶性糖含量、超氧化物歧化酶活性、过氧化物酶活性增加,且金属离子转运蛋白基因ZIP1、IRT1、CSD1和COPT2的表达水平显著高于野生型。结果表明,SlUDP过表达株系通过调节抗氧化酶系统,提高植株清除活性氧能力,降低膜脂过氧化程度,提高金属离子转运等方面提高植株耐镉性。本研究为糖基转移酶基因在植物耐受镉胁迫中的作用研究提供一定的理论依据,并为园艺植物抗性分子育种提供了候选基因。
重金属如镉(Cd)造成的土壤污染正在全球范围内受到广泛关注,因为重金属不能被降解并在土壤中持续存
番茄(Lycopersicon esculentum Mill.)是世界上最重要的园艺作物之一,其产量和需求量非常巨大,作为设施栽培的重要园艺蔬菜,其受到镉胁迫的污染影响也很严
本研究试验材料是本实验室保存的番茄商品种红罗成和哥伦比亚野生型拟南芥。将红罗成种子置于1∶1的泥炭土和蛭石混合物中,播种于营养钵(6.5 cm×6.5 cm)中,一钵一株,将营养钵置于温室,培养条件为温度22~26℃,光照16 h,避光8 h,且相对湿度保持在60%~70%。酿酒酵母感受态INVSC1菌株由上海唯地生物和中宜生物公司提供。根癌农杆菌GV3101和植物表达载体pGM-T质粒为本实验室保存。
采用4叶期番茄植株叶片进行基因克隆,利用PCR技术扩增基因CDS全长。半定量PCR反应体系12.5 μL:模板cDNA 1 μL,上下游引物各1 μL,Mix酶6.25 μL,ddH2O 3.25 μL。半定量PCR反应条件:在95 ℃ 预变性2 min;96 ℃变性30 s,55 ℃退火30 s,72 ℃延伸30 s,共35次循环;72 ℃终延伸5 min。引物设计见
引物名称 Primer name | 引物序列 Primer sequence | 用途 Use |
---|---|---|
SlUDP-F | AATGGAGGGAGTGAC | 过表达载体构建 |
SlUDP-R | AAAGTGTTTCCAGGTC | |
SlUDP-D-F | GGGGTACCAAGTTGCTGTGGTTATGGTG(Kpn I) | |
SlUDP-D-R | AACTGCAGAAAGGGGTGCCAGTAGG(Pst I) | |
SlUDP-MF | GGGGTACCATGGCATCAACAACAAACCATGTAAAT(Kpn I) | 构建酵母重组质粒 |
SlUDP-MR | GCTCTAGACTATCTAGTGATGTGGGCAACAAAAGAT(Xba I) | |
SlActin11-qF | AAGATCCCATTCGTCCCCAT | 内参引物 |
SlActin11-qR | CAAGAGCCTCAAGGAGAGTTGG | |
AtActin7-qF | TCGTTTCGCTTTCCTTAG | |
AtActin7-qR | CTTCACCATTCCAGTTCC | |
SlUDP -qF | GAGCAACAGTAATGGAGGGAGTGAC | 实时定量PCR分析 |
SlUDP -qR | TTCTCCGTAAAGTGTTTCCAGGTC | |
ZIP1-qF | AGACACCATAAAGCCACTCA | |
ZIP1-qR | TTTCCTGTAGCCTAAACCAC | |
IRT1-qF | TGGGTCTTGGCGGTTGTATC | |
IRT1-qR | CCGAATGGTGTTGTTACCGC | |
COPT2-qF | CCTTTCGTATTTGGTGATGCT | |
COPT2-qR | AAACACCTGCGTTAAAGGAC | |
CSD1-qF | TCCATGCAGACCCTGATGAC | |
CSD1-qR | CCTGGAGACCAATGATGCC | |
GSH1-qF | TTTGAGCAGTATGTTGACTACGCAC | |
GSH1-qR | GCAGTTCACCAGGGAGACAGG |
下划线表示限制性内切酶识别位点
The underlined line indicates the restriction enzyme recognition site
取4月龄番茄植株的主茎、侧茎、叶、根、花和果实,研究SlUDP在以上组织中的表达量;分别选用0、20、40、60、80和100 μmol/L浓度的CdCl2胁迫番茄植株 12 h,取胁迫后番茄植株根和叶,研究不同浓度镉胁迫下SlUDP表达的变化;选用50 μmol/L镉胁迫番茄植株,分别取胁迫后0、1、2、3、4和5 d植株的根和叶,测定SlUDP基因表达量,研究镉胁迫下不同时间点SlUDP表达的变化。
使用FOREGENE测定
将番茄SlUDP基因CDS区克隆回收片段与pYES2质粒连接,构建重组质粒pYES2-SlUDP,并将重组质粒转化至酿酒酵母INVSC1菌株,方法见说明书。提取重组质粒INVSC1-pYES2-SlUDP,送往上海生工工程有限公司,测序筛选出阳性克隆。采用浓度为0、20、40、60、80和100 μmol/L的CdCl2分别处理含重组质粒的酵母菌株INVSC1-pYES2-SlUDP(以下简称为pYES2-SlUDP)和含有空载体的对照菌株INVSC1-pYES2(以下简称为pYES2),振荡培养20~24 h,收集菌液,将菌液依次稀释10、100、1000、10000、100000倍,取2 μL稀释菌液接种于固体培养基,30 ℃倒置培养2~3 d,观察菌落生长情况。取10 μL菌液接种于10 mL液体选择培养基中,置于30 ℃下振荡培养36 h,测定菌液OD600值。每个试验设置3次重复,所得数据用SPSS软件进行分析。
利用花序侵染
将1.6鉴定获得的拟南芥转SlUDP基因阳性材料和野生型同时种植生长至35 d,用60 μmol/L CdCl2处理拟南芥,选取拟南芥叶片,测定其超氧化物歧化酶(SOD,superoxide dismutase)活
取生长28 d的转基因拟南芥SlUDP-OE1、SlUDP-OE2两个阳性株系和野生型拟南芥用CdCl2(60 μmol/L)处理,以双蒸水处理作为对照,在0 h、3 h和6 h时剪取叶片0.1 g(设置3次生物学重复),采用qRT-PCR方法,反应体系和程序如1.4,以AtActin7基因为内参,对重金属胁迫下转基因拟南芥的活性氧清除系统基因(CSD1、GSH1)和金属离子转运基因(ZIP1、IRT1、COPT2)进行定量表达分析,引物见
SlUDP基因序列长度为1486 bp(

图1 重组质粒的双酶切鉴定和SlUDP蛋白的生物信息学分析
Fig .1 Double digestion identification of recombinant plasmid and bioinformatics analysis of SlUDP protein
A:SlUDP基因克隆重组质粒鉴定;M1:2000 Marker;M2:15000 Marker;1:空白对照;2、3:SlUDP基因克隆重组质粒酶切条带;B:SlUDP进化树分析;红点代表本研究中克隆基因所编码的蛋白质;C:SlUDP蛋白的氨基酸序列比对结果
A: SlUDP gene cloning recombinant plasmid identification;1: Blank control;2,3: SlUDP gene cloning recombinant plasmid enzyme bands; B: SlUDP evolutionary tree analysis; The red dots represent the proteins encoded by the cloned genes in this study; C: Amino acid sequence alignment of SlUDP protein
SlUDP基因在番茄不同组织中的表达分析结果表明,50 μmol/L CdCl2胁迫番茄植株12 h时,SlUDP基因在主茎、叶片、根部、侧茎、花和果实中均有表达,特别是在叶片和果实中的表达高于其他组织,SlUDP基因在叶片中的表达量是主茎的8.4倍; SlUDP基因在果实中的表达量是主茎的 5.8 倍; SlUDP基因在根和侧茎的表达量约是主茎的3倍(

图2 重金属镉胁迫下番茄幼苗SlUDP基因表达模式分析
Fig. 2 Analysis of SlUDP gene expression patterns in tomato seedlings under heavy metal Cd stress
A:SlUDP基因在番茄不同组织中的表达模式; B、C:不同时间镉处理下SlUDP基因在番茄根和叶片中的表达; D、E:不同镉浓度处理下SlUDP基因在番茄根和叶片中的表达;数值是具有标准误差线的3个重复的平均值,不同的字母在P<0.05时表示显著差异
A: Expression patterns of SlUDP gene in different tissues of tomato; B,C: SlUDP gene expression in tomato root and leaf under different time cadmium treatment; D,E: Expression of SlUDP gene in tomato roots and leaves under different cadmium concentrations; The value is the average of three replicates with a standard error line, with different letters indicating significant differences at P<0.05
20 µmol/L镉胁迫时pYES2和pYES2-SlUDP没有明显差别,100 µmol/L CdCl2处理时含有pYES2-SlUDP质粒的酵母菌株比80 µmol/L CdCl2处理时含有pYES2-SlUDP质粒的酵母菌株长势弱,100 µmol/L CdCl2处理时对照在稀释1000倍下菌落未发现生长,而pYES2-SlUDP菌落仍可以生长(

图3 转SlUDP基因酵母在不同浓度镉胁迫处理后的表型分析
Fig.3 Phenotype analysis of yeast with SlUDP gene under different stress

图4 转SlUDP基因酵母在镉胁迫处理后的存活率分析
Fig. 4 Survival rate of SlUDP transgenic yeast under Cd stress
*表示处理组和对照组之间3次重复的平均值在P <0.05水平上差异显著;下同
* indicates that the mean of the three replicates between the treatment group and the control group was significantly different at the P <0.05 level;The same as below
荧光定量PCR分析表明, SlUDP基因在SlUDP-OE1和SlUDP-OE2中的表达水平分别是野生型植株的80倍和64倍(

图5 转基因拟南芥的鉴定及发芽率分析
Fig 5 Identification and germination rate analysis of transgenic Arabidopsis thaliana
A:qRT-PCR验证;B~E:不同浓度CdCl2胁迫下(0,40,60,80 µmol/L)的发芽试验; WT:野生型拟南芥;下同
A:qRT-PCR validation test; B-E: Germination test under different concentrations of CdCl2 stress (0,40,60,80 µmol/L),OE-1:SlUDP-OE1,OE-2:SlUDP-OE2,WT: Wild type;The same as below

野生型种子(本实验室保存哥伦比亚野生型拟南芥种子)和SlUDP-OE拟南芥种子在不同浓度镉胁迫下生长7 d时,未进行胁迫处理的种子生长无显著差异(

图6 不同浓度Cdcl2胁迫后拟南芥的子叶失绿、根长及表型分析
Fig. 6 Leaf greening, root length and phenotypic analysis of Arabidopsis mustard under different concentrations of CdCl2 stress
A~C:不同浓度CdCl2胁迫后拟南芥表型;A图上方为WT,左下侧为OE-1,右下侧为OE-2;D:不同浓度Cdcl2胁迫后拟南芥的存活率、子叶失绿、根长的统计数据
A-C: Arabidopsis phenotype after CdCl2 stress at different concentrations;The top of Figure A is WT, the left side is OE-1, and the right side is OE-2;D: Statistical data of survival rate, greenness of cotyledon, and root length of Arabidopsis after CdCl2 stress at different concentrations

(

图7 镉胁迫拟南芥丙二醛、可溶性糖、超氧化物歧化酶和过氧化物酶含量的测定
Fig.7 Determination of MDA, soluble sugar, SOD and POD contents in Arabidopsis thaliana under CdCl2 stress
MDA:Malondialdehyde; POD:Peroxidase;SOD:Superoxide dismutase
在正常生长条件下,野生型和SlUDP过表达拟南芥植株的丙二醛和可溶性糖含量以及超氧化物歧化酶和过氧化物酶活性无显著差异。然而,60 μmol/L CdCl2胁迫处理时,与野生型植株相比,SlUDP过表达拟南芥植株的丙二醛含量降低而可溶性糖含量有所增加,丙二醛含量下降约1.4倍、可溶性糖含量增加至约1.8倍,超氧化物歧化酶和过氧化物酶活性也显著增加,超氧化物歧化酶活性、过氧化物酶活性分别增加至约1.25倍、2倍(
在镉胁迫下,SlUDP过表达拟南芥植株金属离子转运蛋白基因ZIP1、IRT1、CSD1和COPT2的表达水平显著高于野生型植株。在镉胁迫3 h时,这些基因的表达量显著升高,金属离子转运相关基因(ZIP1、IRT1、COPT2和CSD1)在过表达植株中的表达量分别约为野生型植株的3.1倍、1.5倍、1.6倍、2.1倍。结果表明,SlUDP过表达株系中ZIP1、IRT1、COPT2和CSD1基因在增强植物镉胁迫中起到一定作用,SlUDP基因可能通过调节金属离子的转运来缓解金属离子对植物造成的损伤。GSH1基因在SlUDP-OE1处理3 h和6 h时的表达量都低于野生型拟南芥,初步推测SlUDP基因提高镉胁迫的过程与谷胱甘肽途径相关性不大(

图8 镉胁迫处理下SlUDP-OE1、SlUDP-OE2中ZIP1、IRT1、COPT2、GSH1和CSD1基因的表达
Fig. 8 Expressions of ZIP1, IRT1, COPT2, GSH1 and CSD1 genes in SlUDP-OE1 and SlUDP-OE2 treated by CdCl2
本研究对番茄糖基转移酶基因SlUDP进行克隆、生物信息学分析和基因表达特性分析,并且进行了酵母和拟南芥转基因功能验证,研究其调控植株镉胁迫的生物学功能。结果表明,番茄SlUDP基因序列与马铃薯序列同源,这与之前的研究结果一
丙二醛通常用于反映植物中膜脂过氧化的程度。在本项研究中,在高镉浓度下,发现SlUDP的过表达拟南芥植株丙二醛含量比野生型植株降低约1.4倍,说明在过表达株系中镉胁迫造成的氧化损伤显著低于野生型拟南芥。此外,过表达拟南芥植株可溶性糖含量和超氧化物歧化酶、过氧化物酶活性显著增加,再次表明这些植株对胁迫造成的氧化损伤耐受性增强。在60 μmol/L CdCl2处理下,过表达SlUDP拟南芥植株的可溶性糖含量增加至约1.8倍。这些结果表明,SlUDP基因通过调控拟南芥可溶性糖含量来响应胁迫,提高植物对镉胁迫的耐受性。Chen
本研究克隆了番茄的SlUDP基因,并研究了该基因在番茄植株不同组织中的表达。结果表明当番茄植株暴露于镉胁迫时,该基因在不同组织中的表达显著增加。利用酵母表达系统验证了SlUDP基因介导镉胁迫耐性的功能。此外,镉胁迫下在SlUDP过表达转基因拟南芥植株中,种子发芽率高于野生型植株。SlUDP过表达植株导致胁迫下丙二醛水平降低,可溶性糖水平升高,超氧化物歧化酶和过氧化物酶活性升高。结果表明,番茄SlUDP基因超量表达可以提高拟南芥植株的镉胁迫耐受性,抗氧化酶系统和金属离子转运蛋白可能参与其中。
参考文献
Wang H T, Cao Q J, Zhao Q, Arfan M, Liu W. Mechanisms used by DNA MMR system to cope with Cadmium-induced DNA damage in plants. Chemosphere, 2020, 24(6): 125-614 [百度学术]
Bharti R. Effect of heavy metals: An overview. Materials Today: Proceedings, 2022, 51(6): 880-885 [百度学术]
Nowicka B. Heavy metal-induced stress in eukaryotic algae—mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. Environmental Science and Pollution Research, 2022, 29(12): 16860-16911 [百度学术]
Noor I, Sohail H, Sun J X, Nawaz M A, Guo H L, Li G H, Hasanuzzaman M, Liu J W. Heavy metal and metalloid toxicity in horticultural plants: Tolerance mechanism and remediation strategies. Chemosphere, 2022,1(3): 188-196 [百度学术]
王雪阳,易鹏辉,汪春香,陈小虎,刘爱玉,周仲华,屠小菊. 重金属复合污染对植物的影响研究进展.现代农业科技, 2023, 1(23): 47-51 [百度学术]
Wang X Y, Yi P H, Wang C X, Chen X H, Liu A Y, Zhou Z H, Tu X J. Research progress on effects of heavy metal combined pollution on plants. Modern Agricultural Science and Technology, 2023, 1(23): 47-51 [百度学术]
Magray J A, Sharma D P, Deva M A, Ahmad Thoker S. Phenolics: Accumulation and role in plants grown under heavy metal stress. Plant Phenolics in Abiotic Stress Management, 2023, 2(1): 321-351 [百度学术]
杨婉莹, 孙莎莎, 巩彪, 李晓彤, 刘越, 史庆华. 超表达SlSAMS1对番茄镉胁迫的缓解效应及抗氧化系统的影响. 核农学报, 2020, 34(3): 487-496 [百度学术]
Yang W Y, Sun S S, Gong B, Li X T, Liu Y, Shi Q H. Effects of SlSAMS1 overexpression on cadmium stress and antioxidant system in tomato. Journal of Nuclear Agriculture, 2020, 34(3): 487-496 [百度学术]
Rehman H M, Khan U M, Nawaz S, Saleem F, Ahmed N, Rana I A, Atif R M, Shaheen N, Seo H. Genome wide analysis of Family-1 UDP glycosyltransferases in Populus trichocarpa specifies abiotic stress responsive glycosylation mechanisms. Genes, 2022, 13(9): 16-40 [百度学术]
Li J. Identification and expression characteristics of udp-glycosyltransferase genes in pear and their correlation with arbutin accumulation. Russian Journal of Plant Physiology, 2022, 69(5): 70-82 [百度学术]
Wang T, Li X K, Liu X, Yang X Q, Li Y J, Hou B K. Rice glycosyltransferase gene UGT2 functions in salt stress tolerance under the regulation of bZIP23 transcription factor. Plant Cell Reports, 2022, 1(5): 1-12 [百度学术]
Hu H, Qian P, Ye M. GmUGT73F4 plays important roles in enhancing seed vitality and tolerance to abiotic stresses in transgenic Arabidopsis. Plant Cell, Tissue and Organ Culture, 2022, 150(2): 313-328 [百度学术]
Dong L L, Tang Z, Yang T, Hao F L, Deng X Y. Genome-wide analysis of UGT genes in petunia and identification of PhUGT51 involved in the regulation of salt resistance. Plants, 2022, 11(18): 24-34 [百度学术]
Lian C. Molecular cloning and functional analysis of IrUGT86A1-like gene in medicinal plant isodon rubescens (Hemsl.) Hara. Life, 2022, 12(9): 13-34 [百度学术]
Martínez M, Bernal P, Almela C, Vélez D, Agustín P G, Serrano R, Aviñó J N. An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Chemosphere, 2006, 64(3): 478-485 [百度学术]
Saint P V, Zhang W, Kanawati B, Geist B, Kessler T F, Kopplin P S, Schäffner A R. The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence. The Plant Cell, 2011, 23(11): 4124-4145 [百度学术]
Wang T, Li P, Mu T, Zheng C C, Jin S H, Chen T T, Hou B K, Li Y J. Overexpression of UGT74E2, an Arabidopsis IBA glycosyltransferase, enhances seed germination and modulates stress tolerance via ABA signaling in rice. International Journal of Molecular Sciences, 2020, 21(19): 22-39 [百度学术]
Li Y, Wang B, Dong R, Hou B. AtUGT76C2, an Arabidopsis cytokinin glycosyltransferase is involved in drought stress adaptation. Plant Science, 2015, 236(2): 157-167 [百度学术]
Zhao M, Zhang N, Gao T, Jin J Y, Jing T T, Wang J M, Wu Y, Wan X C, Schwab W, Song C K. Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants. New Phytologist, 2020, 226(2): 362-372 [百度学术]
Tognetti V B, Van A O, Morreel K, Vandenbroucke K, Cotte B V, Clercq I D, Chiwocha S, Fenske R, Prinsen E, Boerjan W, Genty B, Stubbs K A, Inzé D, Breusegem F V. Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. The Plant Cell, 2010, 22(8): 2660-2679 [百度学术]
杨佳敏,万家悦,丁艳菲. 镉污染地区番茄品种的筛选及其抗氧化能力. 生物工程学报, 2021, 37(1): 242-252 [百度学术]
Yang J M, Wan J Y, Ding Y F. Screening and antioxidant capacity of tomato varieties in cadmium-contaminated areas. Journal of Bioengineering, 2021, 37(1): 242-252 [百度学术]
李倩, 张建坤, 曾宪东, 王琴, 王振华, 徐文兴. 凤果花叶病毒的RT-PCR和核酸斑点杂交检测研究. 植物病理学报, 2023, 53(6): 1262-1265 [百度学术]
Li Q, Zhang J K, Zeng X D, Wang Q, Wang Z H, Xu W X. Studies on the detection of pepion mosaic virus using RT-PCR and dot blot methods. Acta Phytopathologica Sinica, 2023, 53(6): 1262-1265 [百度学术]
庾蕾, 刘建平, 庄志雄, 杨淋清,张仁利,叶小明,程锦泉. 实时 RT-PCR 基因表达相对定量 REST 软件分析与
Yu L, Liu J P, Zhuang Z X, Yang L Q, Zhang R L, Ye X M, Cheng J Q. Real-time RT-PCR gene expression relative quantitative REST software analysis compared with
Decroocq V, Sicard O, Alamillo J M. Multiple resistance traits control Plum pox virus infection in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2006, 19(5): 541-549 [百度学术]
Zhou J Y, Prognon P. Raw material enzymatic activity determination: A specific case for validation and comparison of analytical methods—the example of superoxide dismutase (SOD). Journal of Pharmaceutical and BiomEdical Analysis, 2006, 40(5): 1143-1148 [百度学术]
Vetter J L, Steinberg M P, Nelson A I. Enzyme assay, quantitative determination of peroxidase in sweet corn. Journal of Agricultural and Food Chemistry, 1958, 6(1): 39-41 [百度学术]
Peever T L, Higgins V J. Suppression of the activity of non-specific elicitor from Cladosporium fulvum by intercellular fluids from tomato leaves. Physiological and Molecular Plant Pathology, 1989, 34(6): 471-482 [百度学术]
Barnett A J, Tawab G A. A rapid method for the determination of lactose in milk and cheese. Journal of the Science of Food and Agriculture, 1957, 8(7): 437-441 [百度学术]
耿鑫鑫,于丽杰,陈超,金晓霞. 番茄SlUDP基因的克隆及其在镉、干旱和盐胁迫中的响应分析. 华北农学报, 2021, 36(2): 46-53 [百度学术]
Geng X X, Yu L J, Chen C, Jin X X. Cloning of tomato SlUDP gene and its response to cadmium, drought and salt stress. Journal of North China Agronomy, 2021, 36(2): 46-53 [百度学术]
Sano N. ABA metabolism and homeostasis in seed dormancy and germination. International Journal of Molecular Sciences, 2021, 22(10): 5069-5072 [百度学术]
David M P, Stephen J A, Fabián E V, Priest D M , Ambrose S J, Vaistij F E, Elias L S, Higgins G S, Andrew R S , Suzanne R A, Bowles D J. Use of the glucosyltransferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana. The Plant Journal, 2006, 46(3): 492-502 [百度学术]
刘美子,王丹丹,秦超,王小强,沈月全. 植物糖基转移酶的结构与机理及糖基化工程的研究进展. 中国科学:生命科学, 2019, 49(9): 1133-1142 [百度学术]
Liu M Z, Wang D D, Qin C, Wang X Q, Shen Y Q. Research progress on structure and mechanism of plant glycosyltransferase and glycosylation engineering. Science in China: Life Sciences, 2019, 49(9): 1133-1142 [百度学术]
Dong T. Contribution of ABA UDP-glucosyltransferases in coordination of ABA biosynthesis and catabolism for ABA homeostasis. Plant Signaling & Behavior, 2014, 9(7): 28-88 [百度学术]
Spiral J, Ouazzani S, Vial N H. Reciprocal grafting reveals differential metabolic responses between robusta clones with contrasting tolerances to drought. Agricultural Research, 2022, 5(2): 1-11 [百度学术]
Zhang Z, Li J, Liu H. Roles of ubiquitination-mediated protein degradation in plant responses to abiotic stresses. Environmental Experimental Botany, 2015, 114(3): 92-103 [百度学术]
Ajayi O O. Systems identification and characterization of β-glucuronosyltransferase genes involved in arabinogalactan-protein biosynthesis in plant genomes. Scientific Reports, 2020, 10(1): 1-14 [百度学术]
Liu Z, Yan J P, Li D K, Luo Q, Yan Q J, Liu Z, Ye L M, Wang J M, Li X F, Yang Y. UDP-glucosyltransferase71C5, a major glucosyltransferase, mediates abscisic acid homeostasis in Arabidopsis. Plant Physiology, 2015, 167(4): 1659-1670 [百度学术]
Chen N, Fan X, Wang C, Jiao P, Jiang Z Z , Ma Y Y , Guan S Y , Liu S Y. Overexpression of ZmDHN15 enhances cold tolerance in yeast and Arabidopsis. International Journal of Molecular Sciences, 2023, 24(1): 470-480 [百度学术]
Tyagi S, Sharma Y, Sharma A, Pandey A, Kashmir Singh K, Upadhyay S K. Expression of TaNCL2-A ameliorates cadmium toxicity by increasing calcium and enzymatic antioxidants activities in Arabidopsis. Chemosphere, 2023, 3(39): 138-636 [百度学术]
Ni L, Wang Z, Liu L. The I1NF-YC6 transcription factor of Iris lactea var. chinensis (Fisch.) activates the llCDT1 gene and enhances tolerance to cadmium stress in Arabidopsis thaliana. Industrial Crops and Products, 2023, 19(7): 116-558 [百度学术]
Chen Q, Kuang A, Wu H, Liu D, Zhang X, Mao H Y. Physiological response of CmWRKY15-1 to chrysanthemum white rust based on TRV-VIGS. Frontiers in Plant Science, 2023, 14(1): 140-596 [百度学术]
Sun S, Yao X, Liu X. Brassinolide can improve drought tolerance of maize seedlings under drought stress: By inducing the photosynthetic performance, antioxidant capacity and ZmMYB gene expression of maize seedlings. Journal of Soil Science and Plant Nutrition, 2022, 22(2): 2092-2104 [百度学术]
Meng Y, Huang J, Jing H, Wu Q, Shen R F, Zhu X F. Exogenous abscisic acid alleviates Cd toxicity in Arabidopsis thaliana by inhibiting Cd uptake, translocation and accumulation, and promoting Cd chelation and efflux. Plant Science, 2022, 3(25): 111-464 [百度学术]