摘要
本实验室前期以东乡普通野生稻和日本晴为亲本创制了强耐盐染色体片段置换系CSSL91,本研究将其与日本晴和强耐盐种质Pokkati比较,结果显示CSSL91耐盐性与Pokkali相当。以CSSL91与日本晴构建的F2:3群体为试验材料,日本晴和CSSL91为对照,以耐盐等级和幼苗存活率为指标。结果表明2个指标均成正态分布,QTL连锁定位分析共检测到5个耐盐相关QTL,分别分布于第4、9、10号染色体上,LOD 值介于2.95~3.97,表型贡献率为9.83%~18.48%;其中耐盐等级QTL-qST4的表型贡献率最高,其定位在第4号染色体DX-C4-1~DX-S4-16标记间。分离群体分组分析法(BSA,bulked segregation analysis)分析检测到第4号染色体0~5.0 Mb区间有一个超过阈值的QTL,该区间与QTL-qST4重合,QTL连锁分析方法和BSA方法均在第4号染色体的0~5.0 Mb区间定位到耐盐等级QTL,说明QTL-qST4是可靠的耐盐位点;耐盐等级QTL-qST4-1和幼苗存活率QTL-qSSR4均定位在第4号染色体DX-C4-12和DX-C4-13标记间,LOD值分别为3.36和3.92,表型贡献率分别为13.97%和9.49%;在第9号、10号染色体还定位到两个耐盐等级QTL-qST9和QTL-qST10;其中QTL-qST4-1、QTL-qSSR4和QTL-qST10是本研究新定位的耐盐性QTL。本研究结果将为水稻耐盐性相关基因克隆和分子标记辅助改良水稻品种的耐盐性奠定基础。
目前,全球约有9.6亿h
水稻耐盐性是由多基因控制的数量性
虽然已定位了很多水稻耐盐性相关QTL,但是目前仅有少数耐盐基因被克隆。SKC1是第一个被克隆的耐盐基因,Ren
前期,实验室从东乡普通野生稻染色体片段置换系中筛选到1个强耐盐家系CSSL91,本研究以东乡普通野生稻和日本晴(Nip,Nipponbare)为亲本创制的强耐盐染色体片段置换系CSSL91为材料,开展水稻耐盐相关QTL定位分析,旨在为后续耐盐基因精细定位与克隆奠定基础。
本研究材料包括强耐盐种质Pokkal
将以上所有试验材料种子在45℃烘箱中放置1周,以打破休眠。每个材料挑选30粒籽粒饱满的种子用1%的次氯酸钠溶液消毒15 min,蒸馏水冲洗3次后置于35℃烘箱催芽,直至种子刚露出芽尖。每个材料挑选15粒发芽一致的种子播种在96孔板置于光照培养箱中培养(光照和黑暗各12 h,光照温度29℃,黑暗温度25℃,相对湿度均为50%),种子先在蒸馏水中培养4 d,后转移至Yoshida营养液上继续生长,每2 d更换一次营养液;生长至三叶一心期(大约15 d)时在含有0.9% NaCl和无NaCl的Yoshida营养液中盐胁迫处理7 d,每2 d更换1次NaCl溶液,盐处理7 d后调查耐盐等级和幼苗存活率,上述试验重复3次。耐盐等级调查标准参照《水稻种质资源描述规范和数据标准
采用CTAB法提取试验材料DNA
标记 Marker | 染色体 Chromosome | 正向引物(5´-3´) Forward sequence (5´-3´) | 反向引物(5´-3´) Reverse sequence (5´-3´) |
---|---|---|---|
DX-S4-16 | 4 | CGTTAACCATGTGGGCTTGGGAAA | AGCAGCAAGTGCTCGCAAACA |
DX-S4-13 | 4 | TGCAGTTGCATGGCACAGTCAC | ATCGTCTCGGTACACCTGAGTAACA |
DX-S4-6 | 4 | GTGCATCGGGGACAGGGTA | CACCGTCCCCACGGTGATA |
DX-S4-9 | 4 | GCAATCGATCCAGGCATCC | TTCGATCTGGAGCTCGCAA |
DX-S4-10 | 4 | AAACTAGCATTGGAAGACTTGAGTG | TTCAATGTGTAATTTTATTTCGTGGT |
DX-S9-3 | 9 | GCCAAAACACGAGATTTTCGA | CATGTTCACCCAAATTTAAGTCCT |
DX-S9-6 | 9 | GCCTATGGCATTTCTTTCGC | TCCTTTCCACCCAACTATAGCTT |
DX-S9-7 | 9 | ACCACCGTAACAGGACCGG | GCATGTGTGCACCCCTCAATA |
DX-S9-5 | 9 | CTGCTTCTCTTGTAATTTTCAGCTT | CTTCGAGGAAACTCGAGATTCTAAG |
DX-S10-1-1 | 10 | CACCCGACCAACATCACCA | CTCCGCTGCTCTGCCTGAC |
DX-S10-3-2 | 10 | TCCTGAATCCTGCCGTACAAA | CCAGGAGGAGAGGTCATTGATC |
DX-S10-4-2 | 10 | CAATAGCGTGGTGACCCCTACT | CAAACCATCTTAATGCACTATCACA |
DX-S10-5-2 | 10 | CGCCGTTCTCGTGTCCAT | AGTATCCTGCATGCCACAACAA |
DX-S10-8-3 | 10 | TAGTGCTAAGGTGTGACATCTTGG | CCTCCCGAAATTGTGAAGAATT |
DX-S10-8-1 | 10 | GGTCCACGACAGCAGCAAGT | GAGCTCGAAGCCATGGACAA |
DX-S10-8-s4 | 10 | CACACGTAGTGACGTAGACGCC | TGAGATGTACCAAGAGGTATCAATTC |
DX-S10-8-6 | 10 | AAAAACTGCAGTGGCAAGAGGT | ACCTTTGTGCTACTGTGATGGC |
DX-S10-9-5 | 10 | TCGATTCCAAGCCGTCTAGC | TCCATCACAACTGCACACTTCA |
DX-S10-9-6 | 10 | GCACGGCAGACCACATCACT | TGCAACCTATGCAACGTGTCA |
DX-S10-9-7 | 10 | AATTTTTGCGCCATCGGG | GCGCAGGAAATAGCTCAGCT |
用QTL IciMapping(V4.1)软件分析耐盐性相关QT
用分离群体分组分析法(BSA,bulked segregation analysis)定位耐盐相关QTL。根据F2:3分离群体耐盐等级鉴定结果,将分离群体中30~50株极端表型的单株叶片等量混合,提取基因组DNA,构建极端表型DNA混池。基因组高通量测序在Illumina测序平台上进行,测序深度为50×;后续数据质控、参考基因组比对和变异检测按等照常规流程进
在没有盐处理条件下, 日本晴、CSSL91和Pokkali均生长正常,Pokkali植株较高;在盐处理条件下(0.9% NaCl溶液处理7 d),日本晴叶片全部干枯死亡,CSSL91和Pokkali只有少数植株下部叶片干枯死亡,新叶生长正常(

图1 日本晴、CSSL91和Pokkali苗期耐盐性比较
Fig. 1 Comparison of salt tolerance of Nip, CSSL91 and Pokkali at seedling stage
A:植株的表型;*表示在P < 0.05水平上差异显著
A: Phenotypes of plants ; * indicates significant difference at the P<0.05 level
为了定位CSSL91耐盐相关基因,对中国农业科学院作物科学研究所水稻种质资源团队创制的CSSL91与日本晴杂交后构建的F2:3分离群体进行了耐盐性分析(

图2 F2:3群体苗期耐盐性鉴定
Fig.2 Evaluation of salt tolerance in F2:3 population at seedling stage
A和B分别代表无盐处理与盐处理后 F2:3群体表型;C: 苗期耐盐等级鉴定标准;黑色和白色三角形分别代表日本晴和CSSL91的耐盐等级与幼苗存活率
A-B: Represent the phenotypes of F2:3 population after salt treatment and salt treatment,respectively; C: The identification standard of salt tolerance grade at seedling stage; Black and white triangles represent salt tolerance grade and seeding survival rate of Nip and CSSL91, respectively
根据F2∶3分离群体鉴定的基因型,结合苗期耐盐等级和幼苗存活率,通过Icimapping软件共鉴定到5个耐盐相关QTL(
性状 Character | 位点名称 Locus name | 染色体 Chromosome | 标记区间 Marker interval | LOD值 LOD value | 表型贡献率(%) Phenotypic variation expelained | 加性效应 Additive effect |
---|---|---|---|---|---|---|
耐盐等级 Salt tolerance grade | qST4 | 4 | DX-C4-1~DX-S4-16 | 3.97 | 18.48 | 0.92 |
qST4-1 | 4 | DX-C4-12~DX-C4-13 | 3.36 | 13.97 | 0.77 | |
qST9 | 9 | DX-C9-5~DX-S9-7 | 3.02 | 9.83 | 0.62 | |
qST10 | 10 | DX-C10-7~DX-S10-8-3 | 2.95 | 9.93 | -0.23 | |
幼苗存活率 Seeding survival rate | qSSR4 | 4 | DX-C4-12~DX-C4-13 | 3.92 | 9.49 | 0.04 |

图3 苗期耐盐相关性状QTL在染色体上的分布
Fig.3 Mapping locations of QTLs associated with salt tolerant related traits at seedling stage in rice
染色体左侧标记的是物理位置,右侧标记的是标记;黑色方块标记的是定位到的QTL
The left side of the chromosome is marked with the physical location, and the right side is marked with the marker; The thick black square marks the QTL that is located
通过高通量测序,极端敏盐混池获得58712964个Reads,极端耐盐混池获得88698194个Reads,检测到573944个高质量SNP,欧几里得距离平方值在染色体上的分布如

图4 每个SNP的欧几里得距离平方值在染色体上的分布
Fig.4 The distribution of square values of the Euclidean distance for each SNP on the chromosomes
虚线表示阈值位置
The dotted line indicates the threshold position
综合QTL连锁分析和BSA方法,均在第4号染色体的0~5.0 Mb区间定位到耐盐等级QTL,说明qST4是可靠的耐盐位点。此外,耐盐等级和幼苗存活率两个指标均能定位到第4号染色体标记DX-C4-12~DX-C4-13区间,说明该区间也可能存在1个可靠的耐盐相关QTL位点。
由于不同育种时期与稻作生态区的育种目标差异,人们在培育新品种过程中,丢失了野生稻中原有的一些优异性状和抗性基因。东乡野生稻具有丰富的遗传性,而且携带耐寒、耐旱、耐贫瘠、广亲和性、野败育性恢复性、胞质雄性不育、抗病虫和高产等相关基
水稻耐盐性是复杂的数量性状,不同生长时期的植株对盐胁迫反应不同,采用的耐盐鉴定指标各异。针对水稻芽期、苗期和分蘖期,已报道了一些耐盐性相关鉴定方
本研究定位的5个苗期耐盐相关QTL中,有3个QTL是新位点,其余2个位点与已报道耐盐相关位点位置相近。郑洪亮
参考文献
杨帆, 王志春, 马红媛, 杨福, 田春杰, 安丰华. 东北苏打盐碱地生态治理关键技术研发与集成示范. 生态学报, 2016, 36(22): 7054-7058 [百度学术]
Yang F, Wang Z C, Ma H Y, Yang F, Tian C J, An F H. Research and integrated demonstration of ecological amelioration techniques of saline-sodic land in northeast China. Acta Ecologica Sinica, 2016, 36(22): 7054-7058 [百度学术]
杨真, 王宝山. 中国盐渍土资源现状及改良利用对策. 山东农业科学, 2015, 47(4): 125-130 [百度学术]
Yang Z, Wang B S. Present status of saline soil resources and countermeasures for improvement and utilization in China. Shandong Agricultural Sciences, 2015, 47(4): 125-130 [百度学术]
赵春芳, 张善磊, 赵庆勇, 周丽慧, 赵凌, 姚姝, 张亚东, 王才林. 基于CSSL的水稻芽期耐盐性QTL定位. 华北农学报, 2017, 32(5):106-111 [百度学术]
Zhao C F, Zhang S L, Zhao Q Y, Zhou L H, Zhao L, Yao S, Zhang Y D, Wang C L. Mapping of QTLs for bud-stage salinity tolerance based on chromosome segment substitution line in rice. Acta Agriculturae Boreali-Sinica, 2017, 32(5): 106-111 [百度学术]
Wang Z F, Wang J F, Bao Y M, Wu Y Y, Zhang H S. Quantitative trait loci controlling rice seed germination under salt stress. Euphytica, 2011, 178: 297-307 [百度学术]
Tiwari S, Si K, Kumar V, Singh B, Rao A R, Mithra S A, Rai V, Singh A K, Singh N K. Mapping QTLs for salt tolerance in rice (Oryza sativa L.) by bulked segregant analysis of recombinant inbred lines using 50K SNP chip. PLoS ONE, 2016, 11(4): e0153610 [百度学术]
Prasad S R, Bagali P G, Hittalmani S, Shashidhar H E. Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Current Science, 2000, 78: 162-164 [百度学术]
Lin H X. Identification of QTL for salt tolerance in rice via molecular markers. Chinese Journal of Rice Science, 1998, 12(2): 72-78 [百度学术]
林静, 张云辉, 陈海元, 朱晓妹, 张所兵, 汪迎节, 方先文. 水稻地方品种苗期耐盐QTL的定位. 华北农学报, 2019, 34(S1): 1-5 [百度学术]
Lin J, Zhang Y H, Chen H Y, Zhu X M, Zhang S B, Wang Y J, Fang X W. Mapping of salt tolerance QTLs at seedling stage of landrace rice. Acta Agriculturae Boreali-Sinica, 2019, 34(S1): 1-5 [百度学术]
Mardani Z, Rabiei B, Sabouri H, Sabouri A. Identification of molecular markers linked to salt‐tolerant genes at germination stage of rice. Plant Breeding, 2014, 133: 196-202 [百度学术]
Negrão S, Courtois B, Ahmadi N, Abreu I A, Saibo N J, Oliveira M M. Recent updates on salinity stress in rice: From physiological to molecular responses. Critical Reviews in Plant Sciences, 2011, 30: 329-377 [百度学术]
段敏, 谢留杰, 朱亚军, 黄善军, 潘晓飚, 徐建龙. 盐胁迫下水稻幼苗存活率的QTL定位. 中国农业科技导报, 2019, 21(9): 25-35 [百度学术]
Duan M, Xie L J, Zhu Y J, Huang S J, Pan X B, Xu J L. QTL mapping of seedling survival rate under salt stress in rice (Oryza sativa L.). Journal of Agricultural Science and Technology, 2019, 21(9): 25-35 [百度学术]
井文, 章文华. 水稻耐盐基因定位与克隆及品种耐盐性分子标记辅助选择改良研究进展. 中国水稻科学, 2017, 31(2): 111-123 [百度学术]
Jing W, Zhang W H. Research progress on gene mapping and cloning for salt tolerance and variety improvement for salt tolerance by molecular marker-assisted selection in rice. Chinese Journal of Rice Science, 2017, 31(2): 111-123 [百度学术]
胡时开, 陶红剑, 钱前, 郭龙彪. 水稻耐盐性的遗传和分子育种的研究进展. 分子植物育种, 2010, 8(4): 629-640 [百度学术]
Hu S K, Tao H J, Qian Q, Guo L B. Progresses on genetics and molecular breeding for salt-tolerance in rice. Molecular Plant Breeding, 2010, 8(4): 629-640 [百度学术]
Gong J M, He P, Qian Q, Shen L S, Zhu L H, Chen S Y. Identification of salt-tolerance QTL in rice (Oryza sativa L.). Chinese Science Bulletin, 1999, 44(1): 68-71 [百度学术]
Takehisa H, Shimodate T, Fukuta Y, Ueda T, Yano M, Yamaya T, Kameya T, Sato T. Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water. Field Crops Research, 2004, 8: 85-95 [百度学术]
耿雷跃. 基于连锁和关联分析的水稻耐盐性QTL定位与候选基因发掘. 北京:中国农业科学院, 2021 [百度学术]
Geng L Y. Linkage analysis and GWAS reveal QTL controlling salt tolerance in rice and candidate genes discovery. Beijing: Chinese Academy of Agricultural Sciences, 2021 [百度学术]
Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter.Nature Genetics, 2005, 37(10): 1141-1146 [百度学术]
Yu J, Zhu C S, Xuan W, An H Z, Tian Y L, Wang B X, Chi W C, Chen G M, Ge Y W, Li J, Dai Z Y, Liu Y, Sun Z G, Xu D Y, Wang C M, Wan J M. Genome-wide association studies identify OsWRKY53 as a key regulator of salt tolerance in rice.Nature Communications,2023, 14(1): 3550 [百度学术]
Fernando L H. The performance of salt resistant paddy, Pokkali in Ceylon. Tropical Agriculturist, 1949, 105: 124-126 [百度学术]
韩龙植, 魏兴华. 水稻种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006: 15-18 [百度学术]
Han L Z, Wei X H. Rice germplasm resource description specifications and data standards. Beijng: China Agriculture Press, 2006: 15-18 [百度学术]
Mccouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes.Theoretical and Applied Genetics, 1988, 76(6): 815-29 [百度学术]
马小定,唐江红,张佳妮,崔迪,李慧,黎毛毛,韩龙植. 东乡野生稻与日本晴多态性标记的开发. 作物学报, 2019, 45(2): 316-321 [百度学术]
Ma X D, Tang J H, Zhang J N, Cui D, Li H, Li M M, Han L Z. Development of molecular markers polymorphic between Dongxiang wild rice and Geng rice cultivar ‘Nipponbare’. Acta Agronomica Sinica, 2019, 45(2): 316-321 [百度学术]
Meng L, Li H, Zhang L, Wang J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitativetrait locus mapping in bi-parental populations. The Crop Journal, 2015, 3: 269-283 [百度学术]
龚继明, 郑先武, 杜保兴, 钱前, 陈受宜, 朱立煌, 何平. 控制水稻重要农艺性状的QTL在盐胁迫与非胁迫条件下的对比研究. 中国科学:C辑, 2000,30(6): 561-569 [百度学术]
Gong J M, Zheng X W, Du B X, Qian Q, Chen S Y, Zhu L H, He P. Control of important agronomic traits of rice under salt stress comparative studies with non-stressed conditions. Science in China:Series C, 2000,30(6): 561-569 [百度学术]
Mccouch S, Cho Y, Yuno M, Paul E, Blinstrub M, Morishima H, Kinoshita H. Report on QTL nomenclature. Rice Genetics Newsletter, 1997, 14: 11-13 [百度学术]
罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL. 作物学报, 2021, 47(7): 1391-1401 [百度学术]
Luo L, Lei L X, Liu J, Zhang R H, Jin G X, Cui D, Li M M, Ma X D, Zhao Z W, Han L Z. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.). Acta Agronomica Sinica, 2021, 47(7): 1391-1401 [百度学术]
Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J. MMAPPR:Mutation mapping analysis pipeline for pooled RNA-seq. Genome Research, 2013, 23(4): 687-697 [百度学术]
黄依南, 黄国勤. 东乡野生稻的发现、价值与保护. 农业资源与环境学报, 2012, 29: 13-15 [百度学术]
Huang Y N, Huang G Q. The discovery, value and protection of Dongxiang wild rice. Journal of Agricultural Resources and Environment, 2012, 29: 13-15 [百度学术]
Ma X D, Han B, Tang J H, Zhang J N, Cui D, Geng L Y, Zhou H Y, Li M M, Han L Z. Construction of chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) in the background of the japonica rice cultivar Nipponbare (Oryza sativa L.). Plant Physiology and Biochemistry, 2019, 144: 274-282 [百度学术]
Tiwari S, Si K, Kumar V, Singh B, Rao A R, Mithra S A, Rai V, Singh A K, Singh N K. Mapping of QTL for salt tolerance in rice (Oryza sativa L.) via molecular markers. China Rice Research, 1997, 5:1-2 [百度学术]
Hossain H, Rahman M A, Alam M S, Singh R K. Mapping of quantitative trait loci associated with reproductive-stage salt tolerance in rice. Agronomy and Crop Science, 2015, 201(1): 17-31 [百度学术]
孙勇, 藏金萍, 王韵, 朱苓华, Fotokian Mohammadhosein, 徐建龙, 黎志康. 利用回交导入系群体发掘水稻种质资源中的有利耐盐QTL. 作物学报, 2007, 33(10): 1611-1617 [百度学术]
Sun Y, Zang J P, Wang Y, Zhu L H, Fotokian M, Xu J L, Li Z K. Mining favorable salt-tolerant QTL from rice germplasm using a backcrossing introgression linepopulation. Acta Agronomica Sinica , 2007, 33(10): 1611-1617 [百度学术]
邢 军, 常汇琳, 王敬国, 刘化龙, 孙 健, 郑洪亮, 赵宏伟, 邹德堂. 盐、碱胁迫条件下粳稻 N
Xing J, Chang H L, Wang J G, Liu H L, Sun J, Zheng H L, Zhao H W, Zou D T. QTL analysis of N
Liang J L, Qu Y P, Yang C G, Ma X D, Cao G L, Zhao Z W, Zhang S Y, Zhang T, Han L Z. Identification of QTLs associated with salt or alkaline tolerance at the seedling stage in rice under salt or alkaline stress. Euphytica, 2015, 201(3) : 441-452 [百度学术]
郑洪亮, 刘博文, 赵宏伟, 王敬国, 刘化龙, 孙健, 邢军, 邹德堂. 利用连锁和关联分析定位粳稻芽期及幼苗前期耐盐性QTL. 中国水稻科学, 2014, 28(4): 358-366 [百度学术]
Zheng H L, Liu B W, Zhao H W, Wang J G, Liu H L, Sun J, Xing J, Zou D T. Identification of QTLs for salt tolerance at the germination and early seedling stage using linkage and association analysis in japonica rice. Chinese Journal of Rice Science, 2014, 28(4): 358-366 [百度学术]
Mohammadi R, Mendioro M S, Diaz G Q, Gregorio G B, Singh R K. Mapping quantitative trait loci associated with yield and yield components under reproductive stage salinity stress in rice (Oryza sativa L.). Journal of Genetics, 2013, 92: 433-443 [百度学术]
Wang Z F, Wang J F, Bao Y M, Wu Y Y, Zhang H S. Quantitative trait loci controlling rice seed germination under salt stress. Euphytica, 2011, 178(3): 297-307 [百度学术]
Gao Q M, Wang H Y, Yin X L, Wang F, Hu S, Liu W H, Chen L B, Dai X J, Liang M Z. Identification of salt tolerance related candidate genes in 'Sea Rice 86' at the seedling and reproductive stages using QTL-Seq and BSA-Seq. Genes, 2023, 14(2): 458 [百度学术]