摘要
氮素是影响玉米生长发育、产量和籽粒品质形成所必需的营养元素。为挖掘早期发育的玉米胚乳响应低氮胁迫的关键基因,揭示玉米胚乳抵御低氮胁迫的生理响应及分子机制,本研究在低氮和足氮处理下,对授粉后第6天的自交系B73玉米胚乳进行氨基酸含量、氨基酸衍生物含量分析和转录组测序。生理测定表明,低氮胁迫下,玉米胚乳中10种氨基酸或氨基酸衍生物含量升高,其中苏氨酸、β-氨基异丁酸、组氨酸、β-丙氨酸、赖氨酸含量升高程度最大,其升高范围介于71.1%~153.1%;而其余21种氨基酸或氨基酸衍生物含量降低,其中鸟氨酸、胱氨酸、天冬酰胺、苯丙氨酸、α-氨基丁酸含量下降程度最大,其下降程度范围介于51.6%~65.8%。转录组测序结果表明,与足氮处理相比,低氮胁迫下玉米胚乳中鉴定到3185个显著上调和2612个显著下调的差异表达基因。进一步检测到参与氮代谢途径和氰基氨基酸代谢途径的差异表达基因分别为12和9个,AP2/ERF-ERF、bZIP、WRKY差异表达转录因子家族成员分别为20、10和21个。这些候选基因可能是玉米胚乳抵御低氮胁迫响应的重要基因资源,其为玉米胚乳应答低氮胁迫的分子机制及耐低氮玉米新品种培育奠定基础。
氮(N, nitrogen)是作物生长必不可少的大量元素之
玉米(Zea mays L.)是集粮食、饲料及工业原料为一体的多元作物,在保障国家粮食生产安全、促进畜牧业及工业发展中扮演着重要角色。据美国农业部统计,2019年全球玉米产量为1.09×1
玉米籽粒由胚、胚乳和种皮组成。玉米胚乳在种子发育过程中持续存
然而,目前关于低氮水平下玉米胚乳发育遗传机制研究非常有限。由于授粉后第6天的玉米胚乳开始进入胚乳细胞分化增殖阶段,对籽粒建成发挥重要作用。因此,本研究以低氮和足氮处理下授粉后第6天的玉米自交系B73的胚乳为试验材料,测定玉米胚乳中氨基酸和氨基酸衍生物的积累变化,并利用转录组测序分析筛选和挖掘早期玉米胚乳发育中响应低氮胁迫的关键代谢通路和候选基因,从转录组水平揭示低氮胁迫对玉米胚乳基因表达的调控特征,为玉米低氮绿色生产提供理论依据。
田间种植试验于2022年4-8月在江苏省农业科学院六合实验基地(32°12'N, 118°37'E)氮池进行。氮池土壤为低氮土壤,土壤氮含量仅为0.76 g/kg,有效磷(P)为26.5 mg/kg,有效钾(K)为72.4 mg/kg,有机质为12.8 g/kg。根据前期研
在低氮和足氮处理下2个不同小区分别取长势一致的授粉第6天后的B73穗位叶、穗轴和胚乳,每个小区分别取3株各2 g等量混合成1个样品,每种氮处理取3次生物学重复。穗位叶、穗轴和胚乳样品105 ℃烘箱中杀青30 min,再75 ℃烘干至恒重,研磨成粉末,过60目细筛。称取50 mg样品,利用凯氏定氮法测定样品总氮含
上述授粉后第6天玉米胚乳取样参考Chen
分别对低氮和足氮水平处理下2个不同小区中长势一致授粉后第6天的B73果穗进行取样,每个小区取3穗。胚乳取样方法同1.4,共计6个样品。委托安诺优达基因科技(北京)有限公司,利用Illumina HiSeq 2000测序平台进行转录组高通量测序分析。测序原始数据进行数据过滤,去除接头序列及低质量Reads获得高质量的Clean reads。使用Cufflink
为验证转录组测序结果的可靠性,随机挑选参与氮代谢途径的3个差异表达基因、氰基氨基酸代谢途径的2个差异表达基因、淀粉和蔗糖代谢途径的1个差异表达基因及4个差异表达转录因子(1个AP2/ERF-ERF、1个bZIP、2个WRKY)进行qRT-PCR分析。首先用天根生化科技公司的植物总RNA提取试剂盒(DP452)提取低氮和足氮水平处理下2个不同小区中长势一致授粉后第6天的B73胚乳总RNA,再将总RNA采用cDNA第一链合成试剂盒(TaKaRa)逆转录为cDNA。采用Primer 3.0软件设计相应候选基因引物(
基因ID Gene ID | 编码蛋白 Encoded protein | 正向引物(5'- 3') Forward primer (5'- 3') | 反向引物(5'- 3') Reverse primer (5' - 3') |
---|---|---|---|
Zm00001d002052 | L-天冬酰胺酶/ β-天冬氨酸肽酶 (ASRGL1) | GTGTCCGGCGTCTCCACCGTC | GATGAAGTAGCTGTTGTCCAC |
Zm00001d046210 | β-葡糖苷酶e (bglB) | CTGCTGTGGAAGCACGTCTC | TACTGGTCCGCAGCCACATC |
Zm00001d033747 | 谷氨酰胺合成酶 (glnA) | ATGGCTCTGCTCTCCGACCTC | GTTCCACTTCGGAAGCTTGCT |
Zm00001d028260 | 谷氨酰胺合成酶 (glnA) | ATGGCCAGCCTCACCGACCTC | GCTGGCTCGGGTCGGTGATG |
Zm00001d011454 | 碳酸酐酶 (cynT) | TCCAGCGTCGTCGGTAGCCT | TCATACACCTCGGTCTTGAAC |
Zm00001d010482 | 葡萄糖-6-磷酸异构酶 (PGI) | CACTGTCTTGCCCTCGACTC | CAAAGCAGACCCTCTGATTC |
Zm00001d034457 | bZIP转录因子 | ATGCTCAAGCAGAAGCTGGAG | TTTGAACTAGACTTCCAGTA |
Zm00001d023332 | WRKY转录因子 | ATGCTCAAGCAGAAGCTGGAG | CTGGGGTACATGGCACCTTC |
Zm00001d041740 | WRKY转录因子 | TCCTCGTTCGCTGGCGCGTC | CCAGAGCCTGCTGGTGCGAC |
Zm00001d020595 | AP2/ERF-ERF转录因子 | GAGGTTTGCCTTCGCCACCG | CTGATTCCCCTGTACTGGTTC |
同一供氮处理下,玉米不同组织器官中氮积累量均表现为穗位叶>果穗>胚乳(

图1 两种氮水平处理下授粉后第6天玉米中各组织部位的氮积累量分析
Fig. 1 The nitrogen accumulation in various tissues of maize kernels at 6 days after pollination under two nitrogen treatments
不同小写字母表示P < 0.05水平差异显著;下同
SN: Sufficient nitrogen treatment; DN: Low nitrogen treatment; Different lowercase letters indicated a significant difference (P< 0.05);The same as below
足氮处理下授粉后第6天的B73玉米胚乳中31种氨基酸及氨基酸衍生物含量均不尽相同,其介于2(β-氨基异丁酸)~ 6055(谷氨酰胺)µg/g,均值为515 µg/g,变异系数为217.6%(

图2 两种氮水平处理下授粉后第6天玉米胚乳中31种氨基酸和氨基酸衍生物含量分析
Fig. 2 The contents of 31 amino acids and amino acid derivatives in maize endosperm at 6 days after pollinationunder under two nitrogen treatments
响不同。进一步分析发现,低氮处理下授粉后第6天的B73玉米胚乳中10种氨基酸和氨基酸衍生物含量呈上升趋势,占测试氨基酸和氨基酸衍生物种类的32.3%,例如苏氨酸、β-氨基异丁酸、组氨酸和β-丙氨酸,其分别升高了153.1%、132.8%、113.4%、83.9%(
对低氮和足氮处理下授粉后第6天的 B73玉米胚乳进行Illumina HiSeq 2000转录组测序。结果可知,低氮和足氮处理组过滤掉原始测序数据得到的平均Clean reads数分别为6663943800和6446564300,GC碱基百分比均在52%以上,Q20碱基百分比均在95%以上,Q30碱基百分比均在88%以上。说明转录组测序结果质量可靠。将Clean reads比对到玉米Zea_mays B73_V4参考基因组,其比对率介于88.29%~96.40%。
进一步对转录本进行主成分分析,结果表明授粉后第6天的B73胚乳转录本可根据不同供氮处理明显分成2组(

图3 两种氮水平处理下授粉后第6 天玉米胚乳转录组数据分析
Fig. 3 RNA-Seq data analysis in maize endosperm at 6 days after pollination under two nitrogen treatments
A:转录组数据的主成分分析;B:样品基因表达量Pearson相关性分析;C:样品基因表达FPKM分布;D:样品差异表达基因火山图;-1、-2、-3是3个不同重复;FDR:错误发现率;FC:差异倍数
A: Principal component analysis (PCA) of RNA-Sequencing data; B: Pearson correlation analysis of gene expression for all samples; C: FPKM distribution of gene expressions for all samples; D: Volcano plot of DEGs for all samples; -1, -2, and -3 are three different repetitions; FDR: False discovery rate; FC: Fold change
为探究玉米胚乳低氮胁迫响应基因的功能,基于注释基因库对低氮处理下鉴定到的差异表达基因进行了GO和KEGG分析。结果表明,GO富集到细胞组分、分子功能和生物进程3大类49个分支中(

图4 两种氮水平处理下授粉后第6天玉米胚乳差异表达基因的GO富集和KEGG通路分析
Fig. 4 GO term enrichment and KEGG pathway analyses of DEGs in maize endosperm at 6 days after pollination under two nitrogen treatments
A:差异表达基因的GO富集分析;B:差异表达基因的 KEGG通路分析
A: GO term enrichment analysis of differentially expressed genes; B: KEGG pathway analysis of differentially expressed genes
氮代谢是植物体内最基础的代谢过程之一,主要参与氮素及氮素化合物的同化、转运和排出,对植物生长发育具有重要影响。与足氮处理相比,低氮处理下授粉后第6 天的B73胚乳中鉴定到12个差异表达基因参与氮代谢途径,其中1个甲酰胺酶编码基因(Formamidase),即Zm00001d012706下降9.93倍; 2个亚硝酸盐铁氧化还原酶编码基因(nirA), 即Zm00001d018161、Zm00001d052164分别下调2.89和2.63倍;检测到4个碳酸酐酶编码基因(cynT),其中Zm00001d011454、Zm00001d044099、Zm00001d031778分别提高2.14、3.50、2.10倍,Zm00001d003781下调2.75倍,其编码蛋白具有碳酸盐脱水酶活性(GO:0004089);1个NADP+谷氨酸脱氢酶编码基因(gdhA), 即YM_newGene_8253上调9.62倍,2个谷氨酸合成酶编码基因(GLT1), 即Zm00001d037175和Zm00001d038948分别下调6.95和1.26倍,2个谷氨酰胺合成酶编码基因(glnA),即Zm00001d033747上调1.55倍,而和Zm00001d028260下调3.20倍(

图5 两种氮水平处理下授粉后第6天玉米胚乳氮代谢通路中差异表达基因挖掘
Fig. 5 Identification of DEGs for nitrogen metabolism pathway in maize endosperm at 6 days after pollination under two nitrogen treatments
A:氮代谢通路(map00910);圆圈表示其他分子化合物;红色方框表示相应基因上调表达;绿色方框表示相应基因下调表达;蓝色方框表示相应基因上调或下调表达;实心箭头表示化学反应;虚线箭头表示简介反应;下同;B:氮代谢通路上相关差异表达基因的表达量
A: Nitrogen metabolism pathway (map00910); Circle indicated molecule; Red box indicated up-regulated genes; Green box indicated down-regulated genes; Blue box indicated up-regulated and down-regulated genes; Solid arrow indicated chemical reaction; Dotted arrow indicated indirect reaction;The same as below; B: Gene expression of DEGs involved in nitrogen metabolism pathway
氨基酸是植物体内必需的生物活性分子,植物体内氨基酸会调控植物生长发育及抗逆响应等诸多方面。与足氮处理相比,低氮处理下授粉后第6天的B73胚乳中鉴定到9个差异表达基因参与氰基氨基酸代谢途径,包括5个β-葡糖苷酶编码基因(bglB),其中Zm00001d021119、Zm00001d024037、Zm00001d041776、Zm00001d041777分别上调1.44、1.36、3.46、4.23倍,Zm00001d046210下调3.14倍;1个甲酰胺酶编码基因,即Zm00001d012706下调9.93倍;1个甘氨酸羟甲基转移酶编码基因(glyA),即YM_newGene_7173下调8.41倍;1个L-3-氰丙氨酸合成酶/半胱氨酸合成酶编码基因(ATCYSC1),即Zm00001d004413上调1.32倍;1个L-天冬酰胺酶/β-天冬氨酸肽酶编码基因(ASRGL1),即Zm00001d002052下调2.14倍(

图6 两种氮水平处理下授粉后第6天玉米胚乳氰基氨基酸代谢通路中差异表达基因挖掘
Fig. 6 Identification of DEGs for cyanoamino acid metabolism pathway in maize endosperm at 6 days after pollination under different nitrogen treatments
A:氰基氨基酸代谢通路(map00460);B:氰基氨基酸代谢通路上相关差异表达基因的基因表达量
A: Cyanoamino acid metabolism pathway (map00460); B: Gene expression of DEGs involved in cyanoamino acid metabolism pathway
植物体内丰富的转录因子可通过激活或抑制目的基因表达,在植物调控生长发育及响应逆境胁迫反应中扮演着重要作用。与足氮处理相比,低氮处理下B73胚乳中共检测到20个AP2/ERF差异表达转录因子,其中10个显著上调表达,上调1.08~7.83倍,10个显著下调表达,下调1.44~4.97倍;10个bZIP差异表达转录因子,其中3个显著上调表达,上调1.27~8.82倍;7个显著下调表达,下调1.11~3.47倍;21个WRKY差异表达转录因子,其中15个显著上调表达,上调1.04~7.80倍;6个显著下调表达,下调1.30~4.02倍,这些转录因子差异表达可能与玉米胚乳响应氮水平有关(

图7 两种氮水平处理下授粉后第6天玉米胚乳中3类差异表达转录因子家族基因挖掘
Fig. 7 Identification of differentially expressed three transcription factors in maize endosperm at 6 days after pollination under two nitrogen treatments
A:3类转录因子家族基因统计;B:差异表达bZIP转录因子基因的表达量;C:差异表达AP2/ERF-ERF转录因子基因的表达量; D:差异表达WRKY转录因子基因的表达量
A: Statistics of three transcription factors (TFs) families; B: Expression levels of differentially expressed bZIP TF genes; C: Expression levels of differentially expressed AP2/ERF TF genes; D: Expression levels of differentially expressed WRKY TF genes
为验证本研究转录组测序数据的可靠性,随机挑选了4个差异表达转录因子,包括Zm00001d020595(AP2/ERF-ERF)、Zm00001d034457(bZIP)、Zm00001d023332(WRKY)和Zm00001d041740(WRKY);2个氰基氨基酸代谢途径差异表达基因,分别为Zm00001d002052(ASRGL1)和Zm00001d046210(bglB);3个氮代谢途径差异表达基因,分别为Zm00001d033747(glnA)、Zm00001d028260(glnA)和Zm00001d011454(cynT);1个淀粉和蔗糖代谢途径差异表达基因,为Zm00001d010482(PGI),对两种氮处理下授粉后第6天的B73胚乳进行qRT-PCR分析。结果表明,这些差异表达基因和差异表达转录因子的qRT-PCR相对表达量与其转录组分析的FPKM表达量结果高度一致(

图8 两种氮水平处理下授粉后第6天玉米胚乳差异表达基因的qRT-PCR与转录组分析比对
Fig. 8 qRT-PCR and transcriiptnme analysis of DEGs and in maize endosperm at 6 days after pollination under two nitrogen treatments
实线:FPKM;虚线:qPR-PCR;G1:Zm00001d020595;G2:Zm00001d034457;G3:Zm00001d023332;G4:Zm00001d041740;G5:Zm00001d002052;G6:Zm00001d033747;G7:Zm00001d028260;G8:Zm00001d011454;G9:Zm00001d046210;G10:Zm00001d010482
Solid line:FPKM;Dotted line:qPR-PCR
籽粒早期发育情况直接决定了玉米产量和品质形成,而氮素又是影响玉米籽粒发育的重要元素之一。挖掘早期发育的玉米胚乳响应低氮胁迫的关键基因,揭示玉米胚乳抵御低氮胁迫的生理响应及分子机制,并培育耐低氮能力的玉米新品种对于减少氮肥施用量、提高玉米产量和品质,最终对实现我国农业绿色生产具有重要意义。低氮胁迫时玉米形成了复杂的基因表达调控网络以抵御环境压力带来的不利影
氮代谢能力是判断植物氨基酸与蛋白质合成、产量与品质形成的重要因
授粉后第6天的玉米籽粒处于胚乳细胞分化增殖阶段,此阶段大量氨基酸不仅被用来合成籽粒建成相关酶,同时也是一些籽粒中重要碳氮化合物积累调控因子重要合成原
以往研究已表明,不同类型的转录因子家族在植物响应低氮胁迫中发挥着重要作
总之,本研究对低氮处理下授粉后第6天的B73玉米胚乳进行了高通量转录组测序、31种氨基酸和氨基酸衍生物含量变化分析。低氮胁迫下玉米胚乳中10种氨基酸和氨基酸衍生物呈上升趋势,其余21种氨基酸和氨基酸衍生物呈下降趋势;初步揭示了响应低氮胁迫的基因调控特征,筛选得到其中差异表达的AP2/ERF-ERF、bZIP和WRKY转录因子及氮代谢、氰基氨基酸代谢通路中的差异表达基因。这些研究结果为玉米响应低氮胁迫的氨基酸生理功能奠定了基础,增加了对玉米胚乳早期发育响应低氮胁迫的认识。
参考文献
Chen Q W, Mu X H, Chen F J, Yuan L, Mi G H. Dynamic change of mineral nutrient content in different plant organs during the grain filling stage in maize grown under contrasting nitrogen supply. European Journal of Agronomy, 2016, 80:137-153 [百度学术]
The S V, Snyder R, Tegeder M. Targeting nitrogen metabolism and transport processes to improve plant nitrogen use efficiency. Frontiers in Plant Science, 2021, 11:628366 [百度学术]
Good A G, Shrawat A K, Muench D G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science, 2004, 9(12):597-605 [百度学术]
葛敏,吕远大,张体付,周玲,林峰,赵涵.玉米氮素敏感性差异自交系的表达谱分析.作物学报, 2016, 42(10):1487-1494 [百度学术]
Ge M, Lv Y D, Zhang T F, Zhou L, Lin F, Zhao H. Global transcriptome analysis in high- and low-nitrogen responsive inbred lines of maize. Acta Agronomica Sinica, 2016, 42(10):1487-1494 [百度学术]
Pandey A, Eldridge S M, Weatherley A, Willett I R, Myint A K, Oo A N, Ngwe K, Mang Z T, Chen D L. High fertilizer nitrogen input increases nitrogen mining in sandy paddy soils. Nutrient Cycling in Agroecosystems, 2023, 125:77-88 [百度学术]
Liu Z, Hu C H, Wang Y N, Sha Y, Hao Z H, Chen F J, Yuan L X, Mi G H. Nitrogen allocation and remobilization contributing to low-nitrogen tolerance in stay-green maize. Field Crop Research, 2021, 263:108078 [百度学术]
Kitonyo O M, Sadras V O, Zhou Y, Denton M D. Nitrogen supply and sink demand modulate the patterns of leaf senescence in maize. Field Crop Research, 2018, 225:92-103 [百度学术]
Paponov I A, Engels C. Effect of nitrogen supply on leaf traits related to photosynthesis during grain filling in two maize genotypes with different N efficiency. Journal of Plant Nutrition and Soil Science, 2003, 166(6):756-763 [百度学术]
Laural E, Steven R, Matthijs T. The response of leaf photosynthesis and dry matter accumulation to nitrogen supply in an older and a newer maize hybrid. Crop Science, 2009, 48(2):656-665 [百度学术]
DeBruin J L, Hemphill B, Schussler J R. Silk development and kernel set in maize as related to nitrogen stress. Crop Science, 58:2581-2592 [百度学术]
Nasielski J, Earl H, Deen B. Which plant traits are most strongly related to post-silking nitrogen uptake in maize under water and/or nitrogen stress? Journal of Plant Physiology, 2020, 244:153059 [百度学术]
张学林,王群,赵亚丽,杨青华,李潮海.施氮水平和收获时期对夏玉米产量和籽粒品质的影响.应用生态学报, 2010, 21(10):2565-2572 [百度学术]
Zhang X L, Wang Q, Zhao Y L, Yang Q H, Li C H. Effects of nitrogen fertilization rate and harvest time on summer maize grain yield and its quality. Chinese Journal of Applied Ecology, 2010, 21(10):2565-2572 [百度学术]
于宁宁,任佰朝,赵斌,刘鹏,张吉旺.施氮量对夏玉米籽粒灌浆特性和营养品质的影响.应用生态学报, 2019, 30(11):3771-3776 [百度学术]
Yu N N, Ren B C, Zhao B, Liu P, Zhang J W. Effects of nitrogen application rate on grain filling characteristics and nutritional quality of summer maize. Chinese Journal of Applied Ecology, 2019, 30(11):3771-3776 [百度学术]
孟瑶,刘赵月,李晶,顾万荣,魏湜.施氮量对高密春玉米籽粒关键酶及产量品质的影响.西南农业学报, 2020, 33(6):1146-1152 [百度学术]
Meng Y, Liu Z Y, Li J, Gu W R, Wei S. Effects of nitrogen rate on grain yield and quality and key enzyme metabolism of spring maize under high density. Southwest China Journal of Agricultural Sciences, 2020, 33(6):1146-1152 [百度学术]
Sabelli P A, Larkins B A. The development of endosperm in grasses. Plant Physiology, 2009, 149:14-26 [百度学术]
Wang R F, Zhong Y T, Liu X T, Zhao C, Zhao J Y, Li M F, Hassan M U, Yang B, Li D D, Liu R Y, Li X X. Cis-regulation of the amino acid transporter genes ZmAAP2 and ZmLHT1 by ZmPHR1 transcription factors in maize ear under phosphate limitation. Journal of Experimental Botany, 2021, 72(10):3846-3863 [百度学术]
Leroux B M, Goodyke A J, Schumacher K I, Abbott C P, Clore A M, Yadegari R, Larkins B A, Dannenhoffer J M. Maize early endosperm growth and development: From fertilization through cell type differentiation. American Journal Botany, 2014, 101(8):1259-1274 [百度学术]
Dai D W, Ma Z Y, Song R T. Maize endosperm development. Journal of Integrative Plant Biology, 2021, 63(4):613-627 [百度学术]
Seebauer, J R, Singletary G W, Krumpelman P M, Ruffo M L, Below F E. Relationship of source and sink in determining kernel composition of maize. Journal of Experimental Botany, 2010, 61(2):511-519 [百度学术]
Xin M M, Yang R L, Li G S, Chen H, Laurie J, Ma C, Wang D F, Yao Y Y, Larkins B A, Sun Q X, Yadegari R, Wang X F, Ni Z F. Dynamic expression of imprinted genes associates with maternally controlled nutrient allocation during maize endosperm development. Plant Cell, 2013, 25(9):3212-3227 [百度学术]
Li G S, Wang D F, Yang R L, Logan K, Chen H, Zhang S S, Skaggs M I, Lloyd A, Burnett W J, Laurie J D, Hunter B G, Dannenhoffer J M, Larkins B A, Drews G N, Wang X F, Yadegari R. Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing. Proceeding of the National Academy of Sciences,2014, 111(21):7582-7587 [百度学术]
Zhan J, Thakare D, Ma C, Lloyd A, Nixon N M, Arakaki A M, Burnett W J, Logan K O, Wang D, Wang X, Drews G N, Yadegari R. RNA sequencing of laser-capture micro dissected compartments of the maize kernel identifies regulatory modules associated with endosperm cell differentiation. Plant Cell, 2015, 27:513-531 [百度学术]
Chen J, Zeng B, Zhang M, Xie S J, Wang G K, Hauck A, Lai J S. Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiology, 2014, 166:252-264 [百度学术]
Yi F, Gu W, Chen J, Song N, Gao X, Zhang X B, Zhou Y S, Ma X X, Song W B, Zhao H M, Esteban E, Pasha A, Provart N J, Lai J S. High temporal-resolution transcriptome landscape of early maize seed development. Plant Cell, 2019, 31(5):974-992 [百度学术]
Ning L, Wang Y, Shi X, Zhou L, Ge M, Liang S, Wu Y, Zhang T, Zhao H. Nitrogen-dependent binding of the transcription factor PBF1 contributes to the balance of protein and carbohydrate storage in maize endosperm. Plant Cell, 2023, 35:409-434 [百度学术]
石习, 宁丽华, 葛敏, 邬奇, 赵涵. 玉米氮状况相关生物标记物的筛选和应用. 中国农业科学, 2022, 55(3):438-450 [百度学术]
Shi X, Ning L H, Ge M, Wu Q, Zhao H. Screening and application of biomarkers related to maize nitrogen status. Scientia Agricultura Sinica, 2022, 55(3):438-450 [百度学术]
Deng M, Li D Q, Luo J Y, Xiao Y J, Liu H J, Pan Q C, Zhang X H, Jin M L, Zhao M C, Yan J B. The genetic architecture of amino acids dissection by association and linkage analysis in maize. Plant Biotechnology Journal, 2017, 15:1250-1263 [百度学术]
贾思年,魏倩涵,苗蓉,彭云玲,刘允军.玉米愈伤组织形成的转录组分析.植物遗传资源学报, 2023, 24(4):1151-1160 [百度学术]
Jia S N, Wei Q H, Miao R, Peng Y L, Liu Y J. Transcriptome analysis of maize embryonic calli. Journal of Plant Genetic Resources, 2023, 24(4):1151-1160 [百度学术]
Jiao Y, Peluso P, Shi J, Liang T, Stitzer M C, Wang B, Campbell M S, Stein J C, Wei X, Chin C S, Guill K, Regulski M, Olson A, Gent J, Schneider K L, Wolfgruber T K, May M R, Springer N M, Antoniou E, McCombie R, Presting G G, McMullen M, Ross-Ibarra J, Dawe K, Hastie A, Rank D R, Ware D. Improved maize reference genome with single-molecule technologies. Nature, 2017, 546:524-527 [百度学术]
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimentel H, Salzberg S L, Rinn J L, Pachter L. Differential gene and transcript expression analysis of RNA-Seq experiments with TopHat and Cufflinks. Nature Protocols, 2012, 7(3):562-578 [百度学术]
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8):1194-1202 [百度学术]
Liu Z H, Xie H L, Tian G W, Chen S J, Wang C L, Hu Y M, Tang J H. QTL mapping of nutrient components in maize kernels under low nitrogen conditions. Plant Breeding, 2008, 127(3):279-285 [百度学术]
田洵.施氮量对不同马铃薯品种生长发育及氮代谢的影响.哈尔滨:东北农业大学, 2016 [百度学术]
Tian X. N application effects on growth and nitrogen metabolism of different potato cultivars. Harbin: Dongbei Agricultural University, 2016 [百度学术]
Rath M, Salas J, Parhy B, Norton R, Menakuru H, Sommerhalter M, Hatlstad G, Kwon J, Allan D L, Vance C P, Uhde-Stone C. Identification of genes induced in proteoid roots of white lupin under nitrogen and phosphorus deprivation, with functional characterization of a formamidase. Plant and Soil, 2010, 334:137-150 [百度学术]
Kunz D, Wang C, Chen J. Alternative routes of enzymic cyanide metabolism in Pseudomonas fluorescens NCIMB 11764. Microbiology, 1994, 140(7):1705-1712 [百度学术]
Fraser J, Davis M, Hynes M. The formamidase gene of Aspergillus nidulans regulation by nitrogen metabolite repression and transcriptional interference by an overlapping upstream gene. Genetics, 2001, 157(1):119-131 [百度学术]
Polishchuk O V. Stress-related changes in the expression and activity of plant carbonic anhydrases. Planta, 2021, 253(2):58 [百度学术]
Tang D D, Jiao Z X, Zhang Q F, Liu M Y, Ruan J Y. Glutamate dehydrogenase isogenes CsGDHs cooperate with glutamine synthetase isogenes CsGSs to assimilate ammonium in tea plant (Camellia sinensis L.), Plant Science, 2021, 312:111031 [百度学术]
Du C Q, Lin J Z, Dong L A, Liu C, Tang D Y, Yan L, Chen M D, Liu S, Liu X M. Overexpression of an NADP(H)- dependent glutamate dehydrogenase gene, TrGDH, from Trichrus improves nitrogen assimilation, growth status and grain weight per plant in rice. Breeding Science, 2019, 69(3):429-438 [百度学术]
王月福,于振文.氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响.作物学报, 2002, 28(6):743-748 [百度学术]
Wang Y F, Yu Z W. Effect of nitrogen on the change of key enzyme activity during the nitrogen metabolism and kernel protein content in winter wheat. Acta Agronomica Sinica, 2002, 28(6):743-748 [百度学术]
Melo P M, Lima L M, Santos I M, Carvalho H G, Cullimore J V. Expression of the plastid-located glutamine synthetase of medicago truncatule. Accumulation of the precursor in root nodules reveals an in vivo control at the level of protein import into plastids. Plant Physiology, 2003, 132(1):390-399 [百度学术]
滕祥勇.甜菜谷氨酸合成酶(GOGAT)酶学特性及氮素对其酶活性的调控.哈尔滨:东北农业大学, 2012 [百度学术]
Teng X Y. Enzymological characteristics of glutamate synthase and nitrogen regulation on the enzyme activity in sugar beet (Beta vulgaris L.). Harbin: Dongbei Agricultural University, 2012 [百度学术]
邢芳芳,高明夫,周传志,徐春英,范玲超.氨基酸与植物抗逆性关系的研究进展.黑龙江农业科学, 2018 (3):150-154 [百度学术]
Xing F F, Gao M F, Zhou C Z, Xu C Y, Fan L C. Advances in the relationship between amino acid and plant stress resistance. Heilongjiang Agricultural Sciences, 2018 (3):150-154 [百度学术]
Yang Y T, Dong A Y, Zenda T S, Liu S T, Liu X Y, Wang Y F, Li J, Duan H J. DIA (Data independent acquisition) proteomic based study on maize filling-kernel stage drought stress-responsive proteins and metabolic pathways. Biotechnology & Biotechnological Equipment, 2020, 34(1):1198-1214 [百度学术]
Yang Z, Tan P P, Huang Z H, Sun Z Z, Liu Z X, Liu L L, Zeng C Z, Tong J H, Yan M L. Metabolic profiles in the xylem sap of Brassica juncea exposed to cadmium. Physiologia Plantarum, 2023, 175(2):e13886 [百度学术]
李明霞,周际,胡勇军,韩德复,郭继勋,李淑英,张涛,石连旋.低氮胁迫下栽培大豆和野大豆幼苗适应性转录组比较研究.东北师大学报, 2023, 55(2):116-125 [百度学术]
Li M X, Zhou J, Hu Y J, Han D F, Guo J X, Li S Y, Zhang T, Shi L X. Comparative study on the adaptable transcriptomics of cultivated and wild soybean seeding under low nitrogen stress. Journal of Northest Normal University, 2023, 55(2):116-125 [百度学术]
张智猛,戴良香,胡昌浩,董树亭,王空军.氮素对不同类型玉米籽粒氨基酸、蛋白质含量及其组分变化的影响.西北植物学报, 2005, 25(7):1415-1420 [百度学术]
Zhang Z M, Dai L X, Hu C H, Dong S T, Wang K J. Effect of nitrogen on amino acid and protein and protein component contents in the grains of different types of maize. Acta Botanica Boreal-Occidentalia Sinica, 2005, 25(7):1415-1420 [百度学术]
宋锁玲,李敬蕊,高洪波,李青云,杨丽文,弓瑞娟.γ-氨基丁酸对低氧胁迫下甜瓜幼苗氮代谢及矿质元素含量的影响.园艺学报, 2012, 39(4):695-704 [百度学术]
Song S L, Li J R, Gao H B, Li Q Y, Yang L W, Gong R J. Effects of exogenousγ-aminobutyric acid on inorganic nitrogen metabolism and mineral elements contents of melon seedling under hypoxia stress. Acta Horticulturae Sinica, 2012, 39(4):695-704 [百度学术]
李强,罗岩宏,龙文靖,孔凡磊,杨世民,袁继超.低氮胁迫对不同耐低氮性玉米品种苗期生长和生理特性的影响.草业学报, 2014, 23(4):204-212 [百度学术]
Li Q, Luo Y H, Long W J, Kong F L, Yang S M, Yuan J C. Effect of low nitrogen stress on different low nitrogen tolerance maize cultivars seedling stage growth and physiological characteristics. Acta Prataculturae Sinica, 2014, 23(4):204-212 [百度学术]
朱振兴,李丹,陆晓春.高粱缼氮特异诱导基因SbMYB-like克隆及功能分析.植物遗传资源学报, 2023, 24(1):252-260 [百度学术]
Zhu Z X, Li D, Lu X C. Cloning and functional analysis of nitrogen deficiency induced gene SbMYB-like in sorghum. Journal of Plant Genetic Resources, 2023, 24(1):252-260 [百度学术]
窦威.小麦转录因子TabZIP21响应低氮胁迫的功能研究.郑州:河南农业大学, 2023 [百度学术]
Dou W. Transcription factor TabZIP21 in response to nitrogen deficiency stress in wheat. Zhengzhou: Henan Agricultural University, 2023 [百度学术]
He X J, Ma H X, Zhao X W, Nie S J, Li Y H, Zhang Z M, Shen Y O, Chen Q, Lu Y L, Lan H, Zhou S F, Gao S B, Pan G T, Lin H J. Comparative RNA-Seq analysis reveals that regulatory network of maize root development controls the expression of genes in response to N stress. PLoS ONE, 2016, 11(3):e0151697 [百度学术]