摘要
植物生长调节剂5-羟色胺(5-HT,5-hydroxy-tryptamine)已应用于农业生产,以提升作物抗旱性,然而其转录水平的分子机制尚不清楚。本研究通过转录组测序、内源激素水平和抗氧化酶活性的综合评价,探讨模拟干旱胁迫下蜡杨梅幼苗响应外源5-羟色胺的生理和分子影响机制。结果表明,50 μmol/L的5-HT处理显著提高了蜡杨梅根系中脱落酸和茉莉酸含量,而100 μmol/L的5-HT处理的结果则刚好相反。50 μmol/L的5-HT处理诱导丙二醛含量和超氧化物歧化酶活性显著升高,而过氧化氢含量则显著降低。基于上述两种浓度水平的5-羟色胺处理基因集富集分析结果表明,差异表达基因集主要包括抗氧化酶活性、氧化还原酶活性、生长素和赤霉素介导信号传导、细胞壁生物合成、木聚糖生物合成、果胶代谢、次生代谢物生物合成、苯丙烷和半乳糖醛酸代谢等。与抗氧化酶活性及激素代谢相关的差异表达基因主要为PER、LAC、DHAR和PIN等。通过加权基因共表达网络分析发现8个共表达基因模块与5-羟色胺及干旱胁迫显著相关,其中枢纽基因KAB1218346.1(LOX3)、KAB1219593.1(WRKY53)和KAB1217691.1(CZF1)主要参与激素代谢和转录调控,上述关键基因及其分子调控机制将是今后研究的重要对象。
干旱是影响全球作物生长及产量最重要的非生物胁迫之一,常造成严重的经济损
植物生长调节剂常用于农业生产中调节作物生长及抗逆性,研究其作用机制有助于制定提高作物生长及抗逆性的综合管理策略。5-羟色胺(5-HT, 5-hydroxy-tryptamine)是一种由色氨酸衍生的吲哚胺类神经递质,广泛存在于包括植物、人类和各种动物在内的生物体
蜡杨梅(Myrica cerifera)是一种小型常绿灌木,原产于美国东南部。由于其对盐碱土壤、低温、干旱和高水分环境等多种非生物胁迫的抗性,现已成为南方特色水果——杨梅(Morella rubra)的优良抗性砧
2021年2月在中国浙江省宁波市余姚(121°17′N,29°59′E)采集健康的蜡杨梅 (Morella cerifera)种子约1000粒直接播种于含有珍珠岩和泥炭(1∶1,v/v)基质的营养钵中,置于温室直到发芽。在第二年收集生长势一致的幼苗,转移到含有半强度霍格兰氏溶液的塑料容器中进行水培。待水培稳定30 d后,参照文献[
使用酶联免疫吸附法(ELISA, enzyme-linked immunosorbent assay)测量植物须根中吲哚乙酸(IAA, indole acetic acid)、赤霉素 (GA3, gibberellin A3)、脱落酸(ABA, abscisic acid)、油菜素内酯(BR, brassinolide)和茉莉酸(JA, jasmonic acid)的含量,具体操作方法参照文献[
使用RNAprep Pure Plant Plus Kit 试剂盒(天根生化科技有限公司)从蜡杨梅须根组织中提取高质量的总RNA,通过Gene Expression Sample Preparation试剂盒构建测序文库。基于Illumina HiSeq 4000测序技术,读取序列长度为2×150 bp。测序获得原始序列文件可在NCBI SRA数据库中获取(登录号:PRJNA768248,PRJNA913465)。使用Trimmomatic软
参照拟南芥基因组(TAIR10
使用TBtools软
随机选择20个基因进行qRT-PCR验证分析。使用前期1.3从蜡杨梅须根组织中提取的高质量总RNA并通过M-MuLV First Strand cDNA Synthesis Kit(上海生工生物工程股份有限公司)合成第一链 cDNA,qRT-PCR使用ABI Q6 Flex Real-time PCR system (Thermo Fisher Scientific)和2X SG Fast qPCR Master Mix(上海生工生物工程股份有限公司),具体方法参照文献[
基因名称 Gene name | 引物序列(5′-3′) Primer sequence (5′-3′) | 基因名称 Gene name | 引物序列(5′-3′) Primer sequence (5′-3′) |
---|---|---|---|
PIN2-F | TCAACGGTCGTGAGCCATT | K21H1.5-F | AAGGGCTCGTCGCTCTATCC |
PIN2-R | GGCCGTGGGACTTACTGAAA | K21H1.5-R | TTGGCACAGCACAATCTTTTTC |
ARF-F | CAAGCCCTGGAACATGTATCAC | OSM34-F | TGCACCTGTGGGAAAAGATG |
ARF-R | TAAGCCCATTTCCAGCGTTT | OSM34-R | GTTGCAACAATATTGATCGGTCTTA |
NCED-F | CGAAGACTGCAGACCCAAAAG | F9E10.10-F | GTGACTGTGGCGGGCTTCT |
NCED-R | GGTAGACGCCGTTGATGCAT | F9E10.10-R | ACCCATCAACCAAAGAGATATCAAA |
SDR2-F | GTGGAGCGGAGAAGGAACAG | T28P6.2-F | TTTGCCTGGAAGATGTGGAAT |
SDR2-R | TGGACTCTTCGCTAGCCAAGA | T28P6.2-R | CACACACAGCAACGCCACTT |
PPPDE-F | GGAGAGGGAGGCTCGTGAGT | CRRLK-F | TGCTTCAAATCCGGCCATAC |
PPPDE-R | TTGTAGACATTCTTGCGGAATACC | CRRLK -R | TGAATCTGGACCAGCAGGAATA |
ERF-F | AGTTTGCGGCGGAGATACG | WRKY42-F | CAAAGGTGTGCCGAGGATATG |
ERF-R | GACCCCGGAAAGCGAAA | WRKY42-R | CATATTCGCCGCTGCTGAT |
SAG-F | TGGGAGATTCAGGCGACAA | WRKY33-F | GTTGGAGAGGACGAATTTGATCA |
SAG-R | ATGCCTCGAGGGTCGAATTC | WRKY33-R | AGCTGGAAACCCCTCGTGTT |
COBL-F | GTGGCGGCTGTAACATTGAA | MYB45-F | CTGGAGCTCCGTCCCCATA |
COBL-R | GGCTTGAGCCCCTACTATGGA | MYB45-R | TCCTCCTCTTCCTTGCCAAAC |
FT1-F | CCAGCCAAGCCATGAAGAGT | OMT-F | AACGACGCGTTTCCGAATATAG |
FT1-R | AACGTTGACCATGCACTTGTG | OMT-R | CGGAGGAACTGCCTCAAACA |
IRX9-F | CTCCTGCGACCATTCCAACT | Actin-F | AATGGAACTGGAATGGTCAAGGC |
IRX9-R | CAAGCCTCCTGGGTGTCAA | Actin-R | TGCCAGATCTTCTCCATGTCATCCCA |
SCPL3-F | CTTGGTTTTCTCCGGCATTG | ||
SCPL3-R | GACTGGTTCGAGTCGCCTACA |
基因来源于杨梅 Y2012-145 (https://www.ncbi.nlm.nih.gov/assembly/GCA_003952965.2)
Gene were derived from Morella rubra ‘Y2012-145’ (https://www.ncbi.nlm.nih.gov/assembly/GCA_003952965.2)
干旱胁迫下蜡杨梅幼苗根系颜色发生了不同程度的变化(

图1 5-羟色胺处理与模拟干旱胁迫下蜡杨梅幼苗根系外观(上)及共聚焦荧光成像图(下)
Fig. 1 Appearance of seedlings root (top) and confocal fluorescence imaging (bottom) in M. cerifera under 5-HT treatment and simulated drought stress
对照:无5-H和PEG 6000, A:5% PEG 6000, B :10% PEG 6000, C:10% PEG 6000+50 μmol/L 5-HT, D:10% PEG 6000+100 μmol/L 5-HT;绿色为H2DCFDA氧化产生的荧光;下同
Control:No 5-HT and PEG 6000;Green is the fluorescence of H2DCFDA oxidation;The same as below
由

图2 5-羟色胺处理对模拟干旱胁迫下蜡杨梅幼苗根系中抗氧化酶活性的影响
Fig. 2 Activity and content of various enzymes in M. cerifera seedling roots under simulated drought stress and 5-HT treatment
数据以平均数±标准差(n =3)表示;采用Duncan检验单因素方差分析(ANOVA)评估显著性(P <0.05),不同字母(a~d)表示差异显著;下同
Data are presented as mean ± SD (n =3);Analyzed using one-way analysis of variance (ANOVA) with Duncan’s test (P <0.05), groups with different letters (a-d) are significantly difference; The same as below

图3 5-羟色胺处理对模拟干旱胁迫下蜡杨梅幼苗根系内源激素水平的影响
Fig.3 Endogenous hormone levels in M. cerifera seedling roots under simulated drought stress and 5-HT treatment
共计构建了15个测序文库用于转录组测序,并分析模拟干旱胁迫和5-羟色胺处理对蜡杨梅根系中基因表达水平的影响。与对照组相比,A和B处理基因表达水平总体上呈现下调趋势(

图4 5-羟色胺处理和模拟干旱胁迫下蜡杨梅的差异表达基因数量(a)和GO富集(b)
Fig. 4 Differentially expressed gene number (a) and GO enrichment (b) of M. cerifera under 5- HT treatment and simulated drought stress
A:X轴表示不同处理组的对比;B:Y轴中的阈值设置为|log2 fold-change (FC)| > 2,P<0.05
A: The comparison group category is on the X-axis; B: Threshold value of genes number is presented on the y-axis, with |log2 fold-change(FC)|>2,P<0.05
使用基因集富集工具筛选不同处理后差异表达变化达到显著性水平(错误发现率 q-value < 0.05且P-value<0.01)的前10个基因集(

图5 蜡杨梅根系在模拟干旱胁迫下响应5-HT的基因集分析及GO注释
Fig. 5 GO-related terms of enriched gene sets associated with 5-HT and simulated drought stress in M. cerifera
通过基因集富集分析后,进一步对抗氧化活性及激素信号通路相关的高贡献目标基因进行筛选,在抗氧化活性基因集(GO:0016209)中共筛选到29个高贡献目标基因(

图6 蜡杨梅根系响应干旱胁迫和5-HT处理中的抗氧化酶活性和激素介导信号传导关键基因点阵图
Fig. 6 The dot map of genes at the leading edge associated with 5-HT and drought stress in M. cerifera determined for antioxidant activity and hormone mediated signaling pathway
上述抗氧化酶活性和激素介导信号传导GO Terms来源于图5
The above antioxidant activity and hormone-mediated signaling GO Terms were derived from Figure 5
建立加权基因共表达网络来评估差异表达基因与不同处理之间的相关性(

图7 干旱胁迫和5-羟色胺处理下蜡杨梅根系差异表达基因WGCNA分析
Fig.7 WGCNA of DEGs in M. cerifera with 5-HT treatment under drought stress
A:不同处理间蜡杨梅根系中差异表达基因的相关分析热图。相关系数列于每个方格中,其相关性的P值列于括号中;B:干旱胁迫与5-羟色胺处理后蜡杨梅的响应枢纽基因及共表达权重网络图。基因被标记为节点圈,其颜色代表连通性强度
A:Heatmap of the correlation analysis between different treatments and DEGs in M. cerifera. The correlation coefficients are presented in each square and the P-value of the correlation is in parenthesis; B:Interaction of the gene co-expression network of the hub genes in M. cerifera with 5-HT treatment under drought stress and were displayed through the weight network diagram. These genes are marked as node circles and the color is representative of their connectivity
使用MapMan软件将差异表达基因(C处理)映射至非生物胁迫核心途径图中,共计映射585个基因(

图8 5-羟色胺 (50 μmol/L) 缓解蜡杨梅根系干旱胁迫的非生物胁迫核心途径
Fig. 8 Core pathway of the abiotic stress for 5-HT (50 μM) alleviates drought stress in the root system of M. cerifera
红色和蓝色分别代表基因上调和下调表达
The red and blue colors represent up and down-regulated genes, respectively

图 9 干旱胁迫下蜡杨梅根系响应5-羟色胺处理的分子生理作用模型
Fig. 9 A proposed model for molecular and physiological of root in M. cerifera under drought stress response to 5-hydroxytryptamine (5-HT) treatment

图10 蜡杨梅中20个基因的qRT-PCR验证分析
Fig. 10 qRT-PCR vacidation analysis of 20 genes in M. cerifera
干旱是一种严重的环境胁迫,对植物生长和产量构成重大威胁,也限制了全世界的农业生产。前期研究针对植物干旱胁迫相关的表型性状和转录组进行了广泛的分
关于5-羟色胺在转录水平驱动植物逆境防御过程方面的内在机制尚未明确。通过基因集富集分析筛选到19个下调表达的高贡献目标基因PER(GO:0016209),PER作为大基因家族,主要参与调控植物抗氧化系统以及木质素积
综上所述,5-羟色胺在调控植物生长发育与适应环境胁迫中发挥重要作用。本研究表明5-羟色胺可能通过增强抗氧化作用、激素调节和激活细胞壁代谢等途径参与了蜡杨梅根系对模拟干旱胁迫的响应过程,为进一步探明5-羟色胺在植物中的分子调控机制提供了前期基础。然而,其内在的分子生理调控机制尚不完全清楚。因此,后续对5-羟色胺的研究应集中在以下几个方面:(1)确定5-羟色胺在植物中的组织差异性和转运途径;(2)阐明5-羟色胺的信号转导途径和调控机制;(3)评估其作为生长调节剂在农业生产上的应用效果。
参考文献
王硕, 贾潇倩, 何璐, 李浩然,王红光,何建宁,李东晓,房琴,李瑞奇. 作物对干旱胁迫的响应机制及提高作物抗旱能力的调控措施研究进展. 中国农学通报, 2022, 38(29):31-44 [百度学术]
Wang S, Jia X Q, He L, Li H R, Wang H G, He J N, Li D X, Fang Q, Li R Q. Response mechanism of crops to drought stress and measures for improving drought resistance of crops: Research progress. Chinese Agricultural Science Bulletin, 2022, 38(29):31-44 [百度学术]
Fadiji A E, Santoyo G, Yadav A N, Babalola O O. Efforts towards overcoming drought stress in crops: Revisiting the mechanisms employed by plant growth-promoting bacteria. Frontiers in Microbiology, 2022, 13: 962427 [百度学术]
Arnao M B, Hernández-Ruiz J. Melatonin: Synthesis from tryptophan and its role in higher plant. Amino acids in higher plants. Wallingford UK: CAB International, 2015:390-435 [百度学术]
Wang X N, Zhang J C, Zhang H Y, Wang X F, You C X. Ectopic expression of MmSERT, a mouse serotonin transporter gene, regulates salt tolerance and ABA sensitivity in apple and Arabidopsis. Plant Physiology and Biochemistry, 2023, 197: 107627 [百度学术]
Meade E, Hehir S, Rowan N, Garvey M. Mycotherapy: Potential of fungal bioactives for the treatment of mental health disorders and morbidities of chronic pain. Journal of Fungi, 2022, 8(3): 290 [百度学术]
Erland L A E, Turi C E, Saxena P K. Serotonin, Canada: Elsevier Academic Press, 2019: 23-46 [百度学术]
田姗姗, 李继强, 邹锡玲, 张学昆, 付桂萍, 吕燕, 曾柳, 闫蕾, 刘月, 钟燕, 杨静, 陈建军, 马海清, 程勇. 5-羟色胺对油菜幼苗干旱的缓解效应. 中国油料作物学报, 2019, 41(2): 192 [百度学术]
Tian S S, Li J Q, Zou X L, Zheng X K, Fu G P, Lv Y, Zeng L, Yan L, Liu Y, Zhong Y, Yang J, Chen J J, Ma H Q, Cheng Y. Effect of exogenous 5-hydroxy-tryptamine (5-HT) on rape (Brassica napus L.) seedling under drought stress. Chinese Journal of Oil Crop Sciences,2019, 41(2): 192 [百度学术]
He H, Lei Y, Yi Z, Raza A, Zeng L, Yan L, Ding X Y, Yong C, Zhou X L. Study on the mechanism of exogenous serotonin improving cold tolerance of rapeseed (Brassica napus L.) seedlings. Plant Growth Regulation, 2021, 94: 161-170 [百度学术]
Pelagio-Flores R, Ortíz-Castro R, Méndez-Bravo A, Macías-Rodríguez L, López-Bucio J. Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana. Plant Cell Physiology, 2011, 52(3): 490-508 [百度学术]
Abbasi B H, Younas M, Anjum S, Ahmad N, Ali M, Fazal H, Hano C. Signaling and communication in Plants. Switzerland: Springer Nature Switzerland AG, 2020: 75-92 [百度学术]
Ravishankar G A, Ramakrishna A. Serotonin and melatonin:Their functional role in plants, food, phytomedicine, and human health. CRC Press. (2016-11-28)[2023-11-20]. https://www.researchgate.net/publication/311313850 [百度学术]
Wan J, Zhang P, Wang R, Sun L, Ju Q, Xu J. Comparative physiological responses and transcriptome analysis reveal the roles of melatonin and serotonin in regulating growth and metabolism in Arabidopsis. BMC Plant Biology, 2018, 18: 362 [百度学术]
Mukherjee S. Novel perspectives on the molecular crosstalk mechanisms of serotonin and melatonin in plants. Plant Physiology and Biochemistry, 2018, 132: 33-45 [百度学术]
Pelagio-Flores R, Ruiz-Herrera L F, Lopez-Bucio J. Serotonin modulates Arabidopsis root growth via changes in reactive oxygen species and jasmonic acid-ethylene signaling. Physiologia Plantarum, 2016, 158(1): 92-105 [百度学术]
Hayashi K, Fujita Y, Ashizawa T, Suzuki F, Nagamura Y, Hayano-Saito Y. Serotonin attenuates biotic stress and leads to lesion browning caused by a hypersensitive response to Magnaporthe oryzae penetration in rice. Plant Journal, 2016, 85(1): 46-56 [百度学术]
Oberle B, OliviaCole P, Frank G, Gates A, Hall B, Harvey D, Scott M E, Setterberg C, Bustetter S P. Multilevel allometric growth equations improve accuracy of carbon monitoring during forest restoration. Trees, Forests and People, 2023, 14: 100442 [百度学术]
汪国云, 陈炯怡, 赵岚, 赵海波,李雨珊,周超超,焦云,高中山. 蜡杨梅砧木资源利用现状和前景. 果树资源学报, 2022, 3(1):1-6 [百度学术]
Wang G Y, Chen J Y, Zhao L, Zhao H B, Li Y S, Zhou C C, Jiao Y, Gao Z S. Application status and prospect of wax bayberry as rootstock for Chinese bayberry. Journal of Fruit Resources, 2022, 3(1):1-6 [百度学术]
Knox G. Drought-tolerant plants for north and central florida. Florida: University of Florida Cooperative Extension Service, 2005: 1-19 [百度学术]
Jiao Y, Sha C, Xie R, Shu Q. Comparative analysis of the potential physiological and molecular mechanisms involved in the response to root zone hypoxia in two rootstock seedlings of the Chinese bayberry via transcriptomic analysis. Functional & Integrative Genomics, 2023, 23(1): 11 [百度学术]
Xie R, Zheng L, Jiao Y, Huang X. Understanding physiological and molecular mechanisms of citrus rootstock seedlings in response to root zone hypoxia by RNA-Seq. Environmental and Experimental Botany, 2021, 192: 104647 [百度学术]
胡海涛, 钱婷婷, 杨玲. 基于H2DCFDA荧光探针的植物活性氧检测方法. 植物学报, 2022, 57(3): 320-326 [百度学术]
Hu H T, Qian T T, Yang L. Detection of reactive oxygen species using H2DCFDA probe in plant. Chinese Bulletin of Botany, 2022, 57 (3): 320-326 [百度学术]
Bolger A M, Lohse M, Usadel B. Trimmomatic:A flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15): 2114-2120 [百度学术]
Lamesch P, Berardini T Z, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander D L, Garcia-Hernandez M. The Arabidopsis information resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Research, 2012, 40(D1): D1202-D1210 [百度学术]
Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller L A, Rhee SY, Stitt M. MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal, 2004, 37(6): 914-939 [百度学术]
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202 [百度学术]
李艳肖, 张春兰, 徐兴源, 陈艳秋, 向殿军, 刘鹏. 基于转录组学的蓖麻耐盐基因的挖掘. 植物遗传资源学报, 2023, 24(6):1778-1793 [百度学术]
Li Y X, Zhang C L, Xu X Y, Chen Y Q, Xiang D J, Liu P. Transcriptomics-assisted mining of salt-tolerant genes in Ricinus communis. Journal of Plant Genetic Resources, 2023, 24(6):1778-1793 [百度学术]
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the
Niu S S, Xu C J, Zhang W S, Zhang B, Li X, Wang K L, Ferguson I B, Allan A C, Chen K S. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor. Planta,2010, 231: 887-899 [百度学术]
Tang Q Y, Zhang C X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Science, 2013, 20(2): 254-260 [百度学术]
王晓娟, 李娜, 姚文强, 杨立中,王文奇. 树木抗旱生理特性及转录组调控研究进展.内蒙古农业大学学报:自然科学版, 2023, 44(5):81-88 [百度学术]
Wang X J, Li N,Yao W Q, Yang L Z, Wang W Q. Advances in drought resistance physiological characteristics and transcriptome regulation of trees. Journal of Inner Mongolia Agricultural University:Natural Science Edition, 2023, 44(5):81-88 [百度学术]
Wang B, Liu C, Zhang D, He C, Zhang J, Li Z. Effects of maize organ-specific drought stress response on yields from transcriptome analysis. BMC Plant Biology, 2019, 19(1): 1-19 [百度学术]
Ngara R, Goche T, Swanevelder D Z, Chivasa S. Sorghum’s whole-plant transcriptome and proteome responses to drought stress: A review. Life, 2021, 11(7): 704 [百度学术]
卫星, 王政权, 张国珍. 干旱胁迫下水曲柳苗木细根线粒体的形态及活性变化. 植物生态学报, 2010, 34(12): 1454-1462 [百度学术]
Wei X, Wang Z Q, Zhang G Z. Morphological and activity variation of mitochondria in fine roots of Fraxinus mandshurica seedling under drought stress. Chinese Journal of Plant Ecology, 2010, 34 (12): 1454-1462 [百度学术]
梅映学, 魏玮, 张诗婉, 张韫璐, 王金缘, 王茜, 苏昕, 马莲菊. 干旱锻炼对盐胁迫下水稻幼苗根系抗氧化酶活性的影响. 浙江农业学报, 2016, 28(8):1304-1308 [百度学术]
Mei Y X,Wei W,Zhang S W,Zhang Y L,Wang J Y,Wang Q,Su X,Ma L J. Effect of PEG pretreatment on antioxidant enzymes activity under salt stress in root of rice seedling. Acta Agriculturae Zhejiangensis, 2016, 28(8):1304-1308 [百度学术]
Mittler R, Zandalinas S I, Fichman Y, Van Breusegem F. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, 2022, 23: 663-679 [百度学术]
Erland L A E, Turi C E, Saxena P K. Serotonin: An ancient molecule and an important regulator of plant processes. Biotechnology Advances, 2016, 34(8): 1347-1361 [百度学术]
张国芹, 牟建梅, 陈虎根. 黄秋葵果实质地变化的生化和转录组联合分析. 植物遗传资源学报, 2023, 24(1): 282-295 [百度学术]
Zhang G Q, Mou J M, Chen H G. Combined biochemical and transcriptomic analysis of the Okra fruit texture Changes. Journal of Plant Genetic Resources, 2023, 24(1): 282-295 [百度学术]
Guo T L, Liu C H, Meng F X, Hu L, Fu X M, Yang Z H, Wang N, Jiang Q, Zhang X Z, Ma F W. The m6A reader MhYTP2 regulates MdMLO19 mRNA stability and antioxidant genes translation efficiency conferring powdery mildew resistance in apple. Plant Biotechnology Journal, 2022, 20(3): 511-525 [百度学术]
Niu Z M, Li G T, Hu H Y, Lv J J, Zheng Q W, Liu J Q, Wan D S. A gene that underwent adaptive evolution, LAC2 (LACCASE), in Populus euphratica improves drought tolerance by improving water transport capacity. Horticulture Research, 2021, 8: 88 [百度学术]
杨帅, 高尚珠, 卢晗, 詹亚光, 曾凡锁. 植物细胞壁形成及在非生物胁迫中的作用. 植物生理学报, 2023, 59 (7): 1251-1264 [百度学术]
Yang S, Gao S Z, Lu H, Zhan Y G, Zeng F S. Plant cell wall development and its function in abiotic stress. Plant Physiology Journal, 2023, 59 (7): 1251-1264 [百度学术]
陈东滨, 王茜茜, 孙智仪, 杨小英, 傅经效, 郭新梅, 宋希云. 玉米ZmXTH23的克隆、表达及其对盐胁迫和干旱胁迫的响应.农业生物技术学报, 2019, 27(9): 1533-1541 [百度学术]
Chen D B, Wang Q Q, Sun Z Y, Yang X Y, Fu J X, Guo X M, Song X Y. Cloning and Expression of ZmXTH23 in maize (Zea mays) and its response to salt and drought stress. Journal of Agricultural Biotechnology, 2019, 27(9): 1533-1541 [百度学术]
Wei W, Li Q T, Chu Y N, Reiter R J, Yu X M, Zhu D H, Zhang W K, Ma B, Lin Q, Zhang J S. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany, 2015, 66(3): 695-707 [百度学术]
Raza A, Charagh S, García-Caparrós P, Rahman M A, Ogwugwa V H, Saeed F, Jin W. Melatonin-mediated temperature stress tolerance in plants. GM Crops & Food, 2022, 13(1): 196-217 [百度学术]
Kumar R, Bohra A, Pandey A K, Pandey M K, Kumar A. Metabolomics for plant improvement: Status and prospects. Front Plant Science, 2017,8: 1302 [百度学术]
Xing Q, Zhang, X, Li Y, Shao Q, Cao S, Wang F, Qi H. The lipoxygenase CmLOX13 from oriental melon enhanced severe drought tolerance via regulating ABA accumulation and stomatal closure in Arabidopsis. Environmental and Experimental Botany, 2019, 167: 103815 [百度学术]
Zhang Y, Wang K, Wang Z, Li X, Li M, Zhu F, Majeed Z, Lan X, Guan Q. The lipoxygenase gene AfLOX4 of Amorpha fruticosa L. is a potential regulator of drought stress tolerance pathways under saline and alkaline conditions. Acta Physiologiae Plantarum, 2023, 45(6): 72 [百度学术]
Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K. OsTZF1, a C3H-Tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiology, 2013, 161(3): 1202-1216 [百度学术]
兰孟焦, 后猛, 肖满秋, 李臣, 潘皓, 张允刚, 卢凌志, 侯隆英, 葛瑞华, 吴问胜, 李强. AP2/ERF转录因子参与植物次生代谢和逆境胁迫响应的研究进展. 植物遗传资源学报, 2023, 24(5):1223-1235 [百度学术]
Lan M J, Hou M, Xiao M Q, Li C, Pan H, Zhang Y G, Lu L Z, Hou L Y, Ge R H, Wu W S, Li Q. Research progress of AP2/ERF transcription factors participating in plant secondary metabolism and stress response. Journal of Plant Genetic Resources, 2023, 24(5): 1223-1235 [百度学术]
陈林英, 李佳佳, 王博, 杜婉清, 高梦雪, 刘慧, 檀淑琴, 邱丽娟, 王晓波. WRKY 转录因子在大豆响应生物和非生物胁迫中的功能研究进展. 植物遗传资源学报, 2022, 23(2): 323-332 [百度学术]
Chen L Y,Li J J, Wang B, Du W Q, Gao M X, Liu H, Tan S Q, Qiu L J, Wang X B. Research progress on the function of WRKY transcription factor response to biotic and abiotic stresses in soybean. Journal of Plant Genetic Resources, 2022, 23(2): 323-332 [百度学术]