摘要
MADS-box是植物体内一种重要的转录因子,其家族成员具有典型的MIKC结构、高度保守的N端MADS以及保守性较低的I域和C端。MADS-box基因广泛表达于植物的根、茎、叶、花、芽等组织部位,并参与调控花期、花器官发育、种子发育及非生物胁迫响应等过程。近年来的研究报道显示,不同MADS-box基因的表达模式不尽相同,其功能也存在较大差异。本文概述了大豆MADS-box基因家族的结构及分类,总结了大豆MADS-box基因家族花发育ABCDE模型中相关成员及SVP、SOC1、FLC等基因的研究进展。最后对大豆MADS-box的研究提出了展望,为今后进一步挖掘和利用该类转录因子基因进行大豆遗传改良和种质创新提供参考依据。
MADS-box基因家族是众多转录因子家族之一,广泛存在于动物、植物和真菌中,主要参与生长发育、次生代谢调控以及生物和非生物胁迫响应等重要生物学过
MADS-box基因的名称来自酿酒酵母的MCMI蛋白、拟南芥的AG蛋白、金鱼草的DEFICIENS蛋白和人血清应答因子SRF蛋白的首字母。这4种蛋白均含有1个由56~58个氨基酸组成的高度保守的MADS-box结构域,通常将含有此类保守结构域序列的基因归纳为MADS-box基因家族成

图 1 MADS-box示意
Fig.1 Schematic diagram of MADS-box
A:MADS-box结构及分类, 绿色方框代表MADS结构域,淡橙色方框代表I域,橙色方框代表K域(K1、K2、K3分别为一个两性α螺旋),蓝色方框代表C域;B:MADS-box蛋白与DNA结合示意图
A:MADS-box structure and classification, green boxes represent MADS structural domains, light orange boxes represent I domains, orange boxes represent K domains (K1, K2, and K3 are each an amphipathic α-helix), and blue boxes represent C domains; B:Schematic diagram of MADS-box protein binding to DNA
根据大豆MADS-box基因的相关报道,MIK
随着对MIK

图 2 花发育ABCDE模
Fig. 2 ABCDE model of flower development
AP1是MADS-box基因家族重要成员之一,在ABCDE花器官发育模型中属于A类基因,主要决定拟南芥花分生组织、花瓣及萼片的分化。2011年,Chi
FUL是AP1同源基因,在多种发育过程中发挥着重要的作用,包括芽起始、生殖过渡、花序分化和果实发
AP3在ABCDE花器官发育模型中作为B类基因发挥作用,参与调控开花时间、花分生组织形成和胚珠的发育。B类基因的突变会导致花器官结构的变化,进而影响种子的发育过
C/D类基因的功能主要与雄蕊、心皮和果实的发育相关。有研究推测C类基因GmAG可能参与大豆生殖器官的发育调控,该基因在花原基、花粉和胚珠中表达量较高,短日照条件下GmAG在花分生组织发育和花器官起作用,导致开花提
SEP属于E类基因,分为SEP1、SEP2、SEP3和SEP4 共4种类型,它们参与调节拟南芥的花发育,对植物的生殖生长尤其是花器官的发育起着至关重要的作
GmSVPs是Ⅱ型的MADS‐box转录因子,广泛表达于植物的根、茎、叶、芽和花等组织部位。在大豆中,GmSVPs的表达模式及功能存在一定差异,主要参与调控植物生长发育及花期、花器官发育等过
在拟南芥中,AtSVP与STMADS11亚家族的AGL24(AGAMOUS-LIKE24)关系最为密切、序列高度相
SOC1也属于MIK
Dt2(Determinate stem)是控制大豆分枝数的显性基因,参与营养生殖转变过程。Zhang
目前,已经报道了多种调节FLC的染色质途径和共转录机制,其中最主要的是春化途径。拟南芥FLC是一种开花抑制因子,春化抑制了FLC的表
GmAGL15在大豆中过表达不仅可以使大豆提早开花,并且还影响大豆胚胎的发育过
AtAGL17同源基因GmNMHC5在自贡东豆品种根瘤中首次被发现,qRT-PCR分析表明GmNMHC5在根和结节中的表达水平远高于其他部位,过表达GmNMHC5显著促进了侧根发育和根瘤的形成。在这项研究中还发现过表达GmNMHC5植株表现出早花的表型,而Gmnmhc5植株则表现出相反的表型,并且过表达植株中GmFT1a和GmFT4的表达受到抑制。以上结果表明GmNMHC5在调节开花和结瘤过程中具有双重功
此外,还发现了一些新的大豆MADS-box 成员,例如 GmNMH7 ,能够抑制结瘤相关基因的表达,负调控根瘤的形成和发育过
通过多年的研究,MADS-box基因家族已经在越来越多的作物中被鉴定并对该家族基因的功能和作用方式进行阐述。在大豆的生长发育中,MADS-box基因家族在大豆开花时间、花形态发育、种子发育、大豆不育性等方面发挥着重要作用。其中,GmSVPs、GmSOC1s和GmFLCs主要参与调控大豆的开花时
大豆MADS-box基因家族有100多个成员,包含GmSVP、GmSOC1、GmFLC等多个亚家族。随着近些年国家对大豆产业的重视以及生物技术的发展,大豆MADS-box基因家族功能的研究已经得到了长足的发展,但是目前还有很多不足。如目前研究的基因还比较少,并且大部分基因的功能验证还停留在转化拟南芥方面,导致一部分基因功能的鉴定可能会不准确,因为大豆是短日照植物而拟南芥是长日照植物。此外同一亚家族的MADS-box基因在大豆中是否发生功能分歧以及该基因家族的分子调控机制有待进一步研究。比如AtSVP及其亲缘关系最接近的AtAGL24基因,在AtSOC1的调节中表现出相反的作用机
参考文献
De Bodt S, Raes J, Van de Peer Y, Theissen G. And then there were many: MADS goes genomic. Trends in Plant Science, 2003, 8(10): 475-483 [百度学术]
Ma H, Yanofsky M F, Meyerowitz E M. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Development, 1991, 5(3): 484-495 [百度学术]
李傲辰. 大豆的主要营养成分及营养价值研究进展. 现代农业科技, 2020, (23): 213-214, 218 [百度学术]
Li A C. Research progress on main nutritional components and nutritional value of soybean. Modern Agricultural Science and Technology, 2020, (23): 213-214,218 [百度学术]
何浩博. 大豆MADS-box家族GmAP3基因在花发育中的功能分析. 长春:吉林农业大学, 2022 [百度学术]
He H B. Functional analysis of GmAP3 gene in flower development of soybean MADS-box family.Changchun:Jilin Agricultural University, 2022 [百度学术]
Zhai H, Wan Z, Jiao S, Zhou J, Xu K, Nan H, Liu Y, Xiong S, Fan R, Zhu J, Jiang W, Pang T, Luo X, Wu H, Yang G, Bai X, Kong F, Xia Z. GmMDE genes bridge the maturity gene E1 and florigens in photoperiodic regulation of flowering in soybean. Plant Physiology, 2022, 189(2): 1021-1036 [百度学术]
Misra V A, Wang Y, Timko M P. A compendium of transcription factor and Transcriptionally active protein coding gene families in cowpea (Vigna unguiculata L.). BMC Genomics, 2017, 18(1): 898 [百度学术]
王莹,穆艳霞,王锦. MADS-box基因家族调控植物花器官发育研究进展. 浙江农业学报, 2021, 33(6): 1149-1158 [百度学术]
Wang Y, Mu Y X, Wang J. Research progress on the regulation of plant flower organ development by MADS-box gene family. Zhejiang Journal of Agricultural Sciences, 2021, 33(6): 1149-1158 [百度学术]
Hecht V, Foucher F, Ferrándiz C, Macknight R, Navarro C, Morin J, Vardy M E, Ellis N, Beltrán J P, Rameau C, Weller J L. Conservation of Arabidopsis flowering genes in model legumes. Plant Physiology, 2005, 137(4): 1420-1434 [百度学术]
Arora R, Agarwal P, Ray S, Singh A K, Singh V P, Tyagi A K, Kapoor S. MADS-box gene family in rice:Genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics, 2007, 8: 242 [百度学术]
栾雨濛. 植物MADS-box基因家族与山核桃雌雄转录组分析. 杭州:浙江农林大学, 2021 [百度学术]
Luan Y M. Plant MADS-box gene family and analysis of male and female transcriptomes in Hickory walnut. Hangzhou:Zhejiang Agriculture and Forestry University, 2021 [百度学术]
Theissen G, Kim J, Saedler H. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. Journal of Molecular Evolution, 1996, 43(5): 484-516 [百度学术]
黄方, 迟英俊, 喻德跃. 植物 MADS-box 基因研究进展. 南京农业大学学报, 2012, 35(5): 9-18 [百度学术]
Huang F, Chi Y J, Yu D Y. Research progress on MADS-Box genes in plants. Journal of Nanjing Agricultural University, 2012, 35(5): 9-18 [百度学术]
Norman C, Runswick M, Pollock R, Treisman R. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell, 1988, 55(6): 989-1003 [百度学术]
Yanofsky M F, Ma H, Bowman J L, Drews G N, Feldmann K A, Meyerowitz E M. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 1990, 346(6279): 35-39 [百度学术]
Henschel K, Kofuji R, Hasebe M, Saedler H, Münster T, Theißen G. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Molecular Biology and Evolution, 2002, 19(6): 801-814 [百度学术]
Kramer E M, Irish V F. Evolution of genetic mechanisms controlling petal development. Nature, 1999, 399(6732): 144-148 [百度学术]
Callens C, Tucker M R, Zhang D, Wilson Z A. Dissecting the role of MADS-box genes in monocot floral development and diversity. Journal of Experimental Botany, 2018, 69(10): 2435-2459 [百度学术]
Becker A, Theißen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution, 2003, 29(3): 464-489 [百度学术]
Coen E S, Meyerowitz E M. The war of the whorls:Genetic interactions controlling flower development. Nature, 1991, 353(6339): 31-37 [百度学术]
Nam J, dePamphilis C W, Ma H, Nei M. Antiquity and evolution of the MADS-box gene family controlling flower development in plants. Molecular Biology and Evolution, 2003, 20(9): 1435-1447 [百度学术]
Shu Y, Yu D, Wang D, Guo D, Guo C. Genome-wide survey and expression analysis of the MADS-box gene family in soybean. Molecular Biology Reports, 2013, 40(6): 3901-3911 [百度学术]
Pelaz S, Ditta G S, Baumann E, Wisman E, Yanofsky M F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 2000, 405(6783): 200-203 [百度学术]
Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky M F. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current Biology, 2004, 14(21): 1935-1940 [百度学术]
Pinyopich A, Ditta G S, Savidge B, Liljegren S J, Baumann E, Wisman E, Yanofsky M F. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 2003, 424(6944): 85-88 [百度学术]
Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky M F, Kater M M, Colombo L. MADS-box protein complexes control carpel and ovule development in Arabidopsis. The Plant Cell, 200, 15(11): 2603-2611 [百度学术]
Irish V F, Sussex I M. Function of the apetala-1 gene during Arabidopsis floral development. The Plant Cell, 1990, 2(8): 741-753 [百度学术]
Tzeng T Y, Yang C H. A MADS box gene from lily (Lilium Longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant Cell Physiology, 2001, 42(10): 1156-1168 [百度学术]
Bowman J L, Smyth D R, Meyerowitz E M. The ABC model of flower development: Then and now. Development, 2012, 139(22): 4095-4098 [百度学术]
Theißen G,Melzer R,Rümpler F. MADS-domain transcription factors and the floral quartet model of flower development:Linking plant development and evolution. Development, 2016,143(18):3259-3271 [百度学术]
Chi Y, Huang F, Liu H, Yang S, Yu D. An APETALA1‐like gene of soybean regulates flowering time and specifies floral organs. Journal of Plant Physiology, 2011, 168: 2251-2259 [百度学术]
Chen L, Nan H, Kong L, Yue L, Yang H, Zhao Q, Fang C, Li H, Cheng Q, Lu S, Kong F, Liu B, Dong L. Soybean AP1 homologs control flowering time and plant height. Journal of Integrative Plant Biology, 2020, 62(12): 1868-1879 [百度学术]
Di Marzo M, Herrera-Ubaldo H, Caporali E, Novák O, Strnad M, Balanzà V, Ezquer I, Mendes M A, de Folter S, Colombo L. SEEDSTICK controls Arabidopsis fruit size by regulating cytokinin levels and FRUITFULL. Cell Reports, 2020, 30(8): 2846-2857 [百度学术]
Martínez-Fernández I, Menezes de Moura S, Alves-Ferreira M, Ferrándiz C, Balanzà V. Identification of players controlling meristem arrest downstream of the FRUITFULL-APETALA2 Pathway. Plant Physiology, 2020, 184(2): 945-959 [百度学术]
Balanzà V, Martínez-Fernández I, Sato S, Yanofsky M F, Ferrándiz C. Inflorescence meristem fate is dependent on seed development and FRUITFULL in Arabidopsis thaliana. Frontiers in Plant Science, 2019, 10: 1622 [百度学术]
Jia Z, Jiang B, Gao X, Yue Y, Fei Z, Sun H, Wu C, Sun S, Hou W, Han T. GmFULa, a FRUITFULL homolog, functions in the flowering and maturation of soybean. Plant Cell Reports, 2015, 34(1): 121-132 [百度学术]
Yue Y, Sun S, Li J, Yu H, Wu H, Sun B, Li T, Han T, Jiang B. GmFULa improves soybean yield by enhancing carbon assimilation without altering flowering time or maturity. Plant Cell Reports, 2021, 40(10): 1875-1888 [百度学术]
Sun J, Wang M, Zhao C, Liu T, Liu Z, Fan Y, Xue Y, Li W, Zhang X, Zhao L. GmFULc is induced by short days in soybean and may accelerate flowering in transgenic Arabidopsis thaliana. International Journal of Molecular Sciences, 2021, 22(19): 10333 [百度学术]
黎永力,杜浩,李泰,甘卓然,侯智红,董利东,刘宝辉,程群.大豆FUL基因家族进化规律分析及基因编辑靶点鉴定.植物遗传资源学报, 2021, 22(4): 1120-1132 [百度学术]
Li Y L, Du H, Li T, Gan Z R, Hou Z H, Dong L D, Liu B H, Cheng Q. Analysis of FUL gene family evolution and identification of gene editing targets in soybean. Journal of Plant Genetic Resources, 2021, 22(4): 1120-1132 [百度学术]
Wu C, Ma Q, Yam K M, Cheung M Y, Xu Y, Han T, Lam H M, Chong K. In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max [L.] Merr.) flowering reversion system. Planta, 2006, 223(4): 725-735 [百度学术]
杨桐珲, 刘占柱, 管翊君, 焦苏琪, 李广隆, 姚丹. MADS-box基因GmAP3的克隆及生物信息学分析. 分子植物育种, 2020, 18(3): 729-736 [百度学术]
Yang T H, Liu Z Z, Guan Y J, Jiao S Q, Li G L, Yao D. Cloning and bioinformatics analysis of MADS-box gene GmAP3. Molecular Plant Breeding, 2020, 18(3): 729-736 [百度学术]
姜妍. 光周期对大豆花序分化的影响及AGAMOUS基因的表达. 哈尔滨:东北农业大学, 2009 [百度学术]
Jiang Y. Effect of photoperiod on inflorescence differentiation of soybean and expression of AGAMOUS gene. Harbin: Northeast Agricultural University, 2009 [百度学术]
迟英俊. 大豆MADS-box基因家族成员的鉴定及GmAP1和GmSHPa基因的功能研究. 南京:南京农业大学, 2011 [百度学术]
Chi Y J. Identification of members of MADS-box gene family and functional study of GmAP1 and GmSHPa genes in soybean. Nanjing: Nanjing Agricultural University, 2011 [百度学术]
Xu J, Zhong X, Zhang Q, Li H. Overexpression of the GmGAL2 gene accelerates flowering in Arabidopsis. Plant Molecular Biology Reporter, 2010, 28(4): 704-711 [百度学术]
许光莉. 大豆裂荚关联分析及裂荚相关基因 GmSHPα的功能分析. 南京: 南京农业大学, 2014 [百度学术]
Xu G L. Analysis of pod splitting association and functional analysis of pod splitting related gene GmSHPα in soybean. Nanjing: Nanjing Agricultural University, 2014 [百度学术]
Chi Y, Wang T, Xu G, Yang H, Zeng X, Shen Y, Yu D, Huang F. GmAGL1, a MADS-box gene from soybean, is involved in floral organ identity and fruit dehiscence. Frontiers in Plant Science, 2017, 8: 175 [百度学术]
Zeng X, Liu H, Du H, Wang S, Yang W, Chi Y, Wang J, Huang F, Yu D. Soybean MADS-box gene GmAGL1 promotes flowering via the photoperiod pathway. BMC Genomics, 2018, 19(1): 51 [百度学术]
杜朝金, 张汉尧, 罗心平, 宋云连, 毕珏, 王跃全, 张惠云. 基因调控植物花器官发育的研究进展. 植物遗传资源学报, 2024,25(2): 151-161 [百度学术]
Du Z J, Zhang H Y, Luo X P, Song Y L, Bi J, Wang Y Q, Zhang H Y. Advances in gene regulation of floral organ development in plants. Journal of Plant Genetic Resources, 2024,25(2): 151-161 [百度学术]
Joshi S, Keller C, Perry S E. The EAR motif in the Arabidopsis MADS transcription factor AGAMOUS-Like 15 is not necessary to promote somatic embryogenesis. Plants, 2021, 10(4): 758 [百度学术]
Ma Y Q, Pu Z Q, Tan X M, Meng Q, Zhang K L, Yang L, Ma Y Y, Huang X, Xu Z Q. SEPALLATA-like genes of Isatis indigotica can affect the architecture of the inflorescences and the development of the floral organs. PeerJ, 2022, 10: e13034 [百度学术]
Zhang X, Wu Q, Lin S, Li D, Bao M, Fu X P. Identification and characterization of class E genes involved in floral organ development in Dianthus chinensis. Ornamental Plant Research, 2023, 3:5 [百度学术]
Huang F, Chi Y J, Gai J, Yu D Y. Identification of transcription factors predominantly expressed in soybean flowers and characterization of GmSEP1 encoding a SEPALLATA1-like protein. Gene, 2009, 438(1-2): 40-44 [百度学术]
Huang F, Xu G, Chi Y, Liu H, Xue Q, Zhao T, Gai J, Yu D. A soybean MADS-box protein modulates floral organ numbers, petal identity and sterility. BMC Plant Biology, 2014, 14(1): 89 [百度学术]
Zhang H, Yan H, Zhang D, Yu D Y. Ectopic expression of a soybean SVP-like gene in tobacco causes abnormal floral organs and shortens the vegetative phase. Plant Growth Regulation, 2016, 80(3): 345-353 [百度学术]
Fan C M, Wang X, Wang Y W, Hu R B, Zhang X M, Chen J X, Fu Y F. Genome-wide expression analysis of soybean MADS genes showing potential function in the seed development. PLoS ONE, 2013, 8(4): e62288 [百度学术]
张月, 王佳琪, 于子建, 许强, 张岚, 潘玉欣.豆科MIKC型MADS-box基因家族生物信息学分析. 中国油料作物学报, 2022, 44(4): 798-809 [百度学术]
Zhang Y, Wang J Q, Yu Z J, Xu Q, Zhang L, Pan Y X. Bioinformatics analysis of MIKC MADS-box gene family in legumes. Chinese Journal of Oil Crops, 2022, 44(4): 798-809 [百度学术]
Hartmann U, Hhmann S, Nettesheim K, Wisman E, Saedler H, Huijser P. Molecular cloning of SVP: A negative regulator of the floral transition in Arabidopsis. The Plant Journal, 2000, 21(4): 351-360 [百度学术]
Gregis V, Sessa A, Colombo L, Kater M M. AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis. The Plant Journal, 2008, 56(6): 891-902 [百度学术]
Michaels S D, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino R M. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. The Plant Journal, 2003, 33(5): 867-874 [百度学术]
李雅如. 大豆SVP同源基因的开花功能研究. 广州:广州大学, 2023 [百度学术]
Li Y R. Study on flowering function of SVP homologous gene in soybean. Guangzhou:Guangzhou University, 2023 [百度学术]
Hiraoka K, Yamaguchi,A, Abe M, Araki T. The florigen genes FT and TSF modulate lateral shoot outgrowth in Arabidopsis thaliana. Plant and Cell Physiology, 2013, 54(3): 352-368 [百度学术]
Borner R, Kampmann G, Chandler J, Gleissner R, Wisman E, Apel K, Melzer S. A MADS domain gene involved in the transition to flowering in Arabidopsis. The Plant Journal, 2000, 24: 591-599 [百度学术]
Lee H, Suh S S, Park E, Cho E, Ahn J H, Kim S G, Lee J S, Kwon Y M, Lee I. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes & Development, 2000, 14(18): 2366-2376 [百度学术]
Zhong X, Dai X, Xv J, Wu H, Liu B, Li H. Cloning and expression analysis of GmGAL1, SOC1 homolog gene in soybean. Molecular Biology Reports, 2012, 39: 6967-6974 [百度学术]
Na X, Jian B, Yao W, Wu C, Hou W, Jiang B, Bi Y, Han T. Cloning and functional analysis of the flowering gene GmSOC1-like, a putative SUPPRESSOR OF OVEREXPRESSION CO1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in soybean. Plant Cell Reports, 2013, 32: 1219-1229 [百度学术]
Kou K, Yang H, Li H, Fang C, Chen L, Yue L, Nan H, Kong L, Li X, Wang F, Wang J, Du H, Yang Z, Bi Y, Lai Y, Dong L, Cheng Q, Su T, Wang L, Li S, Hou Z, Lu S, Zhang Y, Che Z, Yu D, Zhao X, Liu B, Kong F. A functionally divergent SOC1 homolog improves soybean yield and latitudinal adaptation. Current Biology, 2022, 32(8): 1728-1742 [百度学术]
Zhang D, Wang X, Li S, Wang C, Gosney M J, Mickelbart M V, Ma J. A post-domestication mutation, Dt2, triggers systemic modification of divergent and convergent pathways modulating multiple agronomic traits in soybean. Molecular Plant, 2019, 12(10): 1366-1382 [百度学术]
Richter R, Kinoshita A, Vincent C, Martinez-Gallegos R, Gao H, van Driel AD, Hyun Y, Mateos JL, Coupland G. Floral regulators FLC and SOC1 directly regulate expression of the B3-type transcription factor TARGET OF FLC AND SVP at the Arabidopsis shoot apex via antagonistic chromatin modifications. PLoS Genetics, 2019, 15: e1008065 [百度学术]
Méndez-Vigo B, Martínez-Zapater J M, Alonso-Blanco C. The flowering repressor SVP underlies a novel Arabidopsis thaliana QTL interacting with the genetic background. PLoS Genetics, 2013, 9: e1003289 [百度学术]
Tao Z, Shen L, Liu C, Liu L, Yan Y, Yu H. Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis. The Plant Journal, 2012, 70: 549-561 [百度学术]
Yue L, Li X, Fang C, Kong F. FT5a interferes with the Dt1-AP1 feedback loop to control flowering time and shoot determinacy in soybean. Journal of Integrative Plant Biology, 2021, 63: 1004-1020 [百度学术]
Liang Q, Chen L, Yang X, Yang H, Liu S, Kou K, Fan L, Zhang Z, Duan Z, Yuan Y, Liang S, Liu Y, Lu X, Zhou G, Zhang M, Kong F, Tian Z. Natural variation of Dt2 determines branching in soybean. Nature Communications, 2022,13(1): 6429 [百度学术]
Takeshima R, Nan H, Harigai K, Dong L, Zhu J, Lu S, Xu M, Yamagishi N, Yoshikawa N, Liu B, Yamada T, Kong F, Abe J. Functional divergence between soybean FLOWERING LOCUS T orthologues FT2a and FT5a in post-flowering stem growth. Journal of Experimental Botany, 2019, 70(15): 3941-3953 [百度学术]
Liu Y, Zhang D, Ping J, Li S, Chen Z, Ma J. Innovation of a regulatory mechanism modulating semi-determinate stem growth through artificial selection in soybean. PLoS Genetics, 2016, 12(1): e1005818 [百度学术]
Michaels S D, Amasino R M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. The Plant Cell, 1999, 11(5): 949-956 [百度学术]
Hepworth S R, Valverde F, Ravenscroft D, Mouradov A, Coupland G. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. The EMBO Journal, 2002, 21 (16): 4327-4337 [百度学术]
Helliwell C A, Wood C C, Robertson M, James Peacock W, Dennis E S. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. The Plant Journal, 2006, 46 (2): 183-192 [百度学术]
Searle I, He Y, Turck F, Vincent C, Fornara F, Kröber S, Amasino R A, Coupland G. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes & Development, 2006, 20(7): 898-912 [百度学术]
Lai Z, Schluttenhofer C M, Bhide K, Shreve J, Thimmapuram J, Lee S Y, Yun D J, Mengiste T. MED18 interaction with distinct transcription factors regulates multiple plant functions. Nature Communications, 2014, 5: 3064 [百度学术]
杨璧泽, 刘宝辉, 汤杨. 大豆FLC-like基因生物信息学分析及开花调控功能解析. 大豆科学, 2022, 41(4): 427-437 [百度学术]
Yang B Z, Liu B H, Tang Y. Bioinformatics analysis of FLC-like gene and its flowering regulation function in soybean. Soybean Science, 2019, 41(4): 427-437 [百度学术]
Jing L, Cai Z D, Li Y H, Suo H C, Yi R, Zhang S, Nian H. The floral repressor GmFLC-like is involved in regulating flowering time mediated by low temperature in soybean. International Journal of Molecular Sciences, 2020, 21(4): 1322 [百度学术]
Hu Q, Jin Y, Shi H, Yang W. GmFLD, a soybean homolog of the autonomous pathway gene FLOWERING LOCUS D, promotes flowering in Arabidopsis thaliana. BMC Plant Biology, 2014, 14: 263 [百度学术]
Suo H, Lü J, Ma Q, Yang C Y, Zhang X X, Meng X, Huang S Z, Nian H. The AtDREB1A transcription factor up-regulates expression of a vernalization pathway gene, GmVRN1-like, delaying flowering in soybean. Acta Physiologiae Plantarum, 2016, 38 (6): 137 [百度学术]
Xia Z, Zhai H, Wu H, Xu K, Watanabe S, Harada K. The synchronized efforts to decipher the molecular basis for soybean maturity loci E1, E2, and E3 that regulate flowering and maturity. Frontiers in Plant Science, 2021, 12: 632754 [百度学术]
Zheng Q, Zheng Y, Perry S E. Decreased GmAGL15 expression and reduced ethylene synthesis may contribute to reduced somatic embryogenesis in a poorly embryogenic cultivar of Glycine max. Plant Signal Behav, 2013, 8(9): e25422 [百度学术]
Zheng Q, Zheng Y, Ji H, Burnie W, Perry S E. Gene regulation by the AGL15 transcription factor reveals hormone interactions in somatic embryogenesis. Plant Physiology, 2016, 172(4): 2374-2387 [百度学术]
Zheng Q, Perry S E. Alterations in the transcriptome of soybean in response to enhanced somatic embryogenesis promoted by orthologs of Agamous-like15 and Agamous-like18. Plant Physiology, 2014 , 164(3): 1365-1377 [百度学术]
Zhao T J, Gai J Y. Discovery of new male-sterile cytoplasm sources and development of a new cytoplasmic-nuclear male-sterile line NJCMS3A in soybean. Euphytica, 2006, 152(3): 387-396 [百度学术]
Wang W, Wang Z, Hou W, Chen L, Jiang B, Liu W, Feng Y, Wu C. GmNMHC5, A neoteric positive transcription factor of flowering and maturity in soybean. Plants, 2020, 9(6): 792 [百度学术]
Tapia-Lopez R, Garcia-Ponce B, Dubrovsky J G, Garay-Arroyo A, Perez-Ruiz R V, Kim S H, Acevedo F, Pelaz S, Alvarez-Buylla E R. An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiology, 2008, 146(3): 1182-1192 [百度学术]
Rounsley S D, Ditta G S, Yanofsky M F. Diverse roles for MADS box genes in Arabidopsis development. Plant Cell, 1995, 7(8): 1259-1269 [百度学术]
Wong C E, Singh M B, Bhalla P L. Novel members of the AGAMOUS LIKE 6 subfamily of MIKCC-type MADS-box genes in soybean. BMC Plant Biology, 2013, 13: 105 [百度学术]