摘要
EMS是化学诱变中最常用的诱变剂,EMS诱变具有单个碱基点突变率高、成本低、易操作等优点,通过EMS诱变获得突变体可以为育种和基因功能研究提供有利的材料。EMS诱变技术的关键是确定EMS浓度和诱变时间,一般以达到半致死率的浓度和时间为最佳处理组合。禾本科植物中主要以种子为诱变材料,同时花粉、愈伤组织以及依靠营养繁殖的禾本科植物的营养器官也可以作为诱变材料。不同植物材料对EMS的耐受性不同,花粉最敏感,其次是愈伤组织,无性繁殖材料和种子的耐受性较强。突变体的筛选方式包括表型对比筛选、逆境定向筛选和正、反向遗传学筛选。本文综述了近年来EMS诱变技术在禾本科植物育种和基因功能研究中的应用,介绍了EMS的诱变原理、诱变剂浓度、处理时间、诱变处理材料的选择及突变体的筛选,并对未来禾本科植物中的EMS诱变研究进行了展望,为今后禾本科植物的EMS诱变研究提供参考。
甲基磺酸乙酯(EMS ,ethyl methane sulfonate)是化学诱变中最常用的有机化合物,EMS诱变是一种非转基因的获得突变基因和突变体的途径,具有突变率高、对植物材料损伤小、成本低且易操作等优
禾本科(Gramineae)是单子叶植物纲禾本目,其下有668个属,10000多个
本文综述了近年来禾本科植物EMS诱变的研究进展,简述了EMS的作用原理、诱变浓度和时间的选择、诱变材料的选择及突变体的筛选,旨在为今后继续开展禾本科植物的EMS诱变研究提供参考。
EMS为无色液体,具有致癌
Lethin
EMS对染色体的损伤较小,不易引起染色体的断裂或者畸变,主要是引起碱基的突变,这个特点使得EMS诱变适合作为获得突变等位基因的途
EMS诱变技术的关键是确定最佳的诱变剂量和诱变时间,EMS溶液浓度和诱变时间会严重影响植物材料的存活率及突变率,理论上高浓度的EMS溶液和更长的诱变时间可以提高突变率,但过高的EMS浓度和过长的诱变处理时间会导致诱变材料损伤过大,致使诱变材料存活率大幅度下降,甚至可以导致其死
不同植物材料对EMS的耐受性不同,花粉对EMS最敏感,如玉米花粉EMS诱变时浓度在0.10%左右,诱变时间30~45 mi
选择诱变材料时,首选当地优良品种,这样培育出来的品种更容易被市场接受。对于有性繁殖植物,选择基因型纯合的亲本,可以减少表型和基因型之间的不确定性。适用EMS诱变处理的材料有种子、花粉、茎尖、茎芽、愈伤组织等,可根据不同的植物特性选

图 1 水稻种子(左)和玉米花粉(右) EMS诱变处理步骤
Fig.1 EMS mutagenic treatment steps of rice seeds (left) and corn pollen (right)
种子通常是最佳的诱变材料,具有操作方便、突变效率高等特
序号 No. | 植物种类 Plant species | 诱变浓度和时间 Mutagenic concentration and time | 相对发芽率或存活率 Relative germination rate or survival rate | 处理种子数 Number of seeds processed | 突变性状 Mutant traits | 突变率 Mutation rate | 参考文献 Reference |
---|---|---|---|---|---|---|---|
1 | 水稻粳稻辽星1号 | 0.50%,16 h | 存活率48.60% | 0.50 kg | 株高、茎秆、穗型、叶色、粒型及胚乳淀粉 | M 2:9.60% |
[ |
2 | 水稻粳稻郑稻19 | 1.00%,8 h | 发芽率51.30% | 定向筛选抗除草剂突变体 | 抗除草剂甲咪唑烟酸突变体9株,抗烟嘧磺隆突变体2株 |
[ | |
3 | 水稻粳稻日本晴 | 1.00%,8 h | 发芽率48.00% | 2000粒 |
[ | ||
4 | 水稻籼稻93-1 | 0.50%,14 h | 20 kg | 定向筛选抗咪唑啉酮类除草剂突变体 | M2代获得61株抗性突变体 |
[ | |
5 | 小麦冀麦418 | 0.80%和1.20%,10 h | 6000粒 | 叶色、叶形、株高、芒型、分蘖、根、穗形、籽粒抗寒性、生育期、育性 | M2:5.98% |
[ | |
6 | 紫粒小麦YG509 | 1.00%,10 h | 7000粒 | 叶色、叶形、株高、分蘖、穗长、穗密度、抽穗期、籽粒大小 | M2:33.20% |
[ | |
7 | 小麦西农99 | 1.20%,8 h | 5000粒 | 穗部、叶部、茎秆、株型、生育期、育性 | M1:13.63%,M3:7.28% |
[ | |
8 | 小麦西农979 | 0.80%,12 h | 1600粒 | M1:7.83%,M3:6.71 % | |||
9 | 小麦西农977 | 1.00%,12 h | 1000粒 | M1:9.26%,M3:7.18% | |||
10 | 小麦小偃22 | 1.00%,12 h | 1000粒 | M1:1.86%,M3:8.26% | |||
11 | 大麦浙农大3号 | 0.40%,16 h | 存活率46.70% | 3000粒 | 分蘖、叶片、茎秆、穗型、生育期、育性 | 7.46% |
[ |
12 | 高粱品种红缨子 | 0.40%,14 h | 存活率31.90% | 10000粒 | 叶色、叶形、穗型、株高、感病性、生育期 | M2:8.43% |
[ |
13 | 燕麦花早2号 | 0.70%,15 h | 存活率40.10% | 10000粒 | 叶色、叶形、分蘖、株高、穗型、成熟期 | M2:9.80% |
[ |
14 | 谷子晋谷21号 | 1.00%,10 h | 发芽率49.03% | 5000粒 | 黄化苗、白化苗、叶色变异、分蘖、茎秆红色、穗型 |
[ | |
15 | 薏苡Y159 | 3.20%,10 h | 相对发芽率48.60% | 叶型、株高 | 64.60% |
[ | |
16 | 羊草吉生四号 | 1.50%,16 h | 相对发芽率51.68% | 4000粒 | 叶色、叶形、分蘖、株高 | 18.66% |
[ |
17 | 糜子伊选大红糜 | 1.00%,10 h | 存活率为38.90% | 6000粒 | 叶色、叶型、株高、穗型、种皮颜色、生育期、育性、感病性 | 4.50% |
[ |
18 | 多年生黑麦草首相 | 0.80%,24 h | 相对发芽率49.88% | 14400粒 | 得到有较高的抗氧化酶活性,游离脯氨酸、可溶性糖含量维持较高水平,MDA含量较低的抗旱性提高的突变株 | 定向筛选得到15株抗旱单株 |
[ |
18 | 老芒麦川草2号 | 0.80%,16 h | 发芽率41.70% | 6400粒 |
[ | ||
20 | 无芒雀麦 | 1.20%~1.50%,15 h | 相对发芽率33.83%~59.10% | 2400粒 |
[ |
花粉的诱变效果好,一旦花粉的精细胞发生突变,就可以把突变基因传递给合
序号 No. | 诱变材料 Mutagenic material | 诱变浓度和时间 Mutagenic concentration and time | 突变性状 Mutant traits | 参考文献 Reference |
---|---|---|---|---|
1 | 玉米自交系K350 | 0.67~1.00 ml/L,45 min | 叶片、株高、穗位、雄穗、果穗、不育、抗性 |
[ |
玉米自交系21-ES | ||||
玉米自交系R-8 | 1.67 ml/L,45 min | |||
2 | 玉米自交系B73 | 0.10%,30 min | 籽粒皱缩、光合系统缺失、矮化、气生根颜色缺失、叶片斑点、叶片早衰、叶片数目增加、植株畸形、穗长度增加 |
[ |
3 | 玉米自交系K22、B73 | 0.50%,45 min | 矮秆、黄化、花斑叶、穗位降低、雄穗变短、抗旱性、育性 |
[ |
4 | 玉米自交系082 | - | 1个高粗蛋白、高Lys含量突变体和1个低Lys含量突变体,超氧化酶活性增强、降低突变变体,过氧化酶降低突变体 |
[ |
5 | 玉米自交系B73 | - | 节间缩短但节数增加 |
[ |
6 | 玉米自交系RP125 | - | 叶色、叶形、病斑模拟、穗形、籽粒颜色、籽粒充实度、籽粒大小、株高、生育期 |
[ |
7 | 玉米bm1-PI228174 | - | 获得2个新的玉米bm1突变等位基因 |
[ |
-表示文献中未提及;下同
-indicates not mentioned in the reference; The same as below
花粉对EMS比较敏感,玉米花粉的EMS诱变浓度一般在0.10%左右,处理时间在30~45 mi
能够进行无性繁殖的禾本科植物可以利用其营养器官进行EMS诱变获得突变体,性状优良的突变株通过无性繁殖可以快速扩繁保存下来,不易出现性状分离。李毛
也有研究对禾本科植物的愈伤组织EMS诱变体系进行了探索(
序号 No. | 诱变材料 Mutagenic material | 诱变浓度和时间 Mutagenic concentration and time | 致死率或相对分化率 Fatality rate or relative differentiation rate | 参考文献 Reference |
---|---|---|---|---|
1 | 狗牙根农1号 | 0.80%,2 h | 致死率40.56%,相对分化率为 54.84% |
[ |
2 | 海雀稗Sea Spray | 0.80%,5 h | 愈伤组织存活率46.70% |
[ |
3 | 百喜草 | 0.30%,3 h | 致死率53.30% |
[ |
4 | 甘蔗 | 0.10%,5 h | 相对分化率49.45% |
[ |
5 | 甘蔗新台糖22号、桂糖35号、桂糖21号 | 0.10%~0.15%,3~5 h | - |
[ |
EMS诱变会对植物材料造成损伤,导致M1代长势弱、植株出现畸形,这些非基因突变造成的畸变一般能在M2代中恢复过来。因此筛选突变体需要延续至M2~M4代,确保突变性状能够稳定遗传给后代。
EMS诱变的性状主要包括植株株高、穗形、产量、品质、抗性、生育期等,对于植株形体发生改变的突变体可以与野生型表型进行对比筛选,在各生育期对突变体库的单株性状进行鉴定,这是直接、简单、有效的筛选方式。
江德
对于耐性、抗性突变体如逆境耐受力提高的突变体,可以通过施加一定的逆境条件进行定向筛选。Poli
杂草对农作物的竞争往往会造成减产,培育抗除草剂的作物品种一直是育种研究的热点。通过EMS诱变获得大规模的突变群体,使用一定量的除草剂进行定向筛选,再对筛选出的抗性株进行鉴定可有效获得除草剂抗性突变体。陈天子
通过EMS诱变构建性状丰富的突变体库,可为植物基因功能研究提供理想的实验材料,可用于分析与产量性状相关的突变基因及其等位基因的功能,提高对产量性状形成的分子机制的了解,对于高产育种具有重要意义。与野生型对比筛选出突变体材料,再将两者的基因组测序结果进行比对,寻找控制该性状的目的基因,即为正向遗传学筛选。Hu
反向遗传学技术是鉴定目的基因突变的重要方法。随着测序技术的快速发展,定向诱导基因组局部突变(TILLING,targeting induced local lesions in genomes)技术应用到突变体的筛选中,提高了筛选效率和精确
水稻、玉米、小麦等传统大作物研究深入,基因组信息完善,可采用的育种方法多,特别是近年来迅速发展的依赖基因组信息的基因编辑技术为新品种创制提供了极大的空间。然而一些基因组信息缺乏、遗传背景复杂的禾本科植物育种如果依赖常规育种,耗时长且育种效率低,而EMS诱变几乎适用于所有禾本科植物的突变体库构建和新品种选育。EMS诱变能够以现有种质资源为基础,实现低成本、高通量的突变,之后通过突变体筛选,能够有效加快育种进程。但是值得注意的是,多倍体植物含有多套完整的遗传信息,发生的基因突变容易被其同源基因补偿而无法表现,因此在筛选突变体时需要结合田间筛选和温室筛选等方法共同进行。随着高通量测序技术的快速发展及测序成本的不断降低,一些基因组复杂的禾本科植物基因组测序数据将不断完善,EMS诱变技术还可为后续基因功能研究提供便捷途径。
参考文献
王艺程,张世杰,丁寒雪,蒋成娣,张浠然,张志国,刘翔.甲基磺酸乙酯(EMS)在植物诱变育种中的应用.分子植物育种, 2023, 21(19): 6455-6462 [百度学术]
Wang Y C, Zhang S J, Ding H X, Jiang C D, Zhang X R, Zhang Z G, Liu X. Application of ethyl methane sulfonate (EMS) in plant mutation breeding. Molecular Plant Breeding, 2023, 21(19): 6455-6462 [百度学术]
Espina M J, Ahmed C M S, Bernardini A, Adeleke E, Yadegari Z, Arelli P, Pantalone V, Taheri A. Development and phenotypic screening of an ethyl methane sulfonate mutant population in soybean. Frontiers in Plant Science, 2018, 9: 394 [百度学术]
Sikora P, Chawade A, Larsson M Olsson J, Olsson O. Mutagenesis as a tool in plant genetics, functional genomics, and breeding. International Journal of Plant Genomics, 2011, 2011: 13 [百度学术]
臧辉,任卫波. EMS诱变在植物育种中的研究与应用.分子植物育种, 2018, 16(17): 5782-5788 [百度学术]
Zang H, Ren W B. Research and application of EMS mutation in plant breeding. Molecular Plant Breeding, 2018, 16(17): 5782-5788 [百度学术]
刘柏成,李法云,赵琦慧,吝美霞.禾本科植物修复多环芳烃污染土壤研究进展.化工进展, 2023, 42 (7): 3736-3748 [百度学术]
Liu B C, Li F Y, Zhao Q H, Lin M X. Research progress on remediation of polycyclic aromatic hydrocarbons contaminated soil by gramineae plants. Chemical Industry and Engineering Progress, 2023, 42 (7): 3736-3748 [百度学术]
Elmar G, Heinrich B, Lutz M, Pfister T. Literature review on the genotoxicity, reproductive toxicity, and carcinogenicity of ethyl methane sulfonate. Toxicology Letters, 2009, 190(3): 254-265 [百度学术]
乔雨. EMS诱导蒙农红豆草优良突变体筛选及花色变异机理研究.呼和浩特:内蒙古农业大学, 2020 [百度学术]
Qiao Y. Selection of EMS-mutagenized materials and mechanism of flower color nutation of mengnong sainfoin. Hohhot: Inner Mongolia Agricultural University, 2020 [百度学术]
白邦琴.三种草坪草的EMS诱变及其突变体的初步筛选与鉴定.重庆:西南大学, 2018 [百度学术]
Bai B Q. Three turf grasses induced by EMS and preliminary screening and identification of its mutants. Chongqing: Southwest University, 2018 [百度学术]
Lethin J, Shakil S S M, Hassan S, Sirijovski N, Töpel M,Olsson O, Aronsson H. Development and characterization of an EMS-mutagenized wheat population and identification of salt-tolerant wheat lines. BMC Plant Biology, 2020, 20: 18 [百度学术]
陈超杰. EMS对3个玉米自交系的诱变效应分析.雅安:四川农业大学, 2014 [百度学术]
Chen C J. Effect of EMS-induced mutation on three maize inbred lines. Ya'an: Sichuan Agricultural University, 2014 [百度学术]
Xiong W, Li Y, Wu Z, Ma L, Liu Y, Qin L, Liu J, Hu Z, Guo S, Sun J, Yang G, Chai M, Zhang C, Lu X, Fu C. Characterization of two new brown midrib1 mutations from an EMS-mutagenic maize population for lignocellulosic biomass utilization. Frontiers in Plant Science, 2020, 11:594798 [百度学术]
Singh P K, Sadhukhan R. Ems and gamma radiation induced mutation in grasspea (Lathyrus sativus L.). Legume Research, 2018, 42: 300-307 [百度学术]
董海潇.玉米EMS突变体创制及颜色缺失和籽粒缺陷突变体基因定位与功能分析.长春:吉林大学, 2021 [百度学术]
Dong H X. EMS mutagenesis in maize with gene mapping and characterization for colorless mutant and kernel mutants. Changchun: Jilin University, 2021 [百度学术]
许雯雯. EMS诱变甘蔗突变体库的构建及其SSR引物的筛选.北京:中国农业科学院, 2018 [百度学术]
Xu W W. Construction of sugarcane mutant library induced by EMS and screening of SSR primers. Beijing: Chinese Academy of Agricultural Sciences, 2018 [百度学术]
植菊芳.甘蔗离体培养EMS诱变与抗旱诱变体鉴定的研究.南宁:广西大学, 2014 [百度学术]
Zhi J F. Study on the EMS mutagenesis and drought-resistance mutant identification in vitro culture of sugarcane. Nanning: Guangxi University, 2014 [百度学术]
Serrat X, Esteban R, Guibourt N, Moysset L, Nogués S, Lalanne E. EMS mutagenesis in mature seed-derived rice calli as a new method for rapidly obtaining TILLING mutant populations. Plant Methods, 2014, 10(1): 5 [百度学术]
Chen L Z, Duan L, Sun M H, Moysset L, Nogués S, Lalanne E. Current trends and insights on EMS mutagenesis application to studies on plant abiotic stress tolerance and development. Frontiers in Plant Science, 2023, 13: 1-13 [百度学术]
吕军,刘军,姜秀英,李建国,沈枫. EMS诱导水稻‘辽星1号’突变体的筛选与鉴定.分子植物育种, 2022, 20(12): 4038- 4043 [百度学术]
Lv J, Liu J, Jiang X Y, Li J G, Shen S. Screening and identification of mutants from rice variety 'Liaoxing1' induced by EMS. Molecular Plant Breeding, 2022, 20(12): 4038- 4043 [百度学术]
王付华,李自超,王亚,付景,杨文博,尹海庆,王生轩,王越涛,白涛,张珍.利用EMS诱变创制抗除草剂粳稻新种质.河南农业科学, 2021, 50(4): 8-16 [百度学术]
Wang F H, Li Z C, Wang Y, Fu J, Yang W B, Yin H Q, Wang S X, Wang Y T, Bai T, Zhang Z. New herbicide-resistant Japonica rice germplasms created by EMS mutagenesis. Journal of Henan Agricultural Sciences, 2021, 50(4): 8-16 [百度学术]
黄静.水稻EMS诱变效率和品种内遗传多态性分析.福州:福建农林大学, 2015 [百度学术]
Huang J. Analyses on EMS mutagenesis efficiency and intra-cultivar genetic polymorphisms in rice. Fuzhou: Fujian Agriculture and Forestry University, 2015 [百度学术]
陈天子,余月,凌溪铁,张保龙. EMS诱变水稻创制抗咪唑啉酮除草剂种质.核农学报, 2021, 35(2): 253-261 [百度学术]
Chen T Z, Yu Y, Ling X T, Zhang B L. Screening of imidazolinone-resistant rice from EMS-mutated populations. Journal of Nuclear Agricultural Sciences, 2021, 35(2): 253-261 [百度学术]
吕亮杰,陈希勇,张文英,赵爱菊,孙丽静,张颖君,刘玉平,王莉梅,李子千,李辉. EMS诱变抗旱小麦冀麦418的突变体筛选与鉴定.华北农学报, 2020, 35(S1): 47-55 [百度学术]
Lv L J, Chen X Y, Zhang W Y, Zhao A J, Sun L J, Zhang Y J, Liu Y P, Wang L M, Li Z Q, Li H. Selection and identification of the EMS-induced drought-resistant wheat mutants from Jimai 418. Acta Agriculturae Boreali-Sinica, 2020, 35(S1): 47-55 [百度学术]
刘丹阳.利用EMS诱变紫粒小麦创制小麦新种质.泰安:山东农业大学, 2022 [百度学术]
Liu D Y. Creating new germplasm of purple-grain wheat induced by EMS. Taian: Shandong Agricultural University, 2022 [百度学术]
赵越. EMS诱导小麦突变及优良突变鉴选.杨凌:西北农林科技大学, 2020 [百度学术]
Zhao Y. The mutantion of wheat induced by EMS and identification and screening of excellent mutants. Yangling: Northwest A&F University, 2020 [百度学术]
曹冠男. EMS诱导4种小麦效应研究及突变体的筛选. 杨凌:西北农林科技大学, 2018 [百度学术]
Cao G N. Four kinds of wheat effect induced by EMS and screening of mutants. Yangling: Northwest A&F University, 2018 [百度学术]
吴建文.小麦EMS突变群体的创建及功能基因的鉴定.泰安:山东农业大学, 2020 [百度学术]
Wu J W. Construction of wheat EMS mutant library and identification of functional genes. Taian: Shandong Agricultural University, 2020 [百度学术]
张晓勤,薛大伟,周伟辉,邬飞波,张国平.用甲基磺酸乙酯(EMS)诱变的大麦浙农大3号突变体的筛选和鉴定.浙江大学学报:农业与生命科学版, 2011, 37(2): 169-174 [百度学术]
Zhang X Q, Xue D W, Zhou W H, Wu F B, Zhang G P. Screening and identification of the mutants from two-row barley cultivar ZJU3 induced by ethyl methane sulfonate(EMS) . Journal of Zhejiang University:Agriculture&Life Sciences, 2011, 37(2): 169-174 [百度学术]
丁延庆,曹宁,周棱波,程斌,高旭,汪灿,邹桂花,张立异.酒用糯高粱EMS突变体库构建及突变体筛选.南方农业学报, 2020, 51(12): 2884-2891 [百度学术]
Ding Y Q, Cao N, Zhou L B, Chen B, Gao X, Wang C, Zou G H, Zhang L Y. Construction of EMS-induced mutant library and mutant screening in liquor-making waxy sorghum. Journal of Southern Agriculture, 2020, 51(12): 2884-2891 [百度学术]
霍朋杰.燕麦EMS突变体库的构建及分析.北京:中国农业科学院, 2015 [百度学术]
Huo P J. Establishment and analysis of EMS mutant library in Oat(Avena nuda L.). Beijing: Chinese Academy of Agricultural Sciences, 2015 [百度学术]
李颜方,杜艳伟,王高鸿,赵根有,赵晋锋. EMS诱变对晋谷21号种子萌发的影响.种子, 2020, 39(11): 83-87 [百度学术]
Li Y F, Du Y W, Wang G H, Zhao G Y, Zhao J F. Effects of EMS mutagenesis on seed germination of rice variety Jingu 21. Seed, 39(11): 83-87 [百度学术]
杨玲玲,刘凡值,孟庆杨,申刚.
Yang L L, Liu F Z, Meng Q Y, Shen G. Effects of
臧辉.羊草种子EMS诱变效应初步研究.北京:中国农业科学院, 2018 [百度学术]
Zang H. Mutagenesis effect of Leymus chinensis seeds snduced by EMS. Beijing: Chinese Academy of Agricultural Sciences, 2018 [百度学术]
张彬,王喆,陈利青,禾璐,李红英,乔治军,韩渊怀.糜子EMS突变体库构建和突变体筛选.植物遗传资源学报, 2019, 20(2): 370-376 [百度学术]
Zhang B, Wang Z, Chen L Q, He L, Li H Y, Qiao Z J, Han Y H. Construction of EMS-treated mutant library and mutant phenotypic analysis in broomcorn millet. Journal of Plant Genetic Resources, 2019, 20(2): 370-376 [百度学术]
董文科,路旭平,姜寒玉,马晖玲.多年生黑麦草EMS诱变与耐旱性评价.核农学报, 2018, 32(10): 1889-1897 [百度学术]
Dong W K, Lu X P, Jiang H Y, Ma H L. EMS mutagenesis and drought tolerant evaluation of Loium perenne L.. Journal of Nuclear Agricultural Sciences, 2018, 32(10): 1889-1897 [百度学术]
陈丽丽,吴婍,季晓菲,闫利军.不同浓度EMS对老芒麦种子发芽的影响.草学, 2018(1): 18-22 [百度学术]
Chen L L, Wu Q, Ji X F, Yan L J. Effect of different concentration of EMS on seed germination of Elymus sibiricus. Journal of Grassland and Forage Science, 2018(1): 18-22 [百度学术]
张玥,石凤翎,赵海霞. EMS处理对无芒雀麦种子萌发的研究.种子, 2018, 37(12): 70-72 [百度学术]
Zhang Y, Shi F L, Zhao H X. Study on the seed germination of the Bromus inermis L. seed mutation induced by EMS. Seed, 2018, 37(12): 70-72 [百度学术]
Neuffer M G, Chang M T. Induced mutations in biological and agronomic research. Science for Plant Breeding, 1989(16): 165-178 [百度学术]
周文期,连晓荣,周玉乾,王兴荣,杨彦忠,刘忠祥,王晓娟,何海军,寇思荣. EMS诱变玉米自交系种质创新应用.玉米科学, 2020, 28(6): 31-38 [百度学术]
Zhou W Q, Lian X R, Zhou Y Q, Wang X R, Yang Y Z, Liu Z X, Wang X J, He H J, Kou S R. Innovative application of EMS mutagenesis germplasm of maize inbred lines. Journal of Maize Sciences, 2020, 28(6): 31-38 [百度学术]
刘志斋.玉米EMS处理所得突变系的诱变效应研究.重庆:西南农业大学2005 [百度学术]
Liu Z Z. Analysis of mutation effect of maize(Zea Mays) mutants induced by ethyl methane sulfonate (EMS). Chongqing: Southwest University, 2005 [百度学术]
Wang F, Yu Z, Zhang M, Wang M, Lu X, Liu X, Li Y, Zhang X, Tan B, Li C, Ding Z. ZmTE1 promotes plant height by regulating intercalary meristem formation and internode cell elongation in maize. Plant Biotechnology Journal,2021,20(3): 526-537 [百度学术]
Nie S, Wang B, Ding H, Lin H, Zhang L, Li Q, Wang Y, Zhang B, Liang A, Zhang Z. Genome assembly of the Chinese maize elite inbred line RP125 and its EMS mutant collection provide new resources for maize genetics research and crop improvement. The Plant Journal, 2021, 108(1): 1-15 [百度学术]
李丹丹. EMS处理水稻幼穗诱发变异的方法研究.广州:华南农业大学, 2020 [百度学术]
Li D D. Study on EMS treatment of induced variation of young panicles in rice. Guangzhou: South China Agricultural University, 2020 [百度学术]
李毛,王勇锋,徐开杰,孙风丽,刘曙东,奚亚军.利用EMS诱变构建柳枝稷穗芽无性系突变体库的初步研究.西北农业学报, 2016, 25(2): 203-208 [百度学术]
Li M, Wang Y F, Xu K J, Sun F L, Liu S D, Xi Y J. Construction of mutant library by EMS inductionwith Panicum virgatum spike buds. Acta Agriculturae Boreali-Occidentalis Sinica, 2016, 25(2): 203-208 [百度学术]
刘莉.新农1号狗牙根再生体系优化及EMS诱变研究.乌鲁木齐:新疆农业大学, 2015 [百度学术]
Liu L. Study on regeneration system optimization and Ethyl Methyl Sulfone mutation of Cynodon dactylon (L.)Pers cv. Xinnong No.1. Urumqi: Xinjiang Agricultural University, 2015 [百度学术]
陈祥韦.利用EMS诱变技术获得海雀稗耐寒突变体.南京:南京农业大学, 2017 [百度学术]
Chen X W. Screening of mutants with enhanced coldresistance induced by EMS mutagenesis in seashore paspalum.Nanjing:Nanjing Agricultural University, 2017 [百度学术]
张爱加.百喜草高效再生体系建立及EMS诱变技术初探.福州:福建农林大学, 2007 [百度学术]
Zhang A J. Establishment of the higher efficient system for plant regeneration of Paspalumnotatum Flgge and preliminary study on EMS induced mutation technology. Fuzhou: Fujian Agriculture and Forestry University, 2007 [百度学术]
江德权.武育粳3号重要农艺和品质性状突变体的创制与研究.南京:南京农业大学, 2012 [百度学术]
Jiang D Q. Identification and characterization of mutants regarding major agronomic and quality traits as induced by chemical mutagen (EMS)in the premium japonica rice cultivar wuyujing3. Nanjing:Nanjing Agricultural University, 2012 [百度学术]
徐艳花,陈锋,董中东,崔党群. EMS诱变的普通小麦豫农201突变体库的构建与初步分析.麦类作物学报, 2010, 30(4): 625-629 [百度学术]
Xu Y H, Chen F, Dong Z D, Cui D Q. Construction and analysis of EMS induced mutant library of hexaploid wheat cultivar Yunong 201. Journal of Trticeae Crops, 2010, 30(4): 625-629 [百度学术]
Sharma V, Mishra A, Sharma H, Kumar P, Roy J. Unraveling novel and rare mutations for alpha-amylase and key transcription factors in EMS-induced wheat mutants for amylose by TILLING. Molecular Biology Reports, 2022, 49(6): 5427-5436 [百度学术]
Jitendra K, Ashish K, Ankita M, Vinod K M, Joy R. Genetic variation, heritability, genetic advance, micronutrients, and grain morphology trait associations in EMS induced mutant lines of wheat (Triticum aestivum L.). Genetic Resources and Crop Evolution, 2022, 69(6): 1-18 [百度学术]
Zhao Y, Huang Y, Gao Y, Wang H, Wu H, Zhu H, Lu X, Ma Q. An EMS-induced allele of the brachytic2 gene can reduce plant height in maize. Plant Cell Reports, 2023, 42(4): 749-761 [百度学术]
王炜,陈琛,葛玉彬,罗俊杰,叶春雷.甜高粱EMS诱变获得新种质的研究.核农学报, 2022, 36(1): 7-13 [百度学术]
Wang W, Chen C, Ge Y B, Luo J J, Ye C L. EMS mutagenesis of sweet sorghum to create new germplasm. Journal of Nuclear Agricultural Sciences, 2022, 36(1): 7-13 [百度学术]
Guo B, Qi J, Li D, Sun H, Lyu C, Wang F, Zhu J, Guo G, Xu R. Genetic analysis and gene mapping of a dwarf and liguleless mutation in barley. The Crop Journal, 2022, 10(4): 1094-1102 [百度学术]
Poli Y, Nallamothu V, Hao A, Goud M D, Wang X, Desiraju S, Mangrauthia S, Jain A. NH787 EMS mutant of rice variety Nagina22 exhibits higher phosphate use efficiency. Scientific Reports, 2021, 11(1): 9156 [百度学术]
Roux M S L L, Burger N F V, Maré Vlok, Kunert J K, Cullis C A, Botha A M. EMS derived wheat mutant BIG8-1 (Triticum aestivum L.)—a new drought tolerant mutant wheat line. International Journal of Molecular Sciences,2021, 22:5314 [百度学术]
Sadaf Z, Sana Z, Momina H, Muhammad A, Tayyaba S, Mehboob-ur-Rahman. EMS-based mutants are useful for enhancing drought tolerance in spring wheat. Cereal Research Communications, 2021, 50(4): 1-12 [百度学术]
Wang D, Li P, Wang H, Xu Y, Yang Y, Zhou Y, Chen Z, Zhou Y, Gui L, Guo Y, Zhou C, Tang W, Zheng S, Wang L, Guo X, Zhang, Y, Cui F, Lin X, Jiao Y, He Y, Li J, He F, Liu X, Xiao J. Boosting wheat functional genomics via an indexed EMS mutant library of KN9204. Plant Communications, 2023, 4(4): 100593-100593 [百度学术]
Zheng Y, Zhu Y, Mao X, Jiang M, Wei Y, Lian L, Xu H, Chen L, Xie H, Lu G, Zhang J. SDR7-6, a short-chain alcohol dehydrogenase/reductase family protein, regulates light-dependent cell death and defence responses in rice. Molecular Plant Pathology,2022, 23(1):78-91 [百度学术]
Chhabra B, Singh L, Wallace S, Schoen A, Dong Y, Tiwari V, Rawat N. Screening of an ethyl methane sulfonate mutagenized population of a wheat cultivar susceptible to Fusarium Head Blight identifies resistant variants. Plant Disease,2021, 105(11):3669-3676 [百度学术]
Xu X, Su Y, Yang J, Li J, Gao Y, Li C, Wang X, Guo L, Zheng Z, Xie C, Ma J, Ma J. A novel QTL conferring Fusarium crown rot resistance on chromosome 2A in a wheat EMS mutant. Theoretical and Applied Genetics,2024, 137(2): 49 [百度学术]
Christina I, Julio M, Finn B, Winnie F, Merethe B, Søren K, Per G. Highly effective mlo-based powdery mildew resistance in hexaploid wheat without pleiotropic effects. Plant Science,2023,335:111785 [百度学术]
刘美桃.晋谷21 EMS突变体库的构建与特征分析.晋中:山西农业大学, 2014 [百度学术]
Liu M T. Construction and characterization of EMS mutant library of Jingu 21. Jinzhong: Shanxi Agricultural University, 2014 [百度学术]
Hu B, Chen W, Wan L, Li T, Wang H, Wang Y, Pu Z, Tu B, Yuan H, Wang Y, Ma B, Qin P, Li S. Short grain 5 controls grain length in rice by regulating cell expansion. Plant Science, 2022, 323: 111412 [百度学术]
Umakanta N, Manoj N, Prasad D, Mithra S V A, Ramamurthy S, Singh N K, Sharma R P, Mohapatra T. An EMS-induced new sequence variant, TEMS5032, in the coding region of SRS3 gene leads to shorter grain length in rice (Oryza sativa L.). Journal of Applied Genetics, 2018, 59(4): 13 [百度学术]
任永哲,徐艳花,马原松,丁锦平,张庆琛,裴冬丽,梁峰. TILLING 技术及其应用的研究进展.种子, 2011, 30(6): 56-60 [百度学术]
Ren Y Z, Xu Y H, Ma Y S, Ding J P, Zhang Q C, Pei D L, Liang F. Advances in TILLING technology and its applications. Seed, 2011, 30(6): 56-60 [百度学术]
周月霞,程剑平,阮景军. TILLING技术及其在作物遗传改良中的应用研究进展.分子植物育种, 2020,18(3):988-994 [百度学术]
Zhou Y X, Chen J P, Ruan J J. Advances in TILLING technology and its application in crop genetic improvement. Molecular Plant Breeding, 2020,18(3):988-994 [百度学术]
彭艳.川荞2号高芦丁突变体的筛选及F3'H基因的TILLING分析.贵阳:贵州大学, 2022 [百度学术]
Peng Y. Screening of high rutin mutants in ‘Chuanqiao 2’ and TILLING analysis of F3'H gene. Guiyang: Guizhou University, 2022 [百度学术]
Jiang C, Lei M, Guo Y, Gao G, Shi L, Jin Y, Cai Y, Himmelbach A, Zhou S, He Q, Yao X, Kan J, Haberer G, Duan F, Li L, Liu J, Zhang J, Spannagl M, Liu C, Stein N, Feng Z, Mascher M, Yang P. A reference-guided TILLING by amplicon-sequencing platform supports forward and reverse genetics in barley. Plant Communications, 2022, 3: 100317 [百度学术]