摘要
大豆作为重要的粮食作物和油料作物,在人类生产生活中扮演着十分重要的角色。近年来国内大豆供给孱弱,对外依存度过高,使国内大豆市场受到严重冲击,并给国家粮食安全带来一定隐患,因此培育优质高产的大豆品种是当前国内大豆育种的重要目标。目前,大豆中一批控制重要性状的关键基因已经被克隆和解析,为开展分子设计育种提供了重要的理论支撑。传统育种周期长、效率较低,基因编辑技术为生物育种提供了新的途径和工具,可以加速育种进程。以CRISPR/Cas9技术为代表的基因编辑技术已经快速发展成为大豆基因功能研究、改造及农艺性状遗传改良的重要工具。本文介绍了基因编辑技术的类型、特点及其在植物中的应用概况,并综述了其在大豆产量、品质、抗病、抗逆、开花期、共生固氮和育性等农艺性状研究中的最新研究进展,为开展大豆基因编辑育种提供了一定的依据和借鉴。此外,本文还探讨了基因编辑技术在大豆遗传改良中存在的问题,并对其应用前景进行了展望。
大豆(Glycine max)起源于中国,并在世界范围内传播,是重要的粮食作物和油料作物。作为世界五大作物之一,大豆是人类摄取植物蛋白和油脂的重要来源,其蛋白质含量较谷类和薯类食物高出2.5~8倍,是一种理想的优质植物蛋白食物。大豆含油量约为20%,是三大油料作物之一。大豆中还含有卵磷脂、异黄酮、皂苷以及多种生理活性物质,对人体营养与保健极为有
遗传变异是作物改良的基础,植物育种的目的是创造和利用这些遗传变异,从而选育出适合农业生产的性状。在漫长的植物育种历史中先后出现了四种育种方法,分别为传统育种、突变育种、转基因育种和基因编辑育种。传统育种虽然可以将各种有利于提高粮食产量和品质的优良基因聚集到某个品种中,但该方法时间长、效率低,需要投入大量的时间和人工。突变育种通过人工诱变的方法获得生物新品种,这种方法可大幅度改良作物的某些性状,并且变异范围广,但其诱变的方向不可控,且有利变异少,须大量处理材
大豆作为古源四倍体,其约75%的基因存在高度冗余
植物基因编辑是利用特异性人工核酸酶(SSNs,sequence specific nucleases)对基因组靶点序列进行切割,进而引起DNA双链断裂(DSB,double-strand break),通过生命体的非同源末端连接(NHEJ,nonhomologous end-joining)或同源重组修复(HDR,homologydirected repair)这两种修复途径达到基因敲除或基因编辑的目的。NHEJ修复途径发生在高等真核生物的整个细胞周期中,通常在没有模板的情况下对DSB进行修复,导致断裂部位一些序列的插入或缺失,进而造成靶基因的功能丧失。HDR修复途径只能发生在细胞的G2和S期,对DSB进行修饰需要有同源序列模板的存在,这种方法可以产生靶向基因敲入或其他特定突变,HDR的精确性比NHEJ高,但修复效率
ZFN和TALEN是最先发展起来的基因编辑技术,两者结构相似,都是由可以识别并且与DNA结合的结构域及Fok Ⅰ核酸内切酶的切割结构域组成。目前这两种基因编辑技术已在多种植物中被广泛应用,但由于存在模块组装过程繁琐等问题,新的基因编辑技术如CRISPR/Cas也逐渐被开发。CRISPR/Cas系统主要分为两大类, 6种类型及多种亚型:第一类包括利用多个Cas蛋白复合物切割外源核酸的I型、III型和IV型,第二类是使用单个Cas蛋白切割外源核酸的Ⅱ型、V型和VI
此外,基于CRISPR/Cas的新型编辑系统陆续被开发与改良,包括碱基编辑器(BE,base editor
大豆是一种理想的蛋白来源,伴随着人们收入水平的提高和消费理念的变化,中国居民对大豆蛋白消费需求逐年提升,因此,提高大豆产量满足人们的日常需求是目前大豆产业亟待解决的问题。单株产量与单株粒数、有效荚数、每荚粒数和百粒重等性状都呈现出显著相关性。单株粒数和百粒重是重要的产量因子,研究人员通过CRISPR/Cas9创建的Gmga3ox1突变体百粒重减少,但通过增加单株粒数提高了单株产量,Gmga3ox1突变体中大量光合作用相关基因上调表达,同时赤霉素的生物合成降低,证明了赤霉素合成途径中的关键酶赤霉素3β-羟化酶基因GmGA3ox1在大豆产量中发挥重要的作
大豆种子中的蛋白质含量和油分含量是决定大豆营养品质和经济价值的重要性状,大豆种子中含有大约40%的蛋白质和20%的油分,是人类食用植物蛋白质和植物油的重要来
此外,大豆的品质改良还体现在提高某些营养成分的含量,如具有保健功能的脂肪酸或氨基酸。大豆油的主要成分是脂肪酸,其中不饱和脂肪酸占比较高,饱和脂肪酸占比相对较低,与饱和脂肪酸相比,适量摄入不饱和脂肪酸对人体健康更有好处。Qu
病虫害是导致大豆连作减产的主要因素之一。大豆主要病害有大豆花叶病(SMV,soybean mosaic virus)、大豆白粉病(SPM,soybean powdery mildew)、大豆疫霉根腐病(PRR,phytophthora root rot)等。针对这些病害,基因编辑技术在大豆抗病性状的改良中发挥了重要作用,为大豆优良品种的培育提供了研究基础。大豆花叶病是全世界各地大豆普遍发生的一种病毒病害。Zhang
逆境是大豆高产稳产的另一重要限制因子。全球生态环境逐渐恶化,不同灾害频繁发生,雨水分布不均造成淹水或者干旱的现象很常见,并且我国盐碱地面积呈逐年增加趋势。随着全球生态条件与环境的恶化加剧,抗逆育种将越来越重要,抗逆性品种的推广应用对于合理利用自然资源,保持农业生产可持续发展有重要意义。Wang
开花是大豆从营养生长向生殖生长过渡的关键阶段之一。大豆是一种典型的短日照作物,对光周期极其敏感,花期会影响大豆的产量、种子质量和种植区域。突破作物种植的纬度界限、减少区域环境和季节气候的限制都高度依赖于作物的早熟性。对大豆的开花期进行改良对提高大豆产量至关重要,也是大豆育种的重点性状之一。Li
豆类和根瘤菌之间的共生关系可以提高作物产量,减少氮肥的使用,对可持续农业发展至关重要。大豆作为根瘤菌寄主,其相关基因可以调控共生固氮过程,如根瘤菌识别、根瘤数量的正负调节、根瘤信号传导和发育等。NIN是豆类结瘤的协调因子,NSP1可以调控NIN的表
杂种优势利用是提高作物产量的有效途径之一,其中不育系的创制与利用对大豆杂交种的选育及生产起着至关重要的作用。目前已知大豆雄性不育突变体ms1、ms2、ms3、ms4和ms6已被研究。其中,MS1基因编码1个微管马达驱动蛋白NACK2,在花药减数分裂末期参与细胞板的形
在生产中杂草会和大豆竞争养分,进而造成产量的严重损失,因此培育抗除草剂大豆是解决田间草害的有效方法之一。Wei
性状 Characters | 靶基因 Target gene | 编辑系统 Editing systems | 参考文献 Reference |
---|---|---|---|
产量 Yield | GmGA3ox1 | CRISPR/Cas9 |
[ |
GmJAGGED1 | CRISPR/Cas9 |
[ | |
Dt2 | CRISPR/Cas9 |
[ | |
EIL3、EIL4、EIL2L | CRISPR/Cas9 |
[ | |
角果开裂 Pod shattering | PDH1 | CRISPR/Cas9 |
[ |
品质 Quality | AIP2 | CRISPR/Cas9 |
[ |
7S α1、α2、α'1、α'2、7S α'3、β1、β2、11S A1ab2、 A2B1a、A1ab1、A5A4B3、A3B4、Gy7 | CRISPR/Cas9 |
[ | |
GmMFT | CRISPR/Cas9 |
[ | |
Gm15G117700 | CRISPR/Cas9 |
[ | |
GmFATB1a、GmFATB1b | CRISPR/Cas9 |
[ | |
GmFAD2-1B、GmFAD2-2C | CRISPR/Cas9 |
[ | |
GmFAD3C-1 | CRISPR/Cas9 |
[ | |
GmFAD2-1A、GmFAD2-1B、GmFAD2-2A、GmFAD2-2B、GmFAD2-2C | CRISPR/Cas9 |
[ | |
GmPDCT1、GmPDCT2 | CRISPR/Cas9 |
[ | |
FA9 | CRISPR/Cas9 |
[ | |
抗病 Disease resistance | GmF3H1、GmF3H2、GmFNSII-1 | CRISPR/Cas9 |
[ |
GmTOC1b | CRISPR/Cas9 |
[ | |
GmMLO | CRISPR/Cas9 |
[ | |
GmTAP1 | CRISPR/Cas9 |
[ | |
Glyma05g29080 | CRISPR/Cas9 |
[ | |
抗逆 Stress resistance | GmLHY | CRISPR/Cas9 |
[ |
GmAITR | CRISPR/Cas9 |
[ | |
GmHdz4 | CRISPR/Cas9 |
[ | |
E2 | CRISPR/Cas9 |
[ | |
GmERF1 | CRISPR/Cas9 |
[ | |
开花期 Flowering date | GmCDPK38 | CRISPR/Cas9 |
[ |
FKF1 | CRISPR/Cas9 |
[ | |
GmAP3 | CRISPR/Cas9 |
[ | |
GmFT2a、GmFT4 | CBE |
[ | |
根瘤固氮 Root nodule nitrogen fixation | GmRR11d | CRISPR/Cas9 |
[ |
GmNAC039、GmNAC018 | CRISPR/Cas9 |
[ | |
SNAP | CRISPR/Cas9 |
[ | |
GmYSL7 | CRISPR/Cas9 |
[ | |
雄性不育 Male sterility | MS1 | CRISPR/Cas9 |
[ |
MS2 | CRISPR/Cas9 |
[ | |
MS3 | CRISPR/Cas9 |
[ | |
MS6 | CRISPR/Cas9 |
[ | |
抗除草剂 Herbicide resistance | GmAHAS4 | CBE |
[ |
株型 Plant type | GmVPS8a | CRISPR/Cas9 |
[ |
大豆作为由古四倍体进化而来的二倍体植物,栽培大豆基因组大小为1.1 Gb~1.15 Gb(n=20
大豆遗传转化的方法主要是农杆菌介导的大豆子叶节转化方法,具有经济、操作简单等特
SNP变异广泛存在于大豆基因组中,并且许多大豆重要农艺性状均与SNP变异有关,因此,开发出精确诱导目标基因点突变的单碱基编辑技术对改善作物农艺性状也极为重要。目前,大豆基因编辑较多使用CRISPR/Cas9技术,新出现的CRISPR/Cas工具,如BE、PE、Cas12a和Cas13等正在被应用于各种作物基因编辑,但上述方法用于编辑大豆基因组还处于起步阶段。目前仅有一篇报道是利用Cpf1介导的大豆植物基因编辑,该试验还是在原生质体中进行,并未获得稳定遗传的编辑单株,编辑效率在10%左
基因编辑育种相较于传统诱变育种效率高,可以避免多次的回交转育流程,在优异底盘品种中引入理想表型。转基因育种虽然也能快速引入外源基因,但受限于人们对转基因的认知、科学防范和生物安全风险,在大豆中尚未推广转基因大豆品种。而基因编辑育种可以规避转基因问题,通过杂交技术,很容易将转基因外源片段分离出来,实现快速、精确并在不引入外源基因的情况下对生物体基因组的改造,但基因编辑育种仍然需要被监管。目前大豆育种仍处于传统育种向分子育种的过渡阶段,在这个阶段亟需加快对调控大豆重要农艺性状的关键基因及其调控网络的认识。通过对品质、产量、抗病和抗逆等重要农艺性状的关键节点基因进行多重定点编辑,实现在短时间内创制不含转基因成分的优异种质资源,加快大豆分子设计育种进程。
参考文献
Bellaloui N, Bruns H A, Abbas H K, Mengistu A, Fisher D K, Reddy K N. Agricultural practices altered soybean seed protein, oil, fatty acids, sugars, and minerals in the Midsouth USA. Frontiers in Plant Science, 2015, 6: 31 [百度学术]
Ma L, Li B, Han F, Yan S, Wang L, Sun J. Evaluation of the chemical quality traits of soybean seeds, as related to sensory attributes of soymilk. Food Chemistry, 2015, 173: 694-701 [百度学术]
Fang C, Kong F. Soybean. Current Biology,2022, 32(17): R902-R904 [百度学术]
Sega G A. A review of the genetic effects of ethyl methanesulfonate. Mutation Research/Reviews in Genetic Toxicology, 1984, 134: 113-142 [百度学术]
Anwar A, Kim J K. Transgenic breeding approaches for improving abiotic stress tolerance: Recent progress and future perspectives. International Journal of Molecular Sciences, 2020, 21:2695 [百度学术]
Schmutz J, Cannon S B, Schlueter J, Ma J, Mitros T, Nelson W, Hyten D L, Song Q, Thelen J J, Cheng J. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463: 178-183 [百度学术]
Gao C. Genome engineering for crop improvement and future agriculture. Cell, 2021,184: 1621-1635 [百度学术]
Burma S, Chen B P, Chen D J. Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair, 2006, 5: 1042-1048 [百度学术]
Fu Y W, Dai X Y, Wang W T, Yang Z X, Zhao J J, Zhang J P, Wen W, Zhang F, Oberg K C, Zhang L. Dynamics and competition of CRISPR-Cas9 ribonucleoproteins and AAV donor-mediated NHEJ, MMEJ and HDR editing. Nucleic Acids Research, 2021, 49: 969-985 [百度学术]
Liu M, Rehman S, Tang X, Gu K, Fan Q, Chen D, Ma W. Methodologies for improving HDR efficiency. Frontiers in Genetics, 2019, 9: 691 [百度学术]
Liu G, Lin Q, Jin S, Gao C. The CRISPR-Cas toolbox and gene editing technologies. Molecular Cell, 2021, 82:333-347 [百度学术]
Yin L, Man S, Ye S, Liu G, Ma L. CRISPR-Cas based virus detection: Recent advances and perspectives. Biosensors and Bioelectronics, 2021, 193: 113541 [百度学术]
Komor A C, Kim Y B, Packer M S, Zuris J A, Liu D R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533: 420-424 [百度学术]
Komor A C, Zhao K T, Packer M S, Gaudelli N M, Waterbury A L, Koblan L W, Kim Y B, Badran A H, Liu D R. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Science Advance, 2017, 3: eaao4774 [百度学术]
Gaudelli N M, Komor A C, Rees H A, Packer M S, Badran A H, Bryson D I, Liu D R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature, 2017, 551: 464-471 [百度学术]
Lu C, Kuang J, Shao T, Xie S, Li M, Zhu L, Zhu L. Prime editing: An all-rounder for genome editing. International Journal of Molecular Sciences, 2022, 23: 9862 [百度学术]
Xiong X, Liang J, Li Z, Gong B Q, Li J F. Multiplex and optimization of dCas9-TV-mediated gene activation in plants. Journal of Integrative Plant Biology, 2021, 63: 634-645 [百度学术]
Selma S, Sanmartín N, Espinosa-Ruiz A, Gianoglio S, Lopez-Gresa M P, Vázquez-Vilar M, Flors V, Granell A, Orzaez D. Custom-made design of metabolite composition in N. benthamiana leaves using CRISPR activators. Plant Biotechnology Journal, 2022, 20: 1578-1590 [百度学术]
Yu L, Li Z, Ding X, Alariqi M, Zhang C, Zhu X, Fan S, Zhu L, Zhang X, Jin S. Developing an efficient CRISPR-dCas9-TV-derived transcriptional activation system to create three novel cotton germplasm materials. Plant Communications, 2023, 4:100600 [百度学术]
Karlson C K S, Mohd Noor S N, Khalid N, Tan B C. CRISPRi-mediated down-regulation of the cinnamate-4-hydroxylase (C4H) gene enhances the flavonoid biosynthesis in Nicotiana tabacum. Biology, 2022, 11: 1127 [百度学术]
周华杰. CRISPR/dCas9转录激活和抑制系统在小麦中的研究. 济南:山东师范大学, 2021 [百度学术]
Zhou H J. Study on CRISPR / dCas9 transcriptional activation and suppression system in wheat. Jinan: Shandong Normal University, 2021 [百度学术]
Kurt I C, Zhou R, Iyer S, Garcia S P, Miller B R, Langner L M, Grünewald J, Joung J K. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nature Biotechnology, 2021, 39: 41-46 [百度学术]
Zhao D, Li J, Li S, Xin X, Hu M, Price M A, Rosser S J, Bi C, Zhang X. New base editors change C to A in bacteria and C to G in mammalian cells. Nature Biotechnology, 2021, 39: 35-40 [百度学术]
Grünewald J, Zhou R, Lareau C A, Garcia S P, Iyer S, Miller B R, Langner L M, Hsu J Y, Aryee M J, Joung J K. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nature Biotechnology, 2020, 38: 861-864 [百度学术]
Hu D, Li X, Yang Z, Liu S, Hao D, Chao M, Zhang J, Yang H, Su X, Jiang M, Lu S, Zhang D, Wang L, Kan G, Wang H, Cheng H, Wang J, Huang F, Tian Z, Yu D. Downregulation of a gibberellin 3β-hydroxylase enhances photosynthesis and increases seed yield in soybean. New Phytologist, 2022, 235: 502-517 [百度学术]
Cai Z, Xian P, Cheng Y, Ma Q, Lian T, Nian H, Ge L. CRISPR/Cas9-mediated gene editing of GmJAGGED1 increased yield in the low-latitude soybean variety Huachun 6. Plant Biotechnology Journal, 2021, 19(10): 1898-1900 [百度学术]
Liang Q, Chen L, Yang X, Yang H, Liu S, Kou K, Fan L, Zhang Z, Duan Z, Yuan Y, Liang S, Liu Y, Lu X, Zhou G, Zhang M, Kong F, Tian Z. Natural variation of Dt2 determines branching in soybean. Nature Communications, 2022, 13: 6429 [百度学术]
Cheng Y, Li Y, Yang J, He H, Zhang X, Liu J, Yang X. Multiplex CRISPR-Cas9 knockout of EIL3, EIL4, and EIN2L advances soybean flowering time and pod set. BMC Plant Biology, 2023, 23:519 [百度学术]
Zhang Z, Wang J, Kuang H, Hou Z, Gong P, Bai M, Zhou S, Yao X, Song S, Yan L. Elimination of an unfavorable allele conferring pod shattering in an elite soybean cultivar by CRISPR/Cas9. Abiotech, 2022, 3: 110-114 [百度学术]
Bhangu R, Virk H K. Nitrogen management in soybean: A review. Agricultural Reviews, 2019, 40: 129-135 [百度学术]
Shen B, Schmidt M A, Collet K H, Liu Z B, Coy M, Abbitt S, Molloy L, Frank M, Everard J D, Booth R. RNAi and CRISPR-Cas silencing E3-RING ubiquitin ligase AIP2 enhances soybean seed protein content. Journal of Experimental Botany, 2022, 73: 7285-7297 [百度学术]
Bai M, Yuan C, Kuang H, Sun Q, Hu X, Cui L, Lin W, Peng C, Yue P, Song S. Combination of two multiplex genome-edited soybean varieties enables customization of protein functional properties. Molecular Plant, 2022, 15: 1081-1083 [百度学术]
Cai Z, Xian P, Cheng Y, Zhong Y, Yang Y, Zhou Q, Lian T, Ma Q, Nian H, Ge L. MOTHER-OF-FT-AND-TFL1 regulates the seed oil and protein content in soybean. New Phytologist, 2023, 239:905-919 [百度学术]
Qu S, Jiao Y, Abraham L, Wang P. Correlation analysis of new soybean [Glycine max (L.) Merr] gene Gm15G117700 with oleic acid. Phyton, 2021, 90: 1177-1192 [百度学术]
Ma J, Sun S, Whelan J, Shou H. CRISPR/Cas9-mediated knockout of GmFATB1 significantly reduced the amount of saturated fatty acids in soybean seeds. International Journal of Molecular Sciences, 2021, 22: 3877 [百度学术]
Xiao Z, Jin Y, Zhang Q, Lamboro A, Dong B, Yang Z, Wang P. Construction and functional analysis of CRISPR/Cas9 vector of FAD2 gene family in soybean. Phyton, 2022, 91: 349 [百度学术]
Jiao S Q, Zhou J M, Shang Y Q, Wang J X, Zhang A J, He H B, Zhao Q Z, Li Y, Yao D. Cloning and genetic transformation of soybean fatty acid dehydrogenase GmFAD3C-1 gene. Chinese Journal of Oil Crop Sciences, 2022, 44: 1006 [百度学术]
Zhou J, Li Z, Li Y, Zhao Q, Luan X, Wang L, Liu Y, Liu H, Zhang J, Yao D. Effects of different gene editing modes of CRISPR/Cas9 on soybean fatty acid anabolic metabolism based on GmFAD2 family. International Journal of Molecular Sciences, 2023, 24: 4769 [百度学术]
Li H, Zhou R, Liu P, Yang M, Xin D, Liu C, Zhang Z, Wu X, Chen Q, Zhao Y. Design of high-monounsaturated fatty acid soybean seed oil using GmPDCTs knockout via a CRISPR-Cas9 system. Plant Biotechnology Journal, 2023, 21:1317-1319 [百度学术]
Qi Z, Guo C, Li H, Qiu H, Li H, Jong C, Yu G, Zhang Y, Hu L, Wu X, Xin D, Yang M, Liu C, Lv J, Wang X, Kong F, Chen Q. Natural variation in Fatty Acid 9 is a determinant of fatty acid and protein content. Plant Biotechnology Journal, 2024,22(3):759-773 [百度学术]
Zhang P, Du H, Wang J, Pu Y, Yang C, Yan R, Yang H, Cheng H, Yu D. Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnology Journal, 2020, 18: 1384-1395 [百度学术]
Zhang Y, Du H, Zhao T, Liao C, Feng T, Qin J, Liu B, Kong F, Che Z, Chen L. GmTOC1b negatively regulates resistance to Soybean mosaic virus. The Crop Journal, 2023, 11(6):1762-1773 [百度学术]
Bui T P, Le H, Ta D T, Nguyen C X, Le N T, Tran T T, Van Nguyen P, Stacey G, Stacey M G, Pham N B, Chu H H, Do P T. Enhancing powdery mildew resistance in soybean by targeted mutation of MLO genes using the CRISPR/Cas9 system. BMC Plant Biology, 2023, 23(1): 533 [百度学术]
Liu T, Ji J, Cheng Y, Zhang S, Wang Z, Duan K, Wang Y. CRISPR/Cas9-mediated editing of GmTAP1 confers enhanced resistance to Phytophthora sojae in soybean. Journal of Integrative Plant Biology, 2023, 65: 1609-1612 [百度学术]
Zhang Y, Blahut-Beatty L, Zheng S, Clough S J, Simmonds D H. The role of a soybean 14-3-3 gene (Glyma05g29080) on white mold resistance and nodulation investigations using CRISPR-Cas9 editing and RNA silencing. Molecular Plant-Microbe Interactions, 2023, 36: 159-164 [百度学术]
Wang K, Bu T, Cheng Q, Dong L, Su T, Chen Z, Kong F, Gong Z, Liu B, Li M. Two homologous LHY pairs negatively control soybean drought tolerance by repressing the abscisic acid responses. New Phytologist, 2021, 229: 2660-2675 [百度学术]
Wang T, Xun H, Wang W, Ding X, Tian H, Hussain S, Dong Q, Li Y, Cheng Y, Wang C. Mutation of GmAITR genes by CRISPR/Cas9 genome editing results in enhanced salinity stress tolerance in soybean. Frontiers in Plant Science, 2021, 12: 779598 [百度学术]
Zhong X, Hong W, Shu Y, Li J, Liu L, Chen X, Islam F, Zhou W, Tang G. CRISPR/Cas9 mediated gene-editing of GmHdz4 transcription factor enhances drought tolerance in soybean (Glycine max [L.] Merr.). Frontiers in Plant Science, 2022, 13: 988505 [百度学术]
Dong L, Hou Z, Li H, Li Z, Fang C, Kong L, Li Y, Du H, Li T, Wang L. Agronomical selection on loss-of-function of GIGANTEA simultaneously facilitates soybean salt tolerance and early maturity. Journal of Integrative Plant Biology, 2022, 64: 1866-1882 [百度学术]
Wang R, Liu X, Zhu H, Yang Y, Cui R, Fan Y, Zhai X, Yang Y, Zhang S, Zhang J. Transcription factors GmERF1 and GmWRKY6 synergistically regulate low phosphorus tolerance in soybean. Plant Physiology, 2023, 192: 1099-1114 [百度学术]
Li X, Hu D, Cai L, Wang H, Liu X, Du H, Yang Z, Zhang H, Hu Z, Huang F. CALCIUM-DEPENDENT PROTEIN KINASE38 regulates flowering time and common cutworm resistance in soybean. Plant Physiology, 2022, 190: 480-499 [百度学术]
Li H, Du H, He M, Wang J, Wang F, Yuan W, Huang Z, Cheng Q, Gou C, Chen Z. Natural variation of FKF1 controls flowering and adaptation during soybean domestication and improvement. New Phytologist, 2023, 238: 1671-1684 [百度学术]
Zhang A, He H, Li Y, Wang L, Liu Y, Luan X, Wang J, Liu H, Liu S, Zhang J. MADS-Box subfamily gene GmAP3 from Glycine max regulates early flowering and flower development. International Journal of Molecular Sciences, 2023, 24: 2751 [百度学术]
Soyano T, Hirakawa H, Sato S, Hayashi M, Kawaguchi M. Nodule inception creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production. Proceedings of the National Academy of Sciences, 2014, 111: 14607-14612 [百度学术]
Hirsch S, Kim J, Munoz A, Heckmann A B, Downie J A, Oldroyd G E. GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. The Plant Cell, 2009, 21: 545-557 [百度学术]
Chen J, Wang Z, Wang L, Hu Y, Yan Q, Lu J, Ren Z, Hong Y, Ji H, Wang H. The B-type response regulator GmRR11d mediates systemic inhibition of symbiotic nodulation. Nature Communications, 2022, 13: 7661 [百度学术]
Yu H, Xiao A, Wu J, Li H, Duan Y, Chen Q, Zhu H, Cao Y. GmNAC039 and GmNAC018 activate the expression of cysteine protease genes to promote soybean nodule senescence. Plant Cell, 2023, 35(8):2929-2951 [百度学术]
Wang X, Qiu Z, Zhu W, Wang N, Bai M, Kuang H, Cai C, Zhong X, Kong F, Lü P, Guan Y. The NAC transcription factors SNAP1/2/3/4 are central regulators mediating high nitrogen responses in mature nodules of soybean. Nature Communication, 2023, 14(1):4711 [百度学术]
Wu X, Wang Y, Ni Q, Li H, Wu X, Yuan Z, Xiao R, Ren Z, Lu J, Yun J. GmYSL7 controls iron uptake, allocation, and cellular response of nodules in soybean. Journal of Integrative Plant Biology, 2023, 65: 167-187 [百度学术]
Nadeem M, Chen A D, Hong H L, Li D D, Li J J, Zhao D, Wang W, Wang X B, Qiu L J. GmMs1 encodes a kinesin-like protein essential for male fertility in soybean (Glycine max L.). Journal of Integrative Plant Biology, 2021, 63(6):1054-1064 [百度学术]
Jiang B J, Chen L, Yang C Y, Wu T T, Yuan S, Wu C X, Zhang M C, Gai J Y, Han T F, Hou W S, Sun S. The cloning and CRISPR/Cas9-mediated mutagenesis of a male sterility gene MS1 of soybean. Plant Biotechnology Journal, 2021, 19(6):1098-1100 [百度学术]
Fang X, Feng X, Sun X, Yang X, Li Q, Yang X, Xu J, Zhou M, Lin C, Sui Y, Zhao L, Liu B, Kong F, Zhang C, Li M. Natural variation of MS2 confers male fertility and drives hybrid breeding in soybean. Plant Biotechnol Journal, 2023, 21(11):2322-2332 [百度学术]
Hou J, Fan W, Ma R, Li B, Yuan Z, Huang W, Wu Y, Hu Q, Lin C, Zhao X. MALE STERILITY 3 encodes a plant homeodomain-finger protein for male fertility in soybean. Journal of Integrative Plant Biology, 2022, 64: 1076-1086 [百度学术]
Yu J, Zhao G, Li W, Zhang Y, Wang P, Fu A, Zhao L, Zhang C, Xu M. A single nucleotide polymorphism in an R2R3 MYB transcription factor gene triggers the male sterility in soybean ms6 (Ames1). Theoretical and Applied Genetics, 2021, 134(11):3661-3674 [百度学术]
张万年,杨静, 杨绪磊, 高萌萌, 林春晶, 刘鹏, 李志刚, 杨向东, 张春宝. 大豆细胞核雄性不育基因MS6的功能验证及不育新种质创制. 植物遗传资源学报, 2023, 24(3): 801-807 [百度学术]
Zhang W N, Yang J, Yang X L, Gao M M, Lin C J, Liu P, Li Z G, Yang X D, Zhang C B. Functional verification of soybean nuclear male sterile gene MS6 and creation of new sterile germplasm. Journal of Plant Genetic Resources, 2023, 24(3): 801-807 [百度学术]
Wei T, Jiang L, You X, Ma P, Xi Z, Wang N N. Generation of herbicide-resistantsoybean by base editing. Biology, 2023, 12: 741 [百度学术]
Kong K, Xu M, Xu Z, Lv W, Lv P, Begum N, Liu B, Liu B, Zhao T. Dysfunction of GmVPS8a causes compact plant architecture in soybean. Plant Science, 2023, 331: 111677 [百度学术]
Arumuganathan K, Earle E D. Estimation of nuclear DNA content of plants by flow cytometry. Plant Molecular Biology Reporter, 1991, 9: 229-241 [百度学术]
Shimomura M, Kanamori H, Komatsu S, Namiki N, Mukai Y, Kurita K, Kamatsuki K, Ikawa H, Yano R, Ishimoto M. The Glycine max cv. Enrei genome for improvement of Japanese soybean cultivars. International Journal of Genomics, 2015, 2015: 358127 [百度学术]
Valliyodan B, Cannon S B, Bayer P E, Shu S, Brown A V, Ren L, Jenkins J, Chung C Y L, Chan T F, Daum C G. Construction and comparison of three reference-quality genome assemblies for soybean. The Plant Journal, 2019, 100: 1066-1082 [百度学术]
Shen Y, Du H, Liu Y, Ni L, Wang Z, Liang C, Tian Z. Update soybean Zhonghuang 13 genome to a golden reference. Science China Life Sciences, 2019, 62: 1257-1260 [百度学术]
Yi X, Liu J, Chen S, Wu H, Liu M, Xu Q, Lei L, Lee S, Zhang B, Kudrna D. Genome assembly of the JD17 soybean provides a new reference genome for comparative genomics. G3 (Bethesda), 2022, 12: jkac017 [百度学术]
Wang L, Zhang M, Li M, Jiang X, Jiao W, Song Q. A telomere-to-telomere gap-free assembly of soybean genome. Molecular Plant, 2023, 16(11):1711-1714 [百度学术]
Zhang C, Xie L, Yu H, Wang J, Chen Q, Wang H. The T2T genome assembly of soybean cultivar ZH13 and its epigenetic landscapes. Molecular Plant, 2023, 16(11): 1715-1718 [百度学术]
Zhang A Q, Kong T C, Sun B Q, Qiu S Z, Guo J H, Ruan S Y, Guo Y, Guo J R, Zhang Z S, Liu Y, Hu Z, Jiang T, Liu Y D, Cao S Q, Sun S, Wu T T, Hong H L, Jiang B J, Yang M X, Yao X Y, Wang Y D. A telomere-to-telomere genome assembly of Zhonghuang 13, a widely-grown soybean variety from the original center of Glycine max. The Crop Journal, 2024, 12(1):142-153 [百度学术]
Paz M M, Martinez J C, Kalvig A B, Fonger T M, Wang K. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Reports, 2006, 25: 206-213 [百度学术]
Chilton M D, Tepfer D A, Petit A, David C, Casse-Delbart F, Tempé J. Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature, 1982, 295: 432-434 [百度学术]
Collier R, Fuchs B, Walter N, Kevin Lutke W, Taylor C G. Ex vitro composite plants: An inexpensive, rapid method for root biology. The Plant Journal, 2005, 43: 449-457 [百度学术]
Ma Z, Zhu L, Song T, Wang Y, Zhang Q, Xia Y, Qiu M, Lin Y, Li H, Kong L. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science, 2017, 355: 710-714 [百度学术]
Lozovaya V V, Lygin A V, Zernova O V, Ulanov A V, Li S, Hartman G L, Widholm J M. Modification of phenolic metabolism in soybean hairy roots through down regulation of chalcone synthase or isoflavone synthase. Planta, 2007, 225: 665-679 [百度学术]
Wang F, Chen H W, Li Q T, Wei W, Li W, Zhang W K, Ma B, Bi Y D, Lai Y C, Liu X L. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. The Plant Journal, 2015, 83: 224-236 [百度学术]
Liu S, Kandoth P K, Warren S D, Yeckel G, Heinz R, Alden J, Yang C, Jamai A, El-Mellouki T, Juvale P S. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature, 2012, 492: 256-260 [百度学术]
Savka M, Ravillion B, Noel G, Farrand S. Induction of hairy roots on cultivated soybean genotypes and their use to propagate the soybean cyst nematode. Phytopathology, 1990, 80: 503-508 [百度学术]
Xu X, Yu T F, Ma J, Chen J, Zhou Y B, Chen M, Chen Z Y, Ma Y Z, Xu Z S, Zhang Z A. Transformation and detection of soybean hairy roots. Bio-Protocol, 2023, 13(11): e4691 [百度学术]
Cheng Y, Wang X, Cao L, Ji J, Liu T, Duan K. Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation for gene functional and gene editing analysis in soybean. Plant Methods, 2021, 17: 1-12 [百度学术]
Kong Q, Li J, Wang S, Feng X, Shou H. Combination of hairy root and whole-plant transformation protocols to achieve efficient CRISPR/Cas9 genome editing in soybean. Plants, 2023, 12: 1017 [百度学术]
Huang J, Lin Q, Fei H, He Z, Xu H, Li Y, Qu K, Han P, Gao Q, Li B, Liu G, Zhang L, Hu J, Zhang R, Zou E, Luo Y, Ran Y, Qiu J, Zhao K, Gao C. Discovery of deaminase functions by structure-based protein clustering. Cell, 2023, 186: 3182-3195 [百度学术]
Kim H, Kim S T, Ryu J, Kang B C, Kim J S, Kim S G. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nature Communications, 2017, 8: 14406 [百度学术]
Yarra R, Sahoo L. Base editing in rice: Current progress, advances, limitations, and future perspectives. Plant Cell Reports, 2021, 40(4):595-604 [百度学术]
Wang S, Zong Y, Lin Q, Zhang H, Chai Z, Zhang D, Chen K, Qiu J L, Gao C. Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC-Cas9. Nature Biotechnology, 2020, 38(12):1460-1465 [百度学术]
Wang M, Wang Z, Mao Y, Lu Y, Yang R, Tao X, Zhu J K. Optimizing base editors for improved efficiency and expanded editing scope in rice. Plant Biotechnology Journal, 2019, 17(9): 1697 [百度学术]
Sun C, Lei Y, Li B, Gao Q, Li Y, Cao W, Yang C, Li H, Wang Z, Li Y. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors. Nature Biotechnology, 2024, 42(2): 316-327 [百度学术]
Jin S, Lin Q, Gao Q, Gao C. Optimized prime editing in monocot plants using PlantPegDesigner and engineered plant prime editors (ePPEs). Nature Protocols, 2023, 18(3): 831-853 [百度学术]
Cai Y, Chen L, Zhang Y, Yuan S, Su Q, Sun S, Wu C, Yao W, Han T, Hou W. Target base editing in soybean using a modified CRISPR/Cas9 system. Plant Biotechnology Journal, 2020, 18: 1996 [百度学术]
Bai M, Hu X, Lin W, Peng C, Kuang H, Zhong X, Li Y, Chen B, Wang J, Li H. Development of PmCDA1-based high-efficiency cytidine base editors (ChyCBEs) incorporating a GmRad51 DNA-binding domain in soybean. New Crops, 2024, 1: 39-42 [百度学术]