摘要
藜麦(Chenopodium quinoa Willd.)营养丰富且抗逆性较强。本研究以M059(胚根生长快)和M024(胚根生长慢)两种藜麦种质材料为研究对象,采用PEG-6000模拟干旱胁迫,观察种子表型的解剖结构,对发芽种子进行糖含量测定,并对正常水处理和干旱处理的材料进行转录组测序。种子表型及糖含量测定结果显示:与正常水处理相比,15% PEG-6000处理24 h后M059和M024胚根长度分别降低68.65%和71.43%;在正常水处理条件下,M059的可溶性总糖、蔗糖、葡萄糖和果糖含量较M024高18.58%、97.84%、70.54%和32.77%;在15% PEG-6000处理24 h后,M024的蔗糖含量比M059高23.01%,M059的可溶性总糖和葡萄糖含量比M024分别高7.26%和25.00%。韦恩图分析结果表明,C1vsD1、C2vsD2、C1vsC2和D1vsD2比较组中共有差异表达基因211个,特异性差异表达基因分别为132个、1270个、578个和914个。GO富集分析表明,与干旱胁迫下藜麦种子糖代谢的分子响应密切相关的GO通路有5条。KEGG富集分析表明,与干旱胁迫下藜麦种子糖代谢密切相关的代谢途径有3条。根据差异表达基因的功能注释,有10个差异表达基因(LOC110702784_AGAL2、LOC110719866_INV1、LOC110717843_TPPJ、LOC29490_CELB、LOC110719843_bg1x、LOC110689796_SUS1、LOC110690728_MAN6、LOC110729879_HK2、LOC110712726_EGLC、LOC110 734349_FK7)与糖代谢相关,且这10个差异表达基因的qRT-PCR验证结果与转录组结果一致。本研究结果将对深入解析藜麦响应干旱的分子调控机制提供参考。
藜麦(Chenopodium quinoa Willd.,2n=4x=36)为苋科藜属一年生双子叶常异花授粉植物,起源于南美洲安第斯山区,距今已有5000~7000年种植历史,是印加土著居民的传统食物,被称为“黄金谷物”、“粮食之母
目前,国内外鲜有关于干旱胁迫下藜麦种子糖代谢的相关报道。本研究通过石蜡切片对干旱胁迫下藜麦种子的解剖结构进行观察,测定不同处理样品的蔗糖、葡萄糖、果糖和可溶性总糖含量,利用转录组分析干旱胁迫下藜麦种子糖代谢相关的差异表达基因,并通过qRT-PCR验证关键差异表达基因。本研究结果将为深入研究干旱胁迫下藜麦种子糖代谢相关的分子调控机制提供重要参考。
供试材料为发芽种子胚根生长最快品系M059(代码:1)和胚根生长最慢品系M024(代码:2),由河北省科技创新服务中心提供(

图1 参试藜麦品系表型图
Fig.1 Phenotype of test quinoa strains
取最适胁迫时间处理的C1、D1、C2和D2发芽种子各10粒立即投入组织固定液内固定24 h以上,常温保存。按照脱水浸蜡、包埋、切片、贴片、烘干-染色-封片的步骤制作发芽种子的石蜡切
参考张友
参照Rio
利用HISAT2软
利用GO数据库,对转录组筛选出的所有差异表达基因做GO富集分析。将与糖代谢相关的差异表达基因向GO数据库的各条目映射,并计算每个条目的基因数,从而得到具有某个GO功能的基因列表及基因数目统计。应用超几何检验,找出与整个基因组背景相比,在糖代谢相关的差异表达基因中显著富集的GO 条目。KEGG是有关通路的主要公共数据库,以KEGG 通路为单位,应用超几何检验,找出与整个背景相比,在差异基因中显著性富集的通路。通过通路显著性富集确定差异基因参与的最主要生化代谢途径和信号转导途径。
筛选出的与糖代谢相关的差异表达基因与藜麦基因组数据库进行BLAST比对,结合植物转录因子数据库(http://planttfdb.cbi.pku.edu.cn/)筛选差异表达转录因子。进一步分析藜麦抗旱相关的转录因子家族及相关基因。利用皮尔斯系数法测定关键差异表达基因与转录因子间的相关性,并绘制热图,分析差异表达转录因子的表达模式。
从获得的与糖代谢相关的差异表达基因中挑选关键差异表达基因进行qRT-PCR验证,3个生物学重复。利用HiFiScript gDNA Removal RT Master Mix反转录试剂盒合成cDNA,使用2×SYBR Green qPCR Master Mix试剂盒进行qRT-PCR。反应程序为:95℃预变性5 min;95℃变性10 s,60℃退火20 s,72℃延伸15 s,40个循环。以LOC110715281(CqACT-1)作为内参基因,依据目的基因所需序列库对应的CDS序列,利用Premier5.0软件设计引物(
引物名称 Primer name | 正向序列(5′-3′) Forward sequences(5′-3′) | 反向序列(5′-3′) Reverse sequence(5′-3′) |
---|---|---|
LOC110702784 | GCGAAAACCTTTGCCTCCTG | ACAGCCATCCTCCTCTGAGT |
LOC110719866 | GAGATCCGTCTACTGCGTGG | GGAATTGCCTGAAGTCCGGA |
LOC110717843 | CAACGGCAATTGTGAGTGGG | ACCTTGACCTCGGTCTCTCA |
LOC110729879 | AGTCCAAACCACCACAAGCA | TCGAGTGTGAAGCAGCAACA |
LOC110712726 | CCTTTTCCGTCCTCTTCCCC | CCACAAGCCCAATCCAAAGC |
LOC110719843 | TGGATGACCTTCAACGAGCC | CGAGTTTTCCTTGGGACCGA |
LOC29490 | ACAAGGCTTCGACGAATGGT | GAGGCACCAAGGGTAGCATT |
LOC110689796 | CAGGGGCCGACATGACTATC | AGAAGGACCACCATGGCATG |
LOC110690728 | TGCAGGGCTCTCTGAATTGG | TATCGCCAGAGGGGTCAGAA |
LOC110734349 | GCAGCAACGAATTCCAGCAA | TGCGGGAGTTTCAGCTAGTG |
LOC110715281 | GTATTGTTGGTCGTCCCCGT | GGCTGTCTCCATTTCCTGCT |
在4个PEG-6000浓度处理中,与正常水处理相比,5% PEG-6000处理M024胚根长度增加了11.11%,在低浓度5% PEG-6000处理条件下没有出现抑制作用,反而促进了藜麦胚根的生长。在高浓度25% PEG-6000处理下导致M024藜麦种子难以萌发。15% PEG-6000处理阻碍了藜麦种子的萌发(

图2 藜麦种子表型、解剖结构图及糖组分差异显著性
Fig. 2 Phenotype, anatomical structure map and significant difference of sugar components of quinoa seeds
a:4个PEG-6000浓度处理24 h下M059和M024胚根长度;b:4个样品的种子表型观察;C1:正常水处理下的M059;C2:正常水处理下的M024;D1:15% PEG-6000处理下的M059;D2:15% PEG-6000处理下的M024;c:4个样品种子胚根纵切扫描图;d:*、**、***分别代表在P<0.05、P<0.01、P<0.001水平下差异显著;ns代表差异不显著;下同
a: Radicle length of M059 and M024 was treated with 4 concentrations of PEG-6000 for 24 h; b: Seed phenotypic observation of four samples; C1: M059 under normal water treatment; C2: M024 under normal water treatment; D1: M059 under 15% PEG-6000 treatment; D2: M024 treated with 15% PEG-6000; c: Four samples of seed radicle longitudinal scanning; d: *, ** and *** indicated significant differences at the levels of P < 0.05, P < 0.01 and P < 0.001, respectively; ns indicated no significant differences; The same as below
在正常水和15% PEG-6000处理24 h时,对M059和M024胚根的解剖结构进行显微观察(
在正常水处理24 h时M059的可溶性总糖、蔗糖、葡萄糖和果糖含量分别比M024高18.58%(P<0.01)、97.84%(P<0.001)、70.54%(P<0.01)和32.77%(P<0.001)。在15% PEG-6000处理24 h时,M024的蔗糖含量比M059高23.01%(P<0.001),M059的可溶性总糖和葡萄糖含量分别比M024高7.26%(P<0.05)和25.00%(P<0.001),果糖含量差异不显著。M059在15% PEG-6000处理24 h时的可溶性总糖含量比正常水处理24 h时高8.60%(P<0.05)。M024在15% PEG-6000处理24 h时的可溶性总糖和蔗糖含量分别比正常水处理24 h时高20.09%(P<0.001)和142.70%(P<0.001)(
对C1、D1、C2、D2四个RNA样品进行cDNA文库构建,共获得72.58 Gb的Clean Data;过滤后样本碱基信息Q20≥97.95%,Q30≥93.74%,N=0,GC含量控制在43.17%~43.48%之间。两个样本全部的可以定位到基因组上的Reads数量占有效Reads比例在96.86%~97.71%之间。主成分分析结果显示,第1主成分和第2主成分分别占变异的71.0%和20.4%,样本聚类分明(

图3 样本关系分析图
Fig.3 Sample relationship analysis diagram
a:样本主成分分析,-1、-2、-3分别代表4个样品C1、C2、D1和D2的3次生物学重复;b:C1、C2、D1和D2四个样品间相关性分析热图a: Principal component analysis, -1, -2, and -3 represent three biological replicates of the four samples C1, C2, D1, and D2, respectively; b: Heat map of correlation analysis between C1, C2, D1 and D2 samples
转录组学分析共鉴定出54033个基因。在C1vsD1比较组(D1相对于C1)中,上调基因233个,下调基因914个;在C2vsD2比较组(D2相对于C2)中,上调基因855个,下调基因2743个;在C1vsC2比较组(C2相对于C1)中,上调基因1096个,下调基因1978个;在D1vsD2比较组(D2相对于D1)中,上调基因1320个,下调基因3065个(

图4 差异表达基因统计分析
Fig.4 Statistical analysis of the differentially expressed genes
a:差异表达基因火山图,C1vsD1表示D1相对于C1,以此类推;FDR:误差率;FC:差异倍数;b:4个比较组中差异表达基因韦恩图,数字表示的差异表达基因数目
a: Volcano map of differentially expressed genes,C1vsD1 means D1compared with C1, and so on;FDR:False discovery rate;FC:Foldchange; b:Venn diagram of the number o differentially expressed genes in the four comparison groups, numerically represented by the number of differentially expressed genes
为了分析两个材料对干旱胁迫的响应,对所有的差异表达基因进行GO富集分析。GO富集分析显示,C1vsD1、C2vsD2、C1vsC2和D1vsD2四个比较组中所有的差异表达基因分别富集了828条、1373条、1359条、1589条GO条目。所有的差异表达基因主要富集于7个条目中,分别是细胞组分的细胞(GO:0005623)和细胞部分(GO:0044464),生物过程的代谢过程(GO:0008152)、细胞过程(GO:0009987)和单组织过程(GO:0044699),分子功能的催化活性(GO:0003824)和结合(GO:0005488)。
注释分析结果表明,5条GO条目与干旱胁迫下藜麦糖代谢的分子响应密切相关(

图5 糖代谢差异表达基因 GO 富集分析弦图
Fig.5 Chord diagram of enrichment analysis of GO differentially expressed genes in glycometabolism of quinoa
GO:0044238为初级代谢过程;GO:0005991为海藻糖代谢过程;GO:0005982为淀粉代谢过程;GO:0035251为UDP-葡糖基转移酶活性;GO:0016772为转移酶活性转移含磷基团。基因用基因ID表示,基因的颜色表示不同的比较组
BP: Biological process;MF: Molecular function;GO: 0044238:Primary metabolic process; GO: 0005991:Trehalose metabolic process; GO:0005982: Starch metabolic process;GO:0035251: UDP-glucosyltransferase activity; GO:0016772: Transferase activity, transferring phosphorus-containing groups. Genes are indicated by gene ID, the colors of genes indicate different comparison groups
KEGG代谢通路富集分析显示,C1vsD1、C2vsD2、C1vsC2和D1vsD2四个比较组中所有的差异表达基因分别被富集到91条、113条、117条和125条通路。糖代谢相关的差异表达基因主要被富集到3条通路(

图6 关键差异表达基因 KEGG 富集分析气泡图
Fig.6 KEGG enrichment analysis of the key differentially expressed genes
C1vsD1、C2vsD2、C1vsC2和D1vsD2四个比较组中,分别有15个、156个、67个和158个显著差异表达转录因子(

图7 转录因子的统计分析及与差异表达基因间相关性热图
Fig.7 Statistical analysis of transcription factors and correlation with differentially expressed genes
a:显著差异表达转录因子统计分析;b:转录因子家族基因与差异表达基因之间的皮尔逊相关系数热图
a: Statistical analysis of significant differential expression TFs; b: Heatmap of pearson correlation coefficient between TF family genes and differentially expressed genes
转录因子 TFs | 名称 Name | 基因名称 Gene ID | C1 | C2 | D1 | D2 |
---|---|---|---|---|---|---|
WRKY | WRKY72 | LOC110690435 | 2.2600 | 2.6533 | 1.8327 | 1.1000 |
WRKY50 | LOC110710397 | 0.2233 | 0.7600 | 0.3827 | 0.0367 | |
WRKY22 | LOC110719591 | 0.2933 | 1.0767 | 0.3220 | 0.3000 | |
WRKY6 | LOC110720931 | 2.5133 | 1.3167 | 1.4620 | 0.3033 | |
WRKY41 | LOC110725171 | 1.5033 | 2.1000 | 1.0447 | 0.7967 | |
WRKY54 | LOC110731563 | 0.7067 | 0.1600 | 0.8513 | 0.7333 | |
WRKY40 | LOC110733669 | 0.9433 | 1.4167 | 0.8840 | 0.4933 | |
WRKY4 | LOC110735049 | 3.3033 | 2.2067 | 2.2460 | 0.9300 | |
WRKY40 | LOC110739966 | 11.6133 | 15.0233 | 9.4033 | 6.7400 | |
WRKY28 | LOC110690337 | 1.3433 | 0.4067 | 1.2300 | 0.3000 | |
WRKY13 | LOC110682067 | 1.0533 | 1.0600 | 1.2967 | 0.6900 | |
WRKY56 | LOC110719592 | 0.2667 | 0.0167 | 0.2327 | 0.0000 | |
WRKY48 | LOC110733008 | 4.3733 | 4.2300 | 3.4187 | 1.3967 | |
bHLH | BHLH55 | LOC110697415 | 0.3467 | 0.0733 | 0.1060 | 0.0000 |
BHLH137 | LOC110683995 | 1.6300 | 1.0067 | 0.9753 | 0.1700 | |
FIT | LOC110691768 | 1.4200 | 4.0433 | 1.5527 | 1.6900 | |
BHLH90 | LOC110694167 | 0.7633 | 0.4933 | 0.7153 | 1.0100 | |
BHLH55 | LOC110697152 | 0.9700 | 0.4200 | 0.6000 | 0.0633 | |
BHLH120 | LOC110697154 | 6.9833 | 2.7600 | 4.5547 | 0.9467 | |
BHLH125 | LOC110702384 | 4.1000 | 3.5133 | 4.3767 | 0.8033 | |
BEE3 | LOC110702898 | 2.9667 | 2.4333 | 1.9960 | 0.2333 | |
BHLH25 | LOC110706296 | 3.5667 | 8.4367 | 3.5087 | 2.2800 | |
BHLH120 | LOC110719265 | 3.7867 | 2.5800 | 3.3833 | 1.0767 | |
BHLH85 | LOC110724362 | 2.0133 | 1.1467 | 1.3160 | 0.2100 | |
BHLH85 | LOC110724364 | 3.1833 | 1.8533 | 1.9793 | 0.5667 | |
SPCH | LOC110725693 | 0.1633 | 0.2367 | 0.1700 | 0.7100 | |
PIL15 | LOC110726386 | 1.2700 | 0.9000 | 1.0480 | 0.2533 | |
BHLH126 | LOC110729752 | 2.1200 | 1.0800 | 1.0120 | 0.1533 | |
BHLH14 | LOC110731636 | 1.4333 | 1.4267 | 1.5720 | 0.3967 | |
BHLH14 | LOC110732803 | 0.5367 | 0.9700 | 0.8633 | 0.3167 | |
HEC3 | LOC110681689 | 0.7700 | 1.9067 | 1.1153 | 2.9433 | |
BHLH25 | LOC110706295 | 2.5867 | 5.9600 | 3.4893 | 5.6233 | |
BHLH137 | LOC110709935 | 1.1000 | 0.2500 | 0.5920 | 0.1967 | |
BHLH106 | LOC110710653 | 1.6967 | 0.5733 | 0.9580 | 0.4800 | |
BHLH14 | LOC110714364 | 0.3767 | 0.0700 | 0.1993 | 0.0200 | |
FAMA | LOC110716316 | 0.6600 | 0.2367 | 0.3693 | 0.0733 | |
- | LOC110717813 | 2.6467 | 5.5333 | 3.3500 | 6.1567 | |
BHLH84 | LOC110692226 | 0.5800 | 0.2500 | 0.4600 | 0.0500 | |
HEC3 | LOC110695361 | 1.2833 | 1.8200 | 1.5087 | 3.3800 | |
PRE4 | LOC110700562 | 12.6000 | 11.0400 | 16.0880 | 9.1067 | |
UNE10 | LOC110700658 | 0.7333 | 0.6800 | 0.7747 | 0.3333 | |
BEE3 | LOC110724202 | 5.0800 | 4.5400 | 3.9040 | 0.8533 |
- 表示转录因子的名称未知
- indicates that the name of the transcription factor is unknown
利用皮尔逊系数法测定关键差异表达基因与转录因子间的相关性,对GO富集到的来自淀粉和蔗糖代谢、半乳糖代谢与果糖和甘露糖代谢3条代谢途径中的17个关键差异表达基因与8个转录因子间进行相关性分析(
为了验证测序结果的可靠性,筛选不同代谢通路中10个糖代谢相关的差异表达基因进行荧光定量PCR验证,验证结果如

图8 10个关键基因的 qRT-PCR 验证
Fig. 8 The qRT-PCR detection of 10 key differentially expressed genes
藜麦不仅具有很高的营养价值,同时具有耐非生物胁迫的独特优
干旱胁迫通常导致植物水分状况不平
bHLH转录因子在促进植物的非生物胁迫耐受性方面起作
WRKY转录因子可以正向或负向调控植物防御,调节非生物胁迫反应,包括干旱、盐度、辐射和寒
α-半乳糖苷酶(AGAL,alpha-galactosidase)能水解棉子糖系列寡
海藻糖(Trehalose)是一种主要的渗透保护物质,在植物组织中积累,以应对非生物胁
蔗糖转化酶(INV,invertase)是向植物提供碳营养的核心,而且在糖信号传导中起着重要作用。蔗糖转化酶根据其最适pH值和亚细胞位置,蔗糖转化酶可分为细胞壁亚群、细胞质亚群和液泡亚
果糖激酶(FK,fructokinase)是蔗糖水解过程中D-果糖形成D-6-磷酸果糖、D-6-磷酸葡萄糖的关键调节激
(1)淀粉和蔗糖代谢途径(ko00500)中CqINV1、CqTPPJ、Cqbg1x、CqSUS1、CqHK2、CqCELB、CqEGLC、CqFK7等基因的差异表达以及半乳糖代谢(ko00052)中CqAGAL2、果糖和甘露糖代谢(ko00051)中CqMAN6的差异表达对干旱胁迫下藜麦种子糖代谢起重要作用。CqAGAL2基因(LOC110702784)、CqTPPJ基因(LOC110717843)、CqINV基因(LOC110719866)和CqFrK基因(LOC110734349)可能是干旱胁迫下控制藜麦种子胚根生长的关键结构基因。
(2)对转录组中富集到的转录因子分析表明,bHLH 转录因子 CqSPCH和CqWRKY56调控某些关键结构基因共同参与干旱胁迫下藜麦种子的糖代谢。
参考文献
Zurita-Silva A, Fuentes F, Zamora P, Jacobsen S E, Schwember A R. Breeding quinoa (chenopodium quinoa willd.): Potential and perspectives. Molecular Breeding, 2014, 34(1):13-30 [百度学术]
Yao Y, Yang X, Shi Z, Ren G. Anti-inflammatory activity of saponins from quinoa (Chenopodium quinoa Willd.) seeds in lipopolysaccharide-stimulated RAW 264.7 macrophages cells.Journal of Food Science, 2014, 79(5): 1018 -1023 [百度学术]
Vega-Gálvez A, Miranda M, Vergara J, Uribe E, Puente L, Martínez E A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: A review. Journal of Agricultural and Food Sciences, 2010 ,90(15):2541-2547 [百度学术]
Ruiz K B, Biondi S, Oses R, Acuña-Rodríguez I S, Antognoni F, MartinezMosqueira E A. Quinoa biodiversity and sustainability for food security under climate change:A review. Agronomy Sustain,2014, 34: 349-359 [百度学术]
Fang Y J, Xiong L Z. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Molecular Life Science, 2015, 72(4): 673-689 [百度学术]
Xu Z, Zhou G, Shimizu H. Plant responses to drought and rewatering. Plant Signaling Behavior, 2010, 5(6):649-654 [百度学术]
Ozturk M, Turkyilmaz Unal B, García-Caparrós P, Khursheed A, Gul A, Hasanuzzaman M. Osmoregulation and its actions during the drought stress in plants. Plant Physiology, 2021, 172(2): 1321-1335 [百度学术]
周倩. 基于RNA-Seq解析非结构性糖代谢途径在小桐子幼苗对干旱胁迫响应与适应中的作用. 昆明: 云南师范大学, 2019 [百度学术]
Zhou Q. The role of non-structural glucose metabolism pathway in response and adaptation to drought stress in Jatropha seedlings based on RNA-Seq. Kunming: Yunnan Normal University,2019 [百度学术]
Subbarao G V, Nam N H, Chauhan Y S, Johansen C. Osmotic adjustment, water relations and carbohydrate remobilization in pigeonpea under water deficits. Journal of Plant Physiology, 2000, 157(6): 651-659 [百度学术]
Rosa M, Prado C, Podazza G, Interdonato R, González J A, Hilal M, Prado F E. Soluble sugars-metabolism, sensing and abiotic stress:A complex network in the life of plants. Plant Signaling Behavior, 2009, 4(5): 388-393 [百度学术]
Mathan J, Singh A, Ranjan A. Sucrose transport in response to drought and salt stress involves ABA-mediated induction of OsSWEET13 and OsSWEET15 in rice. Plant Physiology, 2021, 171(4): 620-637 [百度学术]
Li H, Tiwari M, Tang Y, Wang L, Yang S, Long H, Guo J, Wang Y, Wang H, Yang Q, Jagadish S V K, Shao R. Metabolomic and transcriptomic analyses reveal that sucrose synthase regulates maize pollen viability under heat and drought stress. Ecotoxicology and Environmental Safety, 2022, 246:114191 [百度学术]
Cheng L, Jin J, He X, Luo Z, Wang Z, Yang J, Xu X. Genome-wide identification and analysis of the invertase gene family in tobacco (Nicotiana tabacum) reveals NtNINV10 participating the sugar metabolism. Frontiers in Plant Science, 2023, 14: 1164296 [百度学术]
Chen Y, Zhang Q, Hu W, Zhang X, Wang L, Hua X, Yu Q, Ming R, Zhang J. Evolution and expression of the fructokinase gene family in Saccharum. BMC Genomics,2017, 18(1): 197 [百度学术]
Daldoul S, Amar A B, Gargouri M, Limam H, Mliki A, Wetzel T. A grapevine-Inducible gene Vv-α-gal/SIP confers salt and desiccation tolerance in escherichia coli and tobacco at germinative stage. Biochemical Genetics, 2018, 56(1-2):78-92 [百度学术]
Zhao T Y, Corum III J W, Mullen J, Meeley R B, Helentjaris T, Martin D, Downie B. An alkaline α-galactosidase transcript is present in maize seeds and cultured embryo cells, and accumulates during stress. Seed Science Research, 2006, 16(2): 107-121 [百度学术]
陆慢. 黄瓜低温胁迫与恢复过程中水苏糖合成酶与α-半乳糖苷酶在RFOs代谢中的作用. 扬州: 扬州大学, 2019 [百度学术]
Lu M. Roles of hydrothreose synthetase and α-galactosidase in RFOs metabolism in cucumber during low temperature stress and recovery. Yangzhou: Yangzhou University,2019 [百度学术]
Wang W, Cui H, Xiao X, Wu B, Sun J, Zhang Y, Yang Q, Zhao Y, Liu G, Qin T. Genome-Wide identification of cotton (Gossypium spp.) trehalose-6-Phosphate Phosphatase (TPP) gene family members and the role of GhTPP22 in the response to drought stress. Plants:Basel, 2022, 11(8): 1079 [百度学术]
叶煜. 水稻已糖激酶HXK9基因敲除对水稻种子萌发相关的生理机制研究. 杭州: 浙江大学, 2021 [百度学术]
Ye Y.Physiological mechanism of HXK9 gene knockout on rice seed germination. Hangzhou: Zhejiang University,2021 [百度学术]
Wang W, Zhang C, Zheng W, Lv H, Li J, Liang B. Seed priming with protein hydrolysate promotes seed germination via reserve mobilization, osmolyte accumulation and antioxidant systems under peg-induced drought stress. Plant Cell Reports, 2022, 41(11): 2173-2186 [百度学术]
姚艳丽, 吴严, 李明伟, 付琼, 刘胜辉, 朱祝英, 张秀梅. 水心病菠萝果肉组织石蜡切片显微观察与分析.热带作物学报, 2023, 44(12): 2514-2519 [百度学术]
Yao Y L, Wu Y, Li M W, Fu Q, Liu S H, Zhu Z Y, Zhang X M.Observation and microscopic analysis of paraffin section of pineapple pulp in water heart disease. Journal of Tropical Crops, 2023, 44(12): 2514-2519 [百度学术]
张友杰. 以蒽酮分光光度计法测定果蔬中的葡萄糖、果糖、蔗糖和淀粉. 分析化学,1976, 5(3): 167-171 [百度学术]
Zhang Y J.Glucose, fructose, sucrose and starch in fruits and vegetables were determined by anthrone spectrophotometer. Analytical Chemistry,1976, 5(3): 167-171 [百度学术]
王学奎. 植物生理生化试验原理和技术. 北京: 高等教育出版社, 2006:202-204 [百度学术]
Wang X K. Principles and techniques of plant physiological and biochemical tests. Beijing: Higher Education Press, 2006:202-204 [百度学术]
Rio D C, Ares M J, Hannon G J, Nilsen T W. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harbor Protocols, 2010, (6): 5439 [百度学术]
Chen S, Zhou Y, Chen Y, Gu J. fastp:An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics,2018, 34(17):1884-1890 [百度学术]
Kim D, Langmead B, Salzberg S L. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 2015,12(4): 357-360 [百度学术]
Robinson M D, McCarthy D J, Smyth G K. EdgeR:A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1):139-140 [百度学术]
Florea L, Song L, Salzberg S L. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000Research, 2013, 2:188 [百度学术]
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014, 15(12): 550 [百度学术]
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25(4): 402-408 [百度学术]
刘文瑜,杨发荣,谢志军,王旺田,黄杰,魏玉明,杨钊.不同品种藜麦幼苗对干旱胁迫的生理响应及耐旱性评价.干旱地区农业研究,2021,39(6):10-18 [百度学术]
Liu W Y, Yang F R, Xie Z J, Wang W T, Huang J,Wei Y M, Yang Z.Physiological response and drought tolerance evaluation of different varieties of quinoa seedlings to drought stress. Agricultural Research in the Dry Areas, 2021, 39(6): 10-18 [百度学术]
Zhang D, Cheng Y, Lu Z, Wang J, Ye X, Zhang X, Luo X, Wang H, Zhang B. Global insights to drought stress perturbed genes in oat (Avena sativa L.) seedlings using RNA sequencing. Plant Signaling Behavior, 2021, 16(2):1845934 [百度学术]
Li C, Wan Y, Shang X, Fang S. Integration of transcriptomic and metabolomic analysis unveils the response mechanism of sugar metabolism in Cyclocarya paliurus seedlings subjected to PEG-induced drought stress. Plant Physiology Biochemistry, 2023, 201:107856 [百度学术]
Shan C, Wang Y. Exogenous salicylic acid-induced nitric oxide regulates leaf water condition through root osmoregulation of maize seedlings under drought stress. Brazilian Journal of Botany, 2017, 40: 591-597 [百度学术]
Jang J H, Shang Y, Kang H K, Kim S Y, Kim B H, Nam K H. Arabidopsis galactinol synthases 1 (AtGOLS1) negatively regulates seed germination. Plant Science,2018, 267: 94-101 [百度学术]
Gurrieri L, Merico M, Trost P, Forlani G, Sparla F. Impact of drought on soluble sugars and free proline content in selected arabidopsis mutants. Biology: Basel, 2020, 9(11): 367 [百度学术]
Jiang F, Lv S, Zhang Z, Chen Q, Mai J, Wan X, Liu P. Integrated metabolomics and transcriptomics analysis during seed germination of waxy corn under low temperature stress. BMC Plant Biology, 2023, 23(1):190 [百度学术]
Channaoui S, El Kahkahi R, Charafifi J, Mazouz H E, Fechtali M, Nabloussi A. Germination and seedling growth of a set of rapeseed (Brassica napus) varieties under drought stress conditions. Internantional Journal Environment Agricultural Biotechnol, 2017, 2:487-494 [百度学术]
Sun X, Wang Y, Sui N. Transcriptional regulation of bHLH during plant response to stress. Biochemical and Biophysical Research Communications. 2018, 503(2):397-401. [百度学术]
贾雨彤. 拟南芥转录因子bHLH146的功能研究. 长春: 吉林大学, 2022 [百度学术]
Jia Y T.Functional study of Arabidopsis transcription factor bHLH146. Changchun: Jilin University,2022 [百度学术]
Du L, Huang X, Ding L, Wang Z, Tang D, Chen B, Ao L, Liu Y, Kang Z, Mao H. TaERF87 and TaAKS1 synergistically regulate TaP5CS1/TaP5CR1-mediated proline biosynthesis to enhance drought tolerance in wheat. New Phytologist, 2023, 237(1): 232-250 [百度学术]
Pandey S P, Somssich I E. The role of WRKY transcription factors in plant immunity. Plant Physiology, 2009, 150(4): 1648-1655 [百度学术]
Banerjee A, Roychoudhury A. WRKY proteins: Signaling and regulation of expression during abiotic stress responses. Scientific World Journal, 2015, 2015:807560 [百度学术]
Fang Y, Wang D, Xiao L, Quan M, Qi W, Song F, Zhou J, Liu X, Qin S, Du Q, Liu Q, El-Kassaby Y A, Zhang D. Allelic variation in transcription factor PtoWRKY68 contributes to drought tolerance in Populus. Plant Physiology, 2023, 193(1): 736-755 [百度学术]
Chen J, Nolan T M, Ye H, Zhang M, Tong H, Xin P, Chu J, Chu C, Li Z, Yin Y. Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. Plant Cell, 2017, 29(6):1425-1439 [百度学术]
Wei W, Cheng M N, Ba L J, Zeng R X, Luo D L, Qin Y H, Liu Z L, Kuang J F, Lu W J, Chen J Y. Pitaya HpWRKY3 is associated with fruit sugar accumulation by transcriptionally modulating sucrose metabolic genes HpINV2 and HpSuSy1. International Journal of Molecular Sciences, 2019, 20(8):1890 [百度学术]
陈博文. 香菇中α-半乳糖苷酶的研究. 晋中: 山西农业大学, 2019 [百度学术]
Chen B W.Study on α-galactosidase in mushroom. Jinzhong: Shanxi Agricultural University,2019 [百度学术]
张丁方, 关涛, 严俊, 韩庆辉. 玉米种子萌发初期碱性α-半乳糖苷酶活性与种子脱水耐性的关系.西北农业学报, 2013, 22(9): 48-54 [百度学术]
Zhang D F, Guan T, Yan J, Han Q H.Relationship between alkaline α-galactosidase activity and seed dehydration tolerance in early germination of maize seeds. Journal of Northwest Agricultural Sciences, 2013, 22(9): 48-54 [百度学术]
Vinson C C, Mota A P Z, Porto B N, Oliveira T N, Sampaio I, Lacerda A L, Danchin E G J, Guimaraes P M, Williams T C R, Brasileiro A C M. Characterization of raffinose metabolism genes uncovers a wild Arachis galactinol synthase conferring tolerance to abiotic stresses. Science Report, 2020, 10(1):15258 [百度学术]
MacIntyre A M, Meline V, Gorman Z, Augustine S P, Dye C J, Hamilton C D, Iyer-Pascuzzi A S, Kolomiets M V, McCulloh K A, Allen C. Trehalose increases tomato drought tolerance, induces defenses, and increases resistance to bacterial wilt disease. PLoS ONE, 2022, 17(4):10266254 [百度学术]
李辉,李德芳,邓勇,潘根,陈安国,赵立宁,唐慧娟.红麻海藻糖生物合成关键酶基因HcTPPJ的克隆及响应逆境的表达分析.作物学报,2020,46(12):1914-1922 [百度学术]
Li H, Li D F,Deng Y, Pan G, Chen A G, Zhao L N, Tang H J.Cloning of HcTPPJ, a key enzyme in trehalose biosynthesis of kenaf, and analysis of its expression in response to stress. Acta Agronomica Sinica, 2019,46(12):1914-1922 [百度学术]
Acosta P P, Camacho Z B D, Espinoza S E A, Gutiérrez S G, Zavala G F, Abraham J M J, Sinagawa G S R. Characterization of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase genes and analysis of its differential expression in Maize (Zea mays) Seedlings under Drought Stress. Plants:Basel, 2020, 9(3):315 [百度学术]
Dahro B, Wang F, Peng T, Liu J H. PtrA/NINV, an alkaline/neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC Plant Biology, 2016, 16: 76 [百度学术]
Trouverie J, Chateau J S, Thévenot C, Jacquemot M P, Prioul J L. Regulation of vacuolar invertase by abscisic acid or glucose in leaves and roots from maize plantlets. Planta, 2004, 219(5): 894-905 [百度学术]
铁原毓,田洁.大蒜蔗糖转化酶基因AsINV的克隆及其响应低温和干旱胁迫的表达分析.植物生理学报,2021,57(12):2258-2270 [百度学术]
Tie Y Y, Tian J.Cloning and expression analysis of garlic sucrose invertase gene AsINV in response to low temperature and drought stress. Chinese Journal of Plant Physiology, 2017,57(12):2258-2270 [百度学术]
Chen Y, Zhang Q, Hu W, Zhang X, Wang L, Hua X, Yu Q, Ming R, Zhang J. Evolution and expression of the fructokinase gene family in Saccharum. BMC Genomics,2017, 18(1): 197 [百度学术]
Zörb C, Schmitt S, Mühling K H. Proteomic changes in maize roots after short-term adjustment to saline growth conditions. Proteomics, 2010, 10(24): 4441-4449 [百度学术]
Fulda S, Mikkat S, Stegmann H, Horn R. Physiology and proteomics of drought stress acclimation in sunflower (Helianthus annuus L.). Plant biology (Stuttg), 2011, 13(4): 632-642 [百度学术]