摘要
以抗叶锈病小麦品系Hussar的衍生品系H103P为抗病亲本,郑州5389为感病亲本杂交得到的234个F4家系群体为材料,进行抗叶锈病基因定位分析。利用带有不同毒力的16个叶锈菌生理小种进行苗期抗叶锈性鉴定,结果表明周麦22及携带Lr13、Lr23和Lr16单基因的载体品种对16个叶锈菌生理小种均表现感病,H103P对除PHKT外的所有小种表现抗病,表明H103P抗叶锈性与携带Lr13、Lr23和Lr16单基因的载体品种不同。利用5种强毒力混合菌种(THTT、PHT
小麦叶锈病分布范围广泛,其病原菌为叶锈菌(Puccinia triticina
Hussar是来自英格兰的普通小麦品种,其亲本组合为Squadron/Rendezvou
小麦材料:抗病亲本H103P和感病亲本郑州5389以及二者杂交后所得的234个F4家系群体、周麦22(含抗性基因LrZH22)、携带Lr13、Lr16、Lr23单基因载体品种、慢锈对照品种SAAR。以上所有的小麦材料均由河北农业大学生防与分子植病实验室提供。
菌种材料:苗期鉴定所用的16种不同毒力的叶锈菌生理小种:FHJ
将H103P、郑州5389、周麦22、Lr13载体品种、Lr16载体品种、Lr23载体品种种于高度、直径均为9.5cm的花盆中,每盆每个品种15粒,每品种各种植16套置于河北农业大学温室内,待小麦材料长至一叶一心时,采用扫抹
2021年10月中旬将H103P和郑州5389以及二者杂交后所得的234个F4家系群体、慢锈对照品种SAAR、周麦22及Lr13载体品种种植于河北省保定市试验田,行距25 cm,行长75 cm,每个材料播种1行,每10行材料种植1行郑州5389便于鉴定,并将郑州5389垂直于播种行种植作为诱发行。保护行种植黑麦,可以有效的防止周围田地被传染,常规田间管理。
2022年4月中旬,小麦拔节期时将5种强毒力混合菌种孢子配置成0.05%浓度的孢子悬浮液,均匀喷洒至诱发行,常规田间管理。诱发行发病后会自然传染待测材料,待郑州5389严重度达到80%时进行第1次病害调查;之后每隔1周进行1次病害调查;直至郑州5389发病100%时进行最后1次调查。并以最后1次调查的严重度最高值作为成株期叶锈病最终严重度。参照Peterson
参考Sharp
LrZH22和Lr13是同一个基因,为检测H103P中含有的抗叶锈病基因与Lr13的关系,利用Lr13的特异性引物(上游引物:TGCACATGGATATG CGGAGA;下游引物:GCTTTGAGTTGCCCATGC TC)对H103P和郑州5389的扩增产物进行特异性酶切,引物由生工生物工程(上海)股份有限公司合成。SSR引物PCR反应总体系和反应程序同1.4。
SSR引物酶切反应体系:SSR引物PCR产物8 μL、Hind Ⅲ 酶0.5 μL(New England Biolabs(NEB)购买)、buffer 1 μL。SSR引物酶切反应:37 ℃ 90 min;10 ℃保存。
苗期接菌鉴定结果表明,郑州5389、周麦22以及Lr13、Lr16和Lr23载体品种对16个生理小种均感病,H103P对除PHKT以外的所有小种表现抗病。表明H103P的抗叶锈性比郑州5389、周麦22以及Lr13、Lr16和Lr23载体品种更好(
品种 Varieties | 基因 Gene | 叶锈菌侵染型 Leaf rust fungus infection type | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FH J | FH T | FH K | PH T | FH JT | TH PS | TH DP | KG TT | FH K | TH TT | NH KP | PH KS | FH T | PH T | FH J | PH KT | ||
H103P | 2+ | 2+ | 2+ | 2+ | 2+ | 1 | 1 | 2 | 2+ | 2 | 2 | 2 | 2 | 2 | 2 | 3 | |
郑州5389 Zhengzhou 5389 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
周麦22 Zhoumai 22 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 3 | 4 | |
载体品种 Carrier variety | Lr13 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 3 | 4 | 4 | 4 | 3 | 3 |
Lr16 | 4 | 3 | 4 | 3 | 3 | 4 | 3 | 4 | 4 | 3 | 4 | 4 | 3 | 4 | 4 | 3 | |
Lr23 | 4 | 4 | 4 | 4 | 4 | 4 | 3 | 3 | 4 | 3 | 4 | 3 | 4 | 3 | 4 | 3 |
+表示小麦材料侵染程度比该等级的正常水平高
+indicates that the degree of infection of wheat materials is higher than the normal level of this grade

图1 不同品种对叶锈菌生理小种THDP的侵染型
Fig.1 Infection type of different varieties on the physiological race THDP of leaf rust fungus
Hussar的衍生品系H103P、郑州5389、慢锈对照品种SAAR、周麦22以及Lr13载体品种田间鉴定结果表明, H103P、SAAR、周麦22以及Lr13载体品种田间表现型均为慢锈性(
品种 Varieties | 最终严重度(%) Final disease severity | 抗性 Resistance |
---|---|---|
H103P | 10 | 慢锈性 |
郑州5389 Zhengzhou 5389 | 100 | 高感 |
周麦22 Zhoumai 22 | 15 | 慢锈性 |
Lr13载体品种 Lr13 carrier variety | 18 | 慢锈性 |
SAAR | 5 | 慢锈性 |
H103P和郑州5389以及二者杂交后所得的234个F4家系群体田间抗叶锈性鉴定结果表明,H103P严重度为10%,郑州5389严重度为100%, 234个F4家系群体最终严重度在5%~100%范围(

图2 F4家系群体田间严重度分布
Fig.2 Severity distribution of F4 family populations in the field
在亲本间筛选了小麦染色体上的481对SSR引物,其中在2B染色体上的引物多态性占比最大,为77%,因此使用2B染色体上的SSR引物,筛选在亲本间表现多态性的引物,再将这些引物在构建好的抗感池进行筛选,最终筛选到Xgwm148(F:GTGA GGCAGCAAGAGAGAAA;R:CAAAGCTTGACT CAGACCAAA)、Xgwm374(F:ATAGTGTGTTGC ATGCTGTGTG;R:TCTAATTAGCGTTGGCTGCC)及Xgwm474(F:ATGCTATTAAACTAGCATGTGTC G;R:AGTGGAAACATCATTCCTGGTA)共3个标记与Hussar衍生品系H103P中的抗叶锈病基因连锁。
通过Joinmap 4.0软件分析,发现1个位于2BS染色体上的小麦抗叶锈病基因,暂命名为LrHu。距离LrHu最近的标记为Xgwm148,LrHu在其一侧15.6 cM处(

图3 Xgwm148引物扩增F4家系PCR产物的聚丙烯酰胺凝胶电泳部分结果
Fig. 3 Electrophoresis of PCR products amplified with SSR marker Xgwm148 on polyacrylamide gels
M:PBR322/Msp I Marker;P1:H103P;P2:郑州5389;Br:抗病池;Bs:感病池;R:抗病F4家系;S:感病F4家系
P1: H103P; P2: Zhengzhou5389; Br:Resistant bulk; Bs:Susceptible bulk; R:Resistant F4 pedigree; S:Susceptible F4 pedigree

图4 LrHu在2BS染色体上构建的遗传连锁图谱
Fig. 4 Genetic linkage mapping of LrHu constructed on chromosome 2BS
A:2B染色体缺失图谱,C为着丝点;B:与抗叶锈基因LrHu连锁的3个SSR标记在2BS上的遗传连锁图谱;2BS:小麦2B染色体短臂;2BL:小麦2B染色体长臂
A: 2B chromosome deletion map, C is mitotic site; B: Genetic linkage map of three SSR markers linked to the leaf rust resistance gene LrHu on 2BS; 2BS: Short arm of wheat chromosome 2B; 2BL: Long arm of wheat chromosome 2B
Lr13是1个具有温敏性的成株抗叶锈病基

图5 Lr13特异性引物扩增产物酶切电泳图
Fig.5 Enzyme digestion electrophoresis of Lr13 specific primer amplification products
M:PBR322/Msp I Marker;P1:H103P;P2:郑州5389;1:Lr13载体品种;2:周麦 22
P2: Zhengzhou5389; 1: Lr13 carrier variety; 2: Zhoumai 22
含有小麦抗叶锈病基因Lr13,但LrHu与Lr13之间的关系还需进一步研究。
本研究在苗期用毒力有差异的16个小种鉴定H103P、周麦22及携带Lr13、Lr23、Lr16的单基因载体品种的抗叶锈性,结果表明周麦22及Lr13、Lr16和Lr23载体品种对所有菌种均表现感病,但H103P对除PHKT之外的所有小种表现抗病,表明H103P比周麦22及Lr13、Lr16和Lr23的载体品种抗叶锈性好。本研究结合基因型数据和表型数据对Hussar的衍生品系H103P和郑州5389的234个F4家系群体进行抗叶锈病基因定位分析,在2BS染色体上定位到1个抗叶锈病基因,暂命名为LrHu。目前在2BS上定位到的抗病基因有Lr4
通过对比H103P与Lr13载体品种,H103P的侵染型要比Lr13载体品种低,表明H103P的抗叶锈性比Lr13载体品种好。分子标记检测得知H103P含有Lr13抗叶锈病基因,推测H103P除了含有抗病基因Lr13外可能还含有其他抗叶锈病基因。
距离LrHu最近的标记是的Xgwm148,遗传距离为15.6 cM,遗传距离较大。分析原因有二,其一是SSR分子标记密度不够大,导致标记与基因间的距离较大;其二是利用F4家系不如F2及F2:3结果精确,因为随机抽取尽可能多的家系单株虽在理论上可代表F2单株的基因组成,但也可能只选到了分离单株的同一性状的后代,导致重组率高,遗传距离大。
下一步将构建尽可能大的F2单株结合F2:3家系,精准鉴定表现型,利用其他标记如KASP标记,或利用SNP芯片获得多态性位点,结合已公开的基因组序列设计引物,来构建高密度遗传图谱,以缩短遗传距离,进行精细定位,为利用此基因达到基因聚合的目的奠定基础;并通过基因克隆等下一步实验正式命名LrHu。此外还将对该群体进行其他农艺性状鉴别,如对赤霉病、纹枯病、秆锈病等的抗性,来确定是否具有对多种病害的兼抗性。
参考文献
Bolton M D, Kolmer J A, Garvin D F. Wheat leaf rust caused by Puccinia triticina. Molecular Plant Pathology, 2008, 9(5):563-575 [百度学术]
赵杰, 杜志敏, 刘尧, 梁晓飞, 陈俐, 康振生. 两种唐松草鉴定为小麦叶锈菌的转主寄主. 植物病理学报, 2021, 51(1):70-84 [百度学术]
Zhao J, Du Z M, Liu Y, Liang X F, Chen L, Kang Z S. Identification of two thalictrum species as alternate hosts for Puccinia triticina, the wheat leaf rust pathogen. Acta Phytopathologica Sinica, 2021, 51(1):70-84 [百度学术]
张传伟, 巩中军, 郭姝辰, 于思勤. 近30年河南省小麦病虫草害发生演变特点分析. 中国植保导刊, 2022, 42(3):29-38 [百度学术]
Zhang C W, Gong Z J, Guo S C, Yu S Q. Spatial patterns and temporal trends of wheat pests in Henan province in the past 30 years. China Plant Protection, 2022, 42(3):29-38 [百度学术]
武文月, 孙新康, 秦臻, 马秋颖, 韩茜, 王亚敏, 刘大群, 王海燕. 小麦叶锈菌生理小种PHNT候选效应蛋白的筛选及分析. 农业生物技术学报, 2021, 29(8):1463-1472 [百度学术]
Wu W Y, Sun X K, Qin Z, Ma Q Y, Han Q, Wang Y M, Liu D Q, Wang H Y. Screening and analysis of effector candidates in physiological race PHNT of Puccinia triticina on wheat (Triticum aestivum). Journal of Agricultural Biotechnology, 2021, 29(8):1463-1472 [百度学术]
汤文倩, 王冬梅. 小麦与叶锈菌互作过程中TaSnRK1的表达分析及其亚细胞定位. 河北农业大学学报, 2021, 44(4):7-12 [百度学术]
Tang W Q, Wang D M. Expression analysis and subcellular localization of TaSnRK1 during the interaction between wheat and Puccinia triticina. Journal of Hebei Agricultural University, 2021, 44(4):7-12 [百度学术]
Lin G, Chen H, Tian B, Sehgal S K, Singh L, Xie J, Rawat N, Juliana P, Singh N, Shrestha S, Wilson D L, Shult H, Lee H, Schoen A W, Tiwari VK, Singh R P, Guttieri M J, Trick H N, Poland J, Bowden R L, Bai G, Gill B, Liu S. Cloning of the broadly effective wheat leaf rust resistance gene Lr42 transferred from Aegilops tauschii. Nature Communications, 2022, 13(1):3044 [百度学术]
王思曼, 张静, 张培培, Gebrewahid Takele Weldu, 闫晓翠, 刘大群, 李在峰. 69份国外小麦品种(系)抗叶锈性鉴定及基因分析. 麦类作物学报, 2020, 40(10):1166-1174 [百度学术]
Wang S M, Zhang J, Zhang P P, Weldu G T, Yan X C, Liu D Q, Li Z F. Leaf rust resistance identification and gene analysis of 69 foreign wheat varieties(lines). Journal of Triticeae Crops, 2020, 40(10):1166-1174 [百度学术]
Ordonez M E, German S E, Kolmer J A. Genetic differentiation within the Puccinia triticina population in south America and comparison with the north American population suggests common ancestry and intercontinental migration. Phytopathology, 2010, 100(4):376-383 [百度学术]
Kolmer J A, Bajgain P, Rouse M N, Li J, Zhang P. Mapping and characterization of the recessive leaf rust resistance gene Lr83 on wheat chromosome arm 1DS. Theoretical and Applied Genetics,2023, 136(5):115 [百度学术]
Subodh K, Subhash C B, Om P G, Akanksha S, Naeela, Q, Vikas, V K, Hanif K, Pramod P, Hanif M, Gyanendra P S, Kiran S, Hemlata V, Kerrie L F, Richard M T, Harbans S B, Urmil K B. Lr80:A new and widely effective source of leaf rust resistance of wheat for enhancing diversity of resistance among modern cultivars. Theoretical and Applied Genetics, 2021, 134(3):1-10 [百度学术]
Kolmer J A, Bernardo A, Bai G, Hayden M J, Chao S. Adult plant leaf rust resistance derived from toropi wheat is conditioned by Lr78 and three minor QTL. Phytopathology, 2018, 108(2):246-253 [百度学术]
Wu H, Kang Z H, Li X, Li Y Y. Identification of wheat leaf rust resistance genes in Chinese wheat cultivars and the improved germplasms. Plant Disease, 2020, 104:2669-2680 [百度学术]
董海焦, 贺钟锐, 张继朝, 齐爱勇, 张培培, 李在峰. 小麦慢叶锈QTL位点QLr.hebau-3DS的SSR标记开发. 河北农业大学学报, 2023, 46(1):16-21,96 [百度学术]
Dong H J, He Z R, Zhang J C, Qi A Y, Zhang P P, Li Z F. Development of SSR markers linked with wheat leaf rust gene QLr.hebau-3DS. Journal of Hebei Agricultural University, 2023, 46(1):16-21,96 [百度学术]
Forrest K, Pujol V, Bulli P, Pumphrey M. Development of a SNP marker assay for the Lr67 gene of wheat using a genotyping by sequencing approach. Molecular Breeding, 2014, 34(4):2109-2118 [百度学术]
Herrera F S, Singh R P, Huerta E J, Rosewarne G M, Periyannan S K, Viccars L, Calvo S V, Lan C, Lagudah E S. Lr68: A new gene conferring slow rusting resistance to leaf rust in wheat. Theoretical and Applied Genetics, 2012, 124(8):1475-1486 [百度学术]
Zheleva D, Todorovska E, Jacquemin J M, Atanassov A, Christov N K, Panayotov L, Tsenov N. Allele distribution at microsatellite locus Xgwm 261 marking the dwarfing gene Rht8 in hexaploid wheat from Bulgarian and Belgian gene bank collections and its application in breeding programs. Biotechnology and Biotechnological Equipment, 2006, 20(2):45-56 [百度学术]
Cristina D, Turcu A G, Ciuca M. Molecular detection of resistance genes to leaf rust Lr34 And Lr37 in wheat germplasm. Agriculture and Agricultural Science Procedia, 2015, 6:533-537 [百度学术]
王佳真, 李在峰, 李星, 刘大群. 小麦品系5R618抗叶锈病基因的初步定位. 植物遗传资源学报, 2014, 15(6):1348-1351 [百度学术]
Wang J Z, Li Z F, Li X, Liu D Q. Preliminary mapping of leaf rust resistance gene in wheat line 5R618. Journal of Plant Genetic Resources, 2014, 15(6):1348-1351 [百度学术]
Roelfs A P, Singh R P, Saari E E. Rust diseases of wheat: Concepts and methods of disease management. Plant Diseases, 1992, 123(1):21-29 [百度学术]
Peterson R F, Campbell A B, Hannah A E. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Biochemistry and Physiology, 1948, 26(5):496-500 [百度学术]
Sharp P, Kreis M, Shewry P R, Gale M D. Location of β-amylase sequences in wheat and its relatives. Theoretical and Applied Genetics, 1988, 75(2):286-290 [百度学术]
闫晓翠. 小麦温敏抗叶锈病基因LrZH22/Lr13的克隆及功能验证. 保定:河北农业大学, 2021 [百度学术]
Yan X C. Cloning and functional analysis of the temperature-sensitive gene LrZH22/Lr13 for leaf rust resistance in common wheat. Baoding: Hebei Agricultural University, 2021 [百度学术]
Singh A, Pallavi J K, Gupta P, Prabhu K. Identification of microsatellite markers linked to leaf rust adult plant resistance(APR) gene Lr48 in wheat. Plant Breeding, 2011, 130(3):31-34 [百度学术]
Liang F, Du X, Zhang J, Li X Y, Wang F, Wang H Y, Liu D Q. Wheat TaLr35PR2 gene is required for Lr35-mediated adult plant resistance against leaf rust fungus. Functional Plant Biology, 2019, 47(1):26-37 [百度学术]
Qiu L, Wang H, Li Y, Wang W, Liu Y, Mu J, Geng M, Guo W, Hu Z, Ma J, Sun Q, Xie C. Fine mapping of the wheat leaf rust resistance gene LrLC10 (Lr13) and validation of its co-segregation markers. Frontiers in Plant Science,2020, 11:470 [百度学术]
Chhetri M, Bariana H, Wong D, Sohail Y, Hayden M, Bansal U. Development of robust molecular markers for marker-assisted selection of leaf rust resistance gene Lr23 in common and durum wheat breeding programs. Molecular Breeding, 2017, 37(3):21 [百度学术]
Mccartney C A, Somers D J, Mccallum B D, Thomas J, Humphreys D G, Menzies J G, Brown P D. Microsatellite tagging of the leaf rust resistance gene Lr16 on wheat chromosome 2BSc. Molecular Breeding, 2005, 15(4):329-337 [百度学术]
Park R, Mohler V, Nazari K, Singh D. Characterisation and mapping of gene Lr73 conferring seedling resistance to Puccinia triticina in common wheat. Theoretical and Applied Genetics, 2014, 127(9):2041-2049 [百度学术]
Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2004, 109(6):1105-1114 [百度学术]